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ABSTRACT

Most modern convolutional neural networks (CNNs) used for object recognition
are built using the same principles: Alternating convolution and max-pooling lay-
ers followed by a small number of fully connected layers. We re-evaluate the state
of the art for object recognition from small images with convolutional networks,
questioning the necessity of different components in the pipeline. We find that
max-pooling can simply be replaced by a convolutional layer with increased stride
without loss in accuracy on several image recognition benchmarks. Following
this finding — and building on other recent work for finding simple network struc-
tures — we propose a new architecture that consists solely of convolutional layers
and yields competitive or state of the art performance on several object recog-
nition datasets (CIFAR-10, CIFAR-100, ImageNet). To analyze the network we
introduce a new variant of the “deconvolution approach” for visualizing features
learned by CNNSs, which can be applied to a broader range of network structures
than existing approaches.

1 INTRODUCTION AND RELATED WORK

The vast majority of modern convolutional neural networks (CNNs) used for object recognition are
built using the same principles: They use alternating convolution and max-pooling layers followed
by a small number of fully connected layers (e.g. [Jarrett et al.| (2009); Krizhevsky et al.| (2012);
Ciresan et al.). Within each of these layers piecewise-linear activation functions are used. The
networks are typically parameterized to be large and regularized during training using dropout. A
considerable amount of research has over the last years focused on improving the performance of this
basic pipeline. Among these two major directions can be identified. First, a plethora of extensions
were recently proposed to enhance networks which follow this basic scheme. Among these the most
notable directions are work on using more complex activation functions (Goodfellow et al., 2013
Lin et al., 2014 |Srivastava et al., 2013)) techniques for improving class inference (Stollenga et al.,
2014; Srivastava & Salakhutdinov, 2013)) as well as procedures for improved regularization (Zeiler &
Fergus| |2013}; |Springenberg & Riedmiller, 2013; Wan et al.,2013) and layer-wise pre-training using
label information (Lee et al.l2014). Second, the success of CNNs for large scale object recognition
in the ImageNet challenge (Krizhevsky et al., 2012) has stimulated research towards experimenting
with the different architectural choices in CNNs. Most notably the top entries in the 2014 ImageNet
challenge deviated from the standard design principles by either introducing multiple convolutions
in between pooling layers (Simonyan & Zisserman, [2014) or by building heterogeneous modules
performing convolutions and pooling at multiple scales in each layer (Szegedy et al.,2014).

Since all of these extensions and different architectures come with their own parameters and training
procedures the question arises which components of CNNs are actually necessary for achieving state
of the art performance on current object recognition datasets. We take a first step towards answering
this question by studying the most simple architecture we could conceive: a homogeneous network
solely consisting of convolutional layers, with occasional dimensionality reduction by using a stride
of 2. Surprisingly, we find that this basic architecture — trained using vanilla stochastic gradient

*Both authors contributed equally to this work.
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descent with momentum — reaches state of the art performance without the need for complicated
activation functions, any response normalization or max-pooling. We empirically study the effect
of transitioning from a more standard architecture to our simplified CNN by performing an ablation
study on CIFAR-10 and compare our model to the state of the art on CIFAR-10, CIFAR-100 and
the ILSVRC-2012 ImageNet dataset. Our results both confirm the effectiveness of using small con-
volutional layers as recently proposed by Simonyan & Zisserman|(2014)) and give rise to interesting
new questions about the necessity of pooling in CNNs. Since dimensionality reduction is performed
via strided convolution rather than max-pooling in our architecture it also naturally lends itself to
studying questions about the invertibility of neural networks (Estrach et al.||2014). For a first step in
that direction we study properties of our network using a deconvolutional approach similar to Zeiler
& Fergus| (2014).

2 MODEL DESCRIPTION - THE ALL CONVOLUTIONAL NETWORK

The models we use in our experiments differ from standard CNNs in several key aspects. First —
and most interestingly — we replace the pooling layers, which are present in practically all modern
CNNs used for object recognition, with standard convolutional layers with stride two. To understand
why this procedure can work it helps to recall the standard formulation for defining convolution and
pooling operations in CNNs. Let f denote a feature map produced by some layer of a CNN. It can
be described as a 3-dimensional array of size W x H x N where W and H are the width and height
and N is the number of channels (in case f is the output of a convolutional layer, NV is the number of
filters in this layer). Then p-norm subsampling (or pooling) with pooling size k (or half-length k/2)
and stride r applied to the feature map [ is a 3-dimensional array s(f) with the following entries:

/2] LK/2) 1/p
Si,j,u(f) = Z Z |fg(h,w,i,j,u)|p s (D

h=—k/2] w=—|k/2]

where g(h,w,i,j,u) = (r-i+ h,r - j + w,u) is the function mapping from positions in s to
positions in f respecting the stride, p is the order of the p-norm (for p — oo, it becomes the
commonly used max pooling). If » > k, pooling regions do not overlap; however, current CNN
architectures typically include overlapping pooling with £k = 3 and » = 2. Let us now compare the
pooling operation defined by Eq. |l| to the standard definition of a convolutional layer ¢ applied to
feature map f given as:

Lk/2] k/2]) N
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where 0 are the convolutional weights (or the kernel weights, or filters), o(-) is the activation func-
tion, typically a rectified linear activation ReLU o(x) = max(x,0), and o € [1, M] is the number
of output feature (or channel) of the convolutional layer. When formalized like this it becomes clear
that both operations depend on the same elements of the previous layer feature map. The pooling
layer can be seen as performing a feature-wise convolution |'| in which the activation function is
replaced by the p-norm. One can therefore ask the question whether and why such special layers
need to be introduced into the network. While a complete answer of this question is not easy to give
(see the experiments and discussion for further details and remarks) we assume that in general there
exist three possible explanations why pooling can help in CNNs: 1) the p-norm makes the represen-
tation in a CNN more invariant; 2) the spatial dimensionality reduction performed by pooling makes
covering larger parts of the input in higher layers possible; 3) the feature-wise nature of the pooling
operation (as opposed to a convolutional layer where features get mixed) could make optimization
easier. Assuming that only the second part — the dimensionality reduction performed by pooling —
is crucial for achieving good performance with CNNs (a hypothesis that we later test in our experi-
ments) one can now easily see that pooling can be removed from a network without abandoning the
spatial dimensionality reduction by two means:

1. We can remove each pooling layer and increase the stride of the convolutional layer that
preceded it accordingly.

"That is, a convolution where Oh,w,u,0 = 1if u equals o and zero otherwise.
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2. We can replace the pooling layer by a normal convolution with stride larger than one (i.e.
for a pooling layer with k& = 3 and r = 2 we replace it with a convolution layer with
corresponding stride and kernel size and number of output channels equal to the number of
input channels)

The first option has the downside that we significantly reduce the overlap of the convolutional layer
that preceded the pooling layer. It is equivalent to a pooling operation in which only the top-left
feature response is considered and can result in less accurate recognition. The second option does
not suffer from this problem, since all existing convolutional layers stay unchanged, but results in
an increase of overall network parameters. It is worth noting that replacing pooling by convolution
adds inter-feature dependencies unless the weight matrix 6 is constrained. We emphasize that that
this replacement can also be seen as learning the pooling operation rather than fixing it; which has
previously been considered using different parameterizations in the literature E] (LeCun et al., |1998;
Gilgehre et al.| 2014} Jia et al} 2012). We will evaluate both options in our experiments, ensuring
a fair comparison w.r.t. the number of network parameters. Although we are not aware of exist-
ing studies containing such controlled experiments on replacing pooling with convolution layers it
should be noted that the idea of removing pooling is not entirely unprecedented: First, the nomencla-
ture in early work on CNNs |LeCun et al.| (1998)) (referring to pooling layers as subsampling layers
already) suggests the usage of different operations for subsampling. Second, albeit only consider-
ing small networks, experiments on using only convolution layers (with occasional subsampling)
in an architecture similar to traditional CNNs already appeared in work on the “neural abstraction
pyramid’iBehnke| (2003)).

The second difference of the network model we consider to standard CNNSs is that — similar to mod-
els recently used for achieving state-of-the-art performance in the ILSVRC-2012 competition (Si-
monyan & Zisserman, 2014; Szegedy et al., 2014)) — we make use of small convolutional layers with
k < 5 which can greatly reduce the number of parameters in a network and thus serve as a form
of regularization. Additionally, to unify the architecture further, we make use of the fact that if the
image area covered by units in the topmost convolutional layer covers a portion of the image large
enough to recognize its content (i.e. the object we want to recognize) then fully connected layers
can also be replaced by simple 1-by-1 convolutions. This leads to predictions of object classes at
different positions which can then simply be averaged over the whole image. This scheme was first
described by [Lin et al.| (2014) and further regularizes the network as the one by one convolution
has much less parameters than a fully connected layer. Overall our architecture is thus reduced to
consist only of convolutional layers with rectified linear non-linearities and an averaging + softmax
layer to produce predictions over the whole image.

Table 1: The three base networks used for classification on CIFAR-10 and CIFAR-100.

Model
A B [C
Input 32 x 32 RGB image
5 X 5 conv. 96 ReLU 5 X 5 conv. 96 ReLU 3 x 3 conv. 96 ReLU
1 x 1 conv. 96 ReLU 3 x 3 conv. 96 ReLU
3 X 3 max-pooling stride 2
5 X 5conv. 192 ReLU | 5 x 5conv. 192 ReLU | 3 x 3 conv. 192 ReLU
1 x 1 conv. 192 ReLU | 3 x 3 conv. 192 ReLU
3 X 3 max-pooling stride 2

3 x 3 conv. 192 ReLU

1 x 1 conv. 192 ReLU

1 x 1 conv. 10 ReLU
global averaging over 6 X 6 spatial dimensions

10 or 100-way softmax

2 Although in order to implement “proper pooling” in the same sense as commonly considered in the litera-
ture a special nonlinearity (e.g. a squaring operation) needs to be considered. A simple convolution layer with
rectified linear activation cannot by itself implement a p-norm computation.
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3 EXPERIMENTS

In order to quantify the effect of simplifying the model architecture we perform experiments on three
datasets: CIFAR-10, CIFAR-100 (Krizhevsky & Hinton,[2009) and ILSVRC-2012 ImageNet (Deng
et al., 2009) . Specifically, we use CIFAR-10 to perform an in-depth study of different models, since
a large model on this dataset can be trained with moderate computing costs of ~ 10 hours on a
modern GPU. We then test the best model found on CIFAR-10 and CIFAR-100 with and without
augmentations and perform a first preliminary experiment on the ILSVRC-2012 ImageNet dataset.
We performed all experiments using the Caffe (Jia et al., 2014)) framework.

3.1 EXPERIMENTAL SETUP

In experiments on CIFAR-10 and CIFAR-100 we use three different base network models which are
intended to reflect current best practices for setting up CNNs for object recognition. Architectures
of these networks are described in Table[I] Starting from model A (the simplest model) the depth
and number of parameters in the network gradually increases to model C. Several things are to be
noted here. First, as described in the table, all base networks we consider use a 1-by-1 convolution at
the top to produce 10 outputs of which we then compute an average over all positions and a softmax
to produce class-probabilities (see Section 2] for the rationale behind this approach). We performed
additional experiments with fully connected layers instead of 1-by-1 convolutions but found these
models to consistently perform 0.5% — 1% worse than their fully convolutional counterparts. This
is in line with similar findings from prior work (Lin et al., 2014). We hence do not report these
numbers here to avoid cluttering the experiments. Second, it can be observed that model B from
the table is a variant of the Network in Network architecture proposed by [Lin et al.|(2014) in which
only one 1-by-1 convolution is performed after each “normal” convolution layer. Third, model C
replaces all 5 x 5 convolutions by simple 3 X 3 convolutions. This serves two purposes: 1) it unifies
the architecture to consist only of layers operating on 3 x 3 spatial neighborhoods of the previous
layer feature map (with occasional subsampling); 2) if max-pooling is replaced by a convolutional
layer, then 3 x 3 is the minimum filter size to allow overlapping convolution with stride 2. We also
highlight that model C resembles the very deep models used by [Simonyan & Zisserman| (2014) in
this years ImageNet competition.

Table 2: Model description of the three networks derived from base model C used for evaluating the
importance of pooling in case of classification on CIFAR-10 and CIFAR-100. The derived models
for base models A and B are built analogously. The higher layers are the same as in Table/[I].

Model

Strided-CNN-C

| ConvPool-CNN-C

[ AI-CNN-C

Input 32 x 32 RGB image

3 x 3 conv. 96 ReLU
3 x 3 conv. 96 ReLU
with stride r = 2

3 x 3 conv. 96 ReLU
3 x 3 conv. 96 ReLU
3 x 3 conv. 96 ReLU

3 x 3 conv. 96 ReLU
3 x 3 conv. 96 ReLU

3 X 3 max-pooling stride 2

3 x 3 conv. 96 ReLU
with stride 7 = 2

3 x 3 conv. 192 ReLU
3 x 3 conv. 192 ReLU
with stride r = 2

3 x 3 conv. 192 ReLU
3 x 3 conv. 192 ReLU
3 x 3 conv. 192 ReLU

3 x 3 conv. 192 ReLU
3 x 3 conv. 192 ReLU

3 x 3 conv. 192 ReLU
with stride r = 2

3 X 3 max-pooling stride 2

For each of the base models we then experiment with three additional variants. The additional
(derived) models for base model C are described in in Table[2] The derived models for base models
A and B are built analogously but not shown in the table to avoid cluttering the paper. In general the
additional models for each base model consist of:

e A model in which max-pooling is removed and the stride of the convolution layers pre-
ceding the max-pool layers is increased by 1 (to ensure that the next layer covers the same
spatial region of the input image as before). This is column “Strided-CNN-C” in the table.
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e A model in which max-pooling is replaced by a convolution layer. This is column “All-
CNN-C” in the table.

e A model in which a dense convolution is placed before each max-pooling layer (the ad-
ditional convolutions have the same kernel size as the respective pooling layer). This is
model “ConvPool-CNN-C” in the table. Experiments with this model are necessary to en-
sure that the effect we measure is not solely due to increasing model size when going from
a “normal” CNN to its “All-CNN” counterpart.

Finally, to test whether a network solely using convolutions also performs well on a larger scale
recognition problem we trained an up-scaled version of ALL-CNN-B on the ILSVRC 2012 part of
the ImageNet database. Although we expect that a larger network using only 3 x 3 convolutions
and having stride 1 in the first layer (and thus similar in style to |[Simonyan & Zisserman| (2014))
would perform even better on this dataset, training it would take several weeks and could thus not
be completed in time for this manuscript.

3.2 CLASSIFICATION RESULTS

3.2.1 CIFAR-10

Table 3: Comparison between the base and derived models on the CIFAR-10 dataset.
CIFAR-10 classification error

Model Error (%) # parameters
without data augmentation

Model A 12.47% ~09M
Strided-CNN-A 13.46% ~09M
ConvPool-CNN-A  10.21% =~ 1.28M
ALL-CNN-A 10.30% ~ 1.28M
Model B 10.20% ~1M
Strided-CNN-B 10.98% ~1M
ConvPool-CNN-B  9.33% ~1.35M
ALL-CNN-B 9.10% ~1.35 M
Model C 9.74% ~1.3M
Strided-CNN-C 10.19% ~1.3M
ConvPool-CNN-C  9.31% ~14M
ALL-CNN-C 9.08% ~14M

In our first experiment we compared all models from Section [3.T]on the CIFAR-10 dataset without
using any augmentations. All networks were trained using stochastic gradient descent with fixed
momentum of 0.9. The learning rate v was adapted using a schedule S = eq, e2, eg in which ~ is
multiplied by a fixed multiplier of 0.1 after e;.es and e3 epochs respectively. To keep the amount of
computation necessary to perform our comparison bearableE]we only treat 7y as a changeable hyper-
parameter for each method. The learning rate schedule and the total amount of training epochs were
determined in a preliminary experiment using base model A and then fixed for all other experiments.
We used S = [200, 250, 300] and trained all networks for a total of 350 epochs. It should be noted
that this strategy is not guaranteed to result in the best performance for all methods and thus care
must be taken when interpreting the the following results from our experiments. The learning rate ~y
was individually adapted for each model by searching over the fixed set v € [0.25,0.1,0.05,0.01].
In the following we only report the results for the best vy for each method. Dropout (Hinton et al.,
2012) was used to regularize all networks. We applied dropout to the input image as well as af-
ter each pooling layer (or after the layer replacing the pooling layer respectively). The dropout
probabilities were 20% for dropping out inputs and 50% otherwise. We also experimented with
additional dropout (i.e. dropout on all layers or only on the 1 X 1 convolution layer) which however
did not result in increased accuracyﬂ. Additionally all models were regularized with weight decay

3Training one network on CIFAR-10 can take up to 10 hours on a modern GPU.
“In the case were dropout of 0.5 is applied to all layers accuracy even dropped, suggesting that the gradients
become too noisy in this case
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A = 0.001. In experiments with data augmentation we perform only the augmentations also used in
previous work (Goodfellow et al., 2013} |Lin et al.| |2014) in order to keep our results comparable.
These include adding horizontally flipped examples of all images as well as randomly translated
versions (with a maximum translation of 5 pixels in each dimension). In all experiments images
were whitened and contrast normalized following |Goