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Discriminating	the	gene	target	of	a	distal	regulatory	element	
from	other	nearby	transcribed	genes	is	a	challenging	problem	
with	the	potential	to	illuminate	the	causal	underpinnings	of	
complex	diseases.	We	present	TargetFinder,	a	computational	
method	that	reconstructs	regulatory	landscapes	from	diverse	
features	along	the	genome.	The	resulting	models	accurately	
predict	individual	enhancer–promoter	interactions	across	
multiple	cell	lines	with	a	false	discovery	rate	up	to	15	times	
smaller	than	that	obtained	using	the	closest	gene.	By	evaluating	
the	genomic	features	driving	this	accuracy,	we	uncover	
interactions	between	structural	proteins,	transcription	factors,	
epigenetic	modifications,	and	transcription	that	together	
distinguish	interacting	from	non-interacting	enhancer–
promoter	pairs.	Most	of	this	signature	is	not	proximal	to	the	
enhancers	and	promoters	but	instead	decorates	the	looping	
DNA.	We	conclude	that	complex	but	consistent	combinations	
of	marks	on	the	one-dimensional	genome	encode	the	three-
dimensional	structure	of	fine-scale	regulatory	interactions.

Genotyping, exome sequencing, and whole-genome sequencing have 
linked thousands of noncoding variants to traits in humans and other 
eukaryotes1–6. Noncoding variants are more likely to cause com-
mon disease than are nonsynonymous coding variants7, and they 
can account for the vast majority of heritability8. Yet few noncoding 
mutations have been functionally characterized or mechanistically 
linked to human phenotypes7,9. Comparative10 and functional11–13 
genomics, together with bioinformatics, are generating annotations 
of regulatory elements in many organisms and cell types14, as well as 
tools for exploring or predicting the impact of mutations in regulatory 
DNA15–18. However, this new information will only improve under-
standing of disease and other phenotypes if functional noncoding 
elements can be accurately linked to the genes, pathways, and cellular 
processes they regulate. This is a difficult problem because verte-
brate promoters and their regulatory elements can be separated by 
thousands or millions of base pairs19. The closest promoter is usually 

not the true target of enhancers in humans20, although this varies by 
species21, but remains a common heuristic for mapping target genes. 
Incorrectly mapping regulatory variants to genes prevents meaningful 
downstream studies.

Until recently, very few validated distal regulatory interactions were 
known. Hence, previous studies defined interactions indirectly via 
genomic proximity coupled with genetic associations (for example, 
expression quantitative trait loci (eQTLs)22), gene expression14,23–25, 
or promoter chromatin state26,27. High-throughput methods for 
assaying chromatin interactions now exist, including paired-end tag 
sequencing (ChIA-PET)28 and extensions of the chromosome con-
formation capture (3C) assay29 (5C and Hi-C)30,31. When resolution 
is high enough to measure individual enhancer–promoter interac-
tions32–35, Hi-C provides an opportunity to examine the genomic 
features that distinguish the true target of an enhancer from other 
nearby expressed genes. We hypothesized that modeling relationships 
between DNA sequences, structural proteins, transcription factors, 
and epigenetic modifications that together predict looping chroma-
tin might identify new protein functions and molecular mechanisms 
of distal gene regulation that are not immediately obvious from the 
Hi-C data itself.

We implemented an algorithm called TargetFinder that integrates 
hundreds of genomics data sets to identify the minimal subset of fea-
tures necessary to accurately predict individual enhancer–promoter 
interactions across the genome. We focused on enhancers because 
of their large impact on gene regulation36 and our ability to predict 
their locations across the genome, although our approach works with 
other classes of regulatory elements. Our goal was to build a fine-scale 
model capable of distinguishing individual enhancer–promoter pairs 
from among the many possible interactions within a topologically 
associating domain (TAD) or contact domain. Applying TargetFinder 
to six human Encyclopedia of DNA Elements (ENCODE) cell lines11  
with high-resolution Hi-C data32, we discovered that interacting  
enhancer–promoter pairs can be distinguished from non-interacting  
pairs within the same locus with extremely high accuracy.  
These analyses also showed that functional genomics data marking 
the window between the enhancer and promoter are more useful for 
identifying true interactions than are proximal marks at the enhancer 
and promoter. Exploration of this phenomenon identified specific 
proteins and chemical modifications on the chromatin loop that 
bring an enhancer in contact with its target promoter and not with 
nearby active but non-targeted promoters. Thus, TargetFinder pro-
vides a framework for accurately assaying three-dimensional genomic 
interactions, as well as techniques for mining massive collections of 
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experimental data to shed new light on the mechanisms of distal  
gene regulation.

RESULTS
Annotating	the	genomic	features	of	regulatory	interactions
We annotated enhancer–promoter interactions in six human ENCODE 
cell lines that have rich functional genomics data as well as high- 
resolution interaction data generated by Rao et al.32: K562 (mesoderm-
lineage cells from a patient with leukemia), GM12878 (lymphoblastoid 
cells), HeLa-S3 (ectoderm-lineage cells from a patient with cervical 
cancer), HUVEC (umbilical vein endothelial cells), IMR90 (fetal lung 
fibroblasts), and NHEK (epidermal keratinocytes). We identified 
active promoters and enhancers in each cell line using segmentation- 
based annotations from ENCODE and Roadmap Epigenomics, 
as well as gene expression data from ENCODE (Supplementary  
Table 1). Enhancers are typically a few hundred base pairs long, 
whereas promoters are mostly 1–2 kb (Supplementary Figs. 1–3). 
Alternative enhancer and promoter definitions gave qualitatively 
similar results (Supplementary Note).

We annotated all enhancer–promoter pairs as interacting or non-
interacting using high-resolution genome-wide measurements of 
chromatin contacts in each cell line32, the majority of which were 
also detected by capture Hi-C35. Non-interacting pairs were sampled  
(20 per interacting pair) to have enhancer–promoter distances simi-
lar to those of interacting pairs, all of which were less than 2 Mb.  
To focus on distal regulatory enhancers, any promoter–enhancer 
pair separated by less than 10 kb was dropped. We did not remove 
interactions crossing TAD boundaries, but most enhancer–promoter  
pairs occurred within the same TAD (88% in GM12878 cells and 
77% in K562 cells; ref. 37). It is important to emphasize that, by 
design, all enhancers and promoters in our study, including those in 
non-interacting pairs, had marks of activation and open chromatin.  
The challenging question we address is whether interacting pairs have 
any distinguishing characteristics.

We generated lists of features for all enhancer–promoter pairs in 
each cell line using functional genomics data such as measures of 
open chromatin, DNA methylation, gene expression, and ChIP-seq 
peaks for transcription factors, architectural proteins, and modi-
fied histones (Supplementary Table 2). We quantified signal at the  

promoter, at the enhancer, and in the genomic window between them. 
We also computed features for conserved synteny of the enhancer 
and promoter, as well as the similarity of transcription factor and 
target gene annotations, which are associated with experimentally  
validated interactions25.

Finally, we created a ‘combined’ data set by pooling the enhancer–
promoter pairs and features from four cell lines (K562, GM12878, 
HeLa-S3, and IMR90), which we used to discover features of loop-
ing chromatin that generalize across lines. Only features measured 
in all four lines were retained to avoid problems with missing data.  
The NHEK and HUVEC lines had only ~20 data sets each (versus >50 
for the other cell lines; Supplementary Table 2) and were therefore 
excluded from the combined data set.

No	single	feature	distinguishes	true	enhancer	targets
The signal profiles at enhancers and promoters showed many  
expected differences between interacting and non-interacting pairs 
(Fig. 1). These included higher RNA polymerase II (Pol II) signal at 
the transcription start site (TSS) of interacting promoters (Fig. 1a) 
and enrichment of acetylation of histone H3 at lysine 27 (H3K27ac) 
and trimethylation of histone H3 at lysine 4 (H3K4me3) with deple-
tion of monomethylation of histone H3 at lysine 4 (H3K4me1) in 
regions flanking the TSS of interacting promoters (Fig. 1b–d). Across 
cell types, CTCF and RAD21 were enriched near interacting pro-
moters (Fig. 1e,f). Structural proteins and their cofactors were also 
enriched near interacting enhancers (Fig. 2).

However, any given interaction had a complex combination of 
genomic features, some of which also occurred at non-interacting 
pairs in the same locus. For example, LPIN3 had an enhancer that 
looped over approximately 400 kb of intervening DNA contain-
ing the active promoters of TOP1, PLCG1, and ZHX3 in K562 cells  
(Fig. 3). No single mark distinguished LPIN3 from these alternate 
targets, although their gene bodies were covered by broad repressive 
marks (heterochromatin-associated monomethylation of histone H4 
at lysine 20 (H4K20me1)) and by broad activating marks (elongation-
associated trimethylation of histone H3 at lysine 36 (H3K36me3)). 
Notably, the alternate promoters lacked binding of RAD21, whereas 
ZHX3 and PLCG1 lacked binding of CUX1, which has been linked 
to both activation and repression. In GM12878 cells, an intronic 
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Figure 1 Predictive power of promoter-proximal 
genomic features. (a–h) Ratio of various ChIP-
seq signals, including Pol II (POLR2A) (a), 
enhancer- and promoter-associated histone 
modifications (b–d), known looping factors 
(e,f), and selected transcription factors (g,h), 
anchored at the TSS of interacting versus non-
interacting promoters in K562 cells, along with 
the log2-transformed fold change (L2FC) and  
P value corrected for multiple testing (q value). 
All promoters have active chromatin marks and 
show transcription. The top row shows expected 
patterns for promoter-associated marks at 
the TSS, such as a high ratio of H3K4me3 to 
H3K4me1. Some of these marks are enriched in 
interacting promoters, whereas others such as 
lysine 4 methylation patterns are not.  
The bottom row shows TSS-proximal patterns 
for several proteins associated with chromatin 
looping. CTCF and RAD21 are enriched at 
interacting promoters, whereas the transcription 
factors CUX1 and HCFC1 are enriched and 
depleted, respectively.
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enhancer targeting CUTC looped over the promoter of ENTPD7, 
which had many activation marks but lacked RAD21 (Supplementary 
Fig. 4). This complexity motivated us to model enhancer–promoter 
interactions as a function of diverse genomic signatures.

Ensemble	learning	predicts	enhancer–promoter	pairs	with	
high	accuracy
To quantitatively model the interaction status of enhancer–promoter 
pairs as a function of their genomic features, we built a machine 
learning pipeline called TargetFinder (Fig. 4). The inputs are pairs of 
enhancers and promoters, annotated as interacting or non-interacting,  
and genomic features associated with each pair. The algorithm finds 
an optimal combination of features to distinguish interacting from 
non-interacting pairs. Multiple machine learning techniques are 
implemented in the pipeline in a modular way so that performance 
can be optimized and conclusions can be tested for robustness to the 
prediction method. The outputs are a model for predicting whether 
new enhancer–promoter pairs interact, assessments of model per-
formance on held-out data, and estimates of each feature’s individual 
importance to the model as well as its importance in combination 
with other features. The predictive contribution of different genomic 
regions and data types is explored by varying the feature set and quan-
tifying predictive performance. By building models for many cell 
types, their shared and unique characteristics of looping chromatin 
can be discovered. The method is easily extended to other types of 
regulatory elements or interactions, such as promoter–promoter or 
enhancer–enhancer interactions.

We hypothesized that ensemble learning algorithms would have the 
highest precision and recall on held-out data because they are robust 
to overfitting and account for nonlinear feature interactions that could 
encode complex patterns of histone modifications and transcription 
factor binding. In particular, a technique called boosting is used to 
iteratively train models that place increasing emphasis on misclassified  

samples. Indeed, ensembles of boosted decision trees performed  
better than other methods and a random guessing null model on 
all cell lines and the combined data set (Fig. 5 and Supplementary 
Table 3). Accuracy was high by all measures, especially given the noise 
in functional genomics data and the fact that some non-interacting  
pairs might be weakly interacting but fall below the significance cutoff 
(false discovery rate (FDR) = 10%; ref. 32). TargetFinder with boosted 
trees achieved a balance of precision and recall (F1) of 77–90% (mean 
= 83%) and an FDR of 8–15% (mean = 12%). By comparison, all com-
monly used bioinformatics methods had much higher FDR values 
and lower recall. For example, using the closest actively transcribed 
gene results in an FDR of 53–77% (refs. 20,38,39). The gain in predic-
tive accuracy provided by ensemble learning was consistent across 
cell lines and in the combined data set (Supplementary Fig. 5). This 
predictive accuracy demonstrates that there is rich information about 
chromatin looping in one-dimensional genomic data sets that are 
easier and less costly to collect than high-resolution Hi-C data.

Variable	importance	highlights	predictive	data	sets
We next asked whether the ability of TargetFinder to predict 
enhancer–promoter interactions depends on a particular subset of the  
features. By omitting different categories of features and evaluating 
performance with cross-validation, we learned that synteny and gene 
annotations contribute little to predictive accuracy. We therefore pro-
ceeded to evaluate models using only functional genomics features.

To derive mechanistic insights from the model, TargetFinder estimates 
feature importance for each genomics data set within enhancer, pro-
moter, and window regions (Online Methods). Decision trees inherently  
estimate predictive importance when deciding which features to split; 
importance is estimated per feature per tree and then averaged across 
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Figure 2 Ratio of the CTCF and RAD21 ChIP-seq signals occurring within 
interacting enhancers and non-interacting enhancers, anchored at peaks 
for CTCF, RAD21, and the transcription factors CUX1 and HCFC1 for the 
K562 cell line. CUX1 and HCFC1 are highly enriched at loop-associated 
enhancers when co-occurring with CTCF and RAD21. The context 
dependence of protein binding is demonstrated by RAD21, which is not 
enriched at interacting promoters (Fig. 1). Note that CTCF and RAD21 are 
already enriched at their respective peaks within interacting enhancers 
but are further enriched when anchored at CUX1 or HCFC1 peaks. 
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Figure 3 Predicting a chromatin loop that skips over multiple active 
promoters in K562 cells. ENCODE-called peaks are shown for the top nine 
predictive data sets of an interacting promoter (P1) and enhancer (E1) in 
K562 cells, separated by other active promoters and enhancers.  
Active enhancers are segments marked ‘E’ by combined ChromHMM 
and Segway annotations, and active promoters are segments marked 
‘TSS’ and expressed in K562 cells with RPKM >0.3. Ensembl genes 
are also displayed, with introns denoted as thin lines and exons denoted 
as rectangles. The left and right fragments of the Hi-C assay are also 
shown to visually confirm that E1 interacts with P1. This figure shows a 
straightforward example of an enhancer (E1) looping over multiple active 
promoters (P2–P4) to reach its true target (P1). Existing interactions in 
the window between E1 and P1 do not block looping, and P1 is the target 
of other distal regulatory elements within the window. P2–P4 are each 
missing a looping-associated RAD21 mark that has elevated predictive 
importance in this cell line. In addition, P2 and P3 are missing the highly 
predictive CUX1 transcription factor (Fig. 2). Interpreting loops often 
depends on a more complex interaction of marks (supplementary Fig. 4). 
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all trees in the ensemble (Online Methods). This approach enabled us 
to deeply explore the genomic data associated with chromatin loops and 
identified several interesting patterns.

The most predictive features that were robust across cell lines 
were DNA methylation, activation- and elongation-associated his-
tone marks, binding of structural proteins, open chromatin, binding  
of proteins related to repression (MXI1, MAZ, and MAFK), and 
cap analysis of gene expression (CAGE) data (Fig. 6). Other trends 
emerged across many but not all cell lines, including importance of 
the activator protein 1 (AP-1) complex40. Features differ in impor-
tance across cell lines for many reasons, including real functional dif-
ferences (for example, due to different co-factors), lack of expression  
(for example, due to tissue-specific transcription factors), and  
differences in laboratory protocols and antibody quality 
(Supplementary Fig. 6). Interestingly, although there was some 

overlap with known looping factors such as CTCF and cohesin, the 
features predictive of individual enhancer–promoter interactions 
were largely different than those used to identify TAD boundaries 
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and large-scale chromatin organization37.  
This points to different molecular mecha-
nisms operating across these scales.

Proteins	between	enhancers	and	
promoters	are	predictive
TargetFinder mines a diverse collection of 
hundreds of genomic features to build its 
models. To determine whether such a large 
feature set is needed, we applied recursive 
feature elimination (Online Methods). Near-
optimal performance required only ~16 features (Fig. 5c), with per-
formance varying by cell line owing to differences in the number 
of enhancer–promoter pairs as well as the quality and quantity of 
functional genomics data (Supplementary Fig. 6).

Many of the top features for each line and the combined model were 
from the genomic window between the enhancer and the promoter, 
rather than proximal signals at regulatory elements (Fig. 7a). This was 
true despite the fact that average signal (for example, ChIP-seq peak 
density) was higher at enhancers and promoters for most features 
(Fig. 7b). To further validate the importance of features marking the 
looping chromatin, we retrained TargetFinder with two alternative 
sets of features per cell line. The first set included features for the 
enhancer and promoter only (E/P) and the second set included fea-
tures for an extended enhancer (using 3 kb of flanking sequence) and 
a non-extended promoter (EE/P), to test the hypothesis that only the 
enhancer-proximal part of the window is important for prediction 
of looping. We found a large performance gap when using only the 
enhancer and promoter, without marks flanking the enhancer or in 
the window (Fig. 5a). This indicates that there is substantial informa-
tion relevant to looping interactions outside the enhancers and pro-
moters themselves, and we observed this consistently across cell lines 
(Supplementary Fig. 5). Performance was better when using enhanc-
ers and promoters plus the window between them (E/P/W) than with 
the EE/P set, especially after accounting for the lower dimensionality 
of the EE/P set (two regions versus three per genomics data set), 
which generally improved the performance of the machine learning 
models. Using smaller windows around the enhancers for the EE/P set 
resulted in lower performance, showing that the relevant signal is not 
immediately next to the enhancer. Thus, signals relevant to looping 

are located throughout the genomic window between an enhancer and 
a promoter but especially within 3 kb of the enhancer.

The surprising discovery that the interaction status of an 
enhancer–promoter pair can be predicted with high accuracy using 
protein binding and epigenetic marks on DNA between them, plus 
a few proximal marks, made sense when we examined the specific 
window features that the model ranked most important. Some win-
dow features are directly involved in chromatin looping, including  
CTCF, the cohesin complex (SMC3–RAD21), and zinc-finger 
proteins such as ZNF384 and ZNF143. The zinc-finger proteins 
interact with CTCF to provide sequence specificity for chromatin 
interactions41 by binding lineage-specific transcription factors at 
interacting promoters (for example, HCFC1 in HeLa-S3 cells42). 
Other window features influence the likelihood that additional pro-
moters in the locus are the true targets of an enhancer. For example, 
Pol II occupancy at a promoter is not predictive by itself because 
it can indicate either active transcription or a gene that is poised 
for rapid activation. Such non-targets are distinguished by a lack 
of activators or co-activators43 as well as the elongation-associ-
ated histone marks H3K36me3 and dimethylation of histone H3 at 
lysine 79 (H3K79me2). When these features occur in the window 
between an enhancer and a promoter, they increase the likelihood 
that an intervening promoter may be the true target. In contrast, the 
presence of heterochromatin, PRC2 silencing44, and various insula-
tors in the window suggests that intervening genes are unavailable  
for binding and was therefore associated with non-interacting  
pairs in our analyses (Supplementary Figs. 7 and 8). However, note 
that many interacting pairs had different architectures and were 
exceptions to this trend, including the distal enhancer of LPIN3 
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shown in Figure 3. These results empha-
size that TargetFinder accurately predicts 
interactions by learning complex genomic 
signatures across loci.

Window features do not directly encode 
distance between the enhancer and promoter, 
although they may serve as a kind of proxy for active chromatin or 
domain boundaries. To offset this possibility, we matched the distance 
distributions for interacting and non-interacting pairs and normal-
ized features by the length of the region. TargetFinder has high preci-
sion and recall largely independent of enhancer–promoter interaction 
distances in the range of 10 kb to 2 Mb (Supplementary Fig. 9). In 
fact, performance often improved with interaction distance, which 
is consistent with window features encoding information about con-
tact domain boundaries. Indeed, domain boundaries were signifi-
cantly enriched in non-interacting pairs as compared to interacting 
pairs separated by similar distances (Supplementary Fig. 10). Other 
interaction patterns are shown in Supplementary Figures 11–14.  
Window-associated marks may also be proxies for relevant but  
unassayed histone modifications marking alternate targets45.

DNA	looping	has	a	complex	genomic	signature
The complex patterns of co-occurrence for DNA-binding pro-
teins and known looping factors provide mechanistic insights 
into the looping process itself. For example, we found that CUX1 
and HCFC1 interact with CTCF and RAD21 within enhancers 
to increase the likelihood of looping interactions in K562 cells 
(Fig. 2). Interestingly, CUX1 was also significantly enriched 

at interacting promoters relative to non-interacting promoters 
(Fig. 1g), whereas HCFC1 was not (Fig. 1h). The importance  
of co-factors extends beyond this example. TargetFinder identi-
fied numerous cell-type-specific transcription factors with high 
feature importance that increased the probability of an enhancer 
being involved in an interaction when they co-occurred near the 
enhancer with CTCF and/or RAD21. This pattern emerged only 
because we quantified features separately in enhancer, promoter, 
and window regions.

We also learned that proteins performing multiple functions are 
rarely predictive on their own. Instead, TargetFinder learns to use 
co-factors that determine their function. For example, the histone 
acetyltransferase EP300 was rarely a top ranked feature, despite 
its strong association with active enhancers because of its ability 
to acetylate H3K27 (ref. 46). However, EP300 was correlated with 
highly predictive co-factors such as C/EBPβ which phosphorylates 
and modulates the activity of EP300, as well as translocates it to 
specific gene regions47. The high predictive importance of C/EBPβ 
may thus be due to its ability to determine the localized activity  
of EP300.

To further explore such context dependence, we plotted the pre-
dictive rank of an individual feature against its predictive rank when 
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it was combined with other features (Fig. 8). We observed many  
off-diagonal features that were not useful on their own (larger rank) 
but were extremely predictive (lower rank) in combination with addi-
tional features. In K562 cells, for example, these features included 
WHSC1, SUMO2, CUX1, and H2AZ. The latter two were assayed 
in other cell lines and showed a similar pattern. Across cell lines, 
large changes in rank commonly occurred for activating histone 
marks, such as acetylation of histone H3 at lysine 9 (H3K9ac) and the  
histone 2A variant H2AZ, that may help distinguish active from 
poised enhancers and promoters within window regions that cannot 
be discriminated by single activation marks. The elevated importance 
of H2AZ might also be explained by the link between H2A ubiquitina-
tion and Polycomb silencing48. Chromatin modifiers such as methyl-
transferases and acetyltransferases also appeared to disambiguate the 
state of enhancers and alternate promoter targets.

Efficient	screening	for	relevance	to	chromatin	looping
Motivated by results showing that histone modifications can be pre-
dicted by transcription factor binding45, we sought to determine 
whether predictive transcription factors were proxies for important 
but unassayed post-translational modifications such as ubiquitination 
or sumoylation. We analyzed genome-wide SUMO ChIP-seq data for 
heat-shocked and non-shocked K562 cells49 to evaluate the useful-
ness of sumoylation for predicting enhancer–promoter interactions. 
SUMO proteins are involved in protein stability and transcriptional 
regulation50, and CTCF post-translationally modified by SUMO pro-
teins 1–3 organizes repressive chromatin domains51. When added to 
the TargetFinder K562 model, sumoylation in the window between 
an enhancer and a promoter was a top predictor of interactions—
nearly as important as CTCF. Thus, increased accuracy and insight 
into mechanisms of chromatin looping will be gained as additional 
genomic features are measured across many cell lines.

DISCUSSION
Our ability to accurately predict interactions up to 2 Mb apart at 
high resolution and the identification of minimal sets of predictive 
features quantified by genomic region, as well as a focus on high-
resolution intra- rather than inter-TAD interactions, distinguish 
TargetFinder from previous work. Machine learning has been shown 
to accurately identify TADs and other larger chromatin structures (for 
example, A and B compartments) from two-dimensional genomic 
data37, but it has not yet been applied to such fine-scale interactions  
within TADs.

Although some of the predictive accuracy of TargetFinder derives 
from genomic features whose measurement was limited to one or a 
few cell types, many of the top ranked features are similar in predictive 
importance across cell types and in the combined model. For example,  
members of the cohesin complex (SMC3–RAD21) and CTCF are 
highly predictive, as is CAGE when it is assayed. DNA methylation and 
Pol II have elevated importance in the combined cell line set where the 
model was trained on fewer data sets that excluded some transcription 
factors and other features measured in only a subset of the cell lines. 
Marks of heterochromatin and elongation are also consistently impor-
tant. These robust, general features of looping chromatin promise to be 
useful assays for predicting regulatory interactions in new cell types, 
perhaps in combination with data on cell-type-specific regulators.  
They also suggest that, as these predictive features are assayed in more 
cell types, we may be able to develop a generic TargetFinder model 
that could perform accurate in silico Hi-C on independent cell types 
that do not have genome-wide high-resolution chromatin interaction 
data. To do so will require rigorous normalization, as TargetFinder 

relies on numeric values of genomic data being comparable across 
data sets.

We identified numerous features whose role in distal enhancer–
promoter interactions may be underappreciated. These include the 
DNA-binding proteins CUX1, ZNF384, SUPT20H, RUNX3, SPI1, 
SP1, EBF1, RCOR1, MAX, TFAP2C, HCFC1, C/EBPβ, JUND, TBP, 
SRF, ZMIZ1, and WHSC1 (Fig. 8). Most of these are predictive only in 
combination with other features, some of which have roles in chroma-
tin structure. For instance, several interact with the cohesin complex, 
and ZNF143 was recently shown to provide sequence specificity to 
cohesin-associated chromatin looping41. Predictive transcription fac-
tors often belong to activating or repressive complexes such as AP-1,  
AP-2γ, or PRC2 or are chromatin modifiers such as methyltrans-
ferases or acetyltransferases that help determine whether enhancers 
or promoters are in an active or poised state. These general trends are 
consistent across cell types, but the particular transcription factors 
that provide a predictive boost are often specific to a small number of 
cell lines. In addition, we identified several more general predictors 
of looping chromatin. Sumoylation is a combinatorially predictive 
post-translational modification not assayed by ENCODE or Roadmap 
Epigenomics. The activating marks H2AZ and H3K9ac and elonga-
tion marks H3K36me3 and H3K79me2 were also especially useful 
for chromatin loop prediction, more so than many of the well-known 
histone marks necessary for ChromHMM and Segway annotations 
of promoters and enhancers. CAGE is also a consistently top ranked 
feature, providing information on the activation state of annotated 
enhancers and alternate targets in the window that is complementary 
to data from ChIP-seq assays.

Many of the top features used by TargetFinder are not predictive on 
their own. To our knowledge, several of our most predictive features 
have received little to no study in the context of chromatin loop-
ing, although others have well-known biological relevance either 
to regulatory elements or their interactions. Examples include SRF, 
which regulates FOS52 and interacts with C/EBPβ (ref. 53); TFAP2C 
(AP-2γ), which is a pioneer factor associated with estrogen-receptor-
binding events and FOXA1 expression54; ZMIZ1 (hZimp10), which 
promotes expression and sumoylation of the androgen receptor55; 
and KDM1A, which interacts with RCOR1 to demethylate H3K4 
(ref. 56). We identified several other proteins with poor univariate 
importance that nonetheless have known roles in chromatin looping  
and were highly ranked by TargetFinder. These include SP1  
(refs. 57,58), SPI1 (PU.1)59,60, HCFC1, which colocalizes with looping 
factor ZNF143 (ref. 42), and TBP, whose TAF3 subunit is recruited 
by CTCF to distal promoters61 and which is linked with long-range 
interactions62. Finally, WHSC1 (NSD2) is a histone methyltransferase 
of H3K36me3 and therefore is associated with predictive marks of 
elongation63. Thus, changes in univariate versus multivariate predic-
tive rank recapitulate known protein interactions as well as identify 
underappreciated or potentially new biological interactions, often 
involving cell-line-specific transcription factors.

These results are more relevant to looping models of interac-
tion than alternatives such as facilitated tracking64. Polycomb 
complexes appear to have several roles in distinguishing nearby 
targets. For example, PRC2-targeted CpG islands are enriched for 
binding motifs for REST and CUX1, both of which are transcrip-
tional repressors65 with high predictive importance. In Drosophila  
melanogaster, cohesin colocalizes with PRC1 at promoters and  
interacts with this complex to control gene silencing66. Given the 
conservation of Polycomb complexes between flies and humans67, 
this finding has implications for the interaction of cohesin and 
Polycomb complexes in mammalian gene silencing and thus for the  
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discrimination of target promoters. Also, distal enhancers may 
sometimes serve to clear Polycomb complexes from CpG islands68. 
Elongation has recently been shown to spatially segregate genes in 
the HoxD locus present in separate TADs69, suggesting that its role in 
inter-TAD gene clusters could contribute to its predictive importance. 
Finally, recent work shows that cohesin spatially clusters enhancers70 
and is consistent with our observation that the presence of active 
marks at nearby enhancers often increases the likelihood of interac-
tion. These are several of many possible explanations for the abil-
ity of window-based features to predict distal enhancer–promoter 
interactions with high precision and recall—explanations that may be 
refined by analysis of new functional genomics data sets. Additional 
discussion is available in the Supplementary Note.

URLs. TargetFinder, https://github.com/shwhalen/targetfinder; 
ENCODE annotation, http://encodeproject.org/data/annotations.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE	METhODS
All code and data are accessible online (see URLs). 

Identification of regulatory elements. TSS-containing promoter regions 
and strong and weak enhancer regions were identified using combined 
ENCODE Segway71 and ChromHMM72 annotations for K562, GM12878, 
HeLa-S3, and HUVEC cells and Roadmap Epigenomics ChromHMM 
annotations for NHEK and IMR90 cells. Enhancers closer than 10 kb to the 
nearest promoter were discarded to focus the model on distal interactions. 
Promoters were retained if actively transcribed (mean FPKM >0.3 (ref. 73) 
with irreproducible discovery rate <0.1 (ref. 74)) in each cell line as deter-
mined using GENCODE75 version 19 annotations and RNA-seq data from 
the ENCODE portal. Promoter and enhancer counts per line are given in 
Supplementary Table 1.

Chromatin interactions. Interacting enhancer–promoter pairs were annotated 
using high-resolution genome-wide Hi-C data (10% FDR; Gene Expression 
Omnibus (GEO), GSE63525)32. Pairs were assigned to one of five bins on 
the basis of the distance between the enhancer and the promoter, such that 
each bin had the same number of interactions. Non-interacting enhancer–
promoter pairs were assigned to their corresponding distance bin and then 
subsampled within each bin, using 20 negatives per positive (Supplementary 
Table 1). Performance was similar without distance matching, with a loss of  
approximately 1% F1 per 250,000 additional samples (total loss of 6% F1  
for K562 cells).

Genomic features. Functional genomics data for each cell line were down-
loaded from ENCODE, Roadmap Epigenomics, or GEO; details and acces-
sions are given in Supplementary Table 2. Peak calls for ENCODE data were 
obtained from GEO; raw reads for the Roadmap Epigenomics and GEO data 
sets were obtained, quality trimmed using fastq-mcf, aligned to hg19 using 
Bowtie2 (ref. 76), and subjected to peak calling using MACS2 (ref. 77) with 
default parameters. Peaks were intersected with promoter, enhancer, extended 
enhancer, and window regions. The strength of all peaks in a region or the 
counts of methylated bases in a region were summed and divided by the length 
of the region in base pairs to generate features. Cluster heat maps of correla-
tions between the top 16 predictive features for each cell line are shown in 
Supplementary Figures 15–20.

Software implementation. TargetFinder was implemented in Python using 
the scikit-learn machine learning library78, the pandas analytics library79, 
and BEDTools80. We used DummyClassifier to measure baseline perform-
ance, LinearSVC for a linear SVM81, DecisionTreeClassifier for a single  
decision tree82, and GradientBoostingClassifier for a decision tree ensem-
ble83. The linear SVM was fit with parameter class weight = “balanced” as 
part of a pipeline with a StandardScaler preprocessing step. The boosting  
classifier was fit with parameters n_estimators = 4,000, learning_rate = 0.1, 
max_depth = 5, and max_features = “log2”. Models were fit with sample 
weights inversely proportional to class balance to prevent overfitting the 
negative class. Identical parameters were used for each cell line. Results 
were consistent with those from an alternative implementation in R 
(Supplementary Note).

All models were evaluated using tenfold cross-validation where data 
were divided into ten non-overlapping training and test sets. Performance 
was measured using multiple metrics, and the average overall test sets are 
reported. Feature importance values were computed by scikit-learn using 
the method of Hastie et al.84, accessible via the feature_importances_ 
attribute of eligible models. The following pseudocode summarizes  
their implementation

ensemble_importances = zeros(total_features)
 for each tree in ensemble:

 tree_importances = zeros(total_features)
  for each node in tree:
   if node is not a leaf:
    tree_importances[node.feature_index] +=
    node.sample_count * node.impurity –
    node.left_child.sample_count * node.left_child.impurity –
    node.right_child.sample_count * node.right_child.impurity
 ensemble_importances += tree_importances / total_samples
ensemble_importances /= total_trees

where zeros(n) initializes an array of n zeros, total features is the total number 
of features in the data set, node.feature index is the index of the feature used to 
split samples at a node, node.sample count is the number of samples present 
at a node before splitting, node.impurity is a measure of error (here, gini 
impurity), and node.left child and node.right child represent the children of 
a node. Overall, this method sums the weighted reduction in impurity when 
splitting on each feature across all trees in the ensemble, normalized by the 
number of samples per tree and total number of trees. Models were fit ten 
times, each with a different random seed number, to better estimate the mean 
and variance of feature importance values.

Recursive feature elimination85 was used to estimate the optimal number of 
features via nested cross-validation86. Within each training set during ‘outer’ 
cross-validation, feature importance values are initially estimated using all 
features. The performance of the top n features is then estimated from ‘inner’ 
cross-validation on the training set, with n increasing from 1 to the maximum 
number of features by powers of 2. Finally, the best performing subset identi-
fied via inner cross-validation is evaluated against the outer test set to obtain 
an unbiased performance estimate.
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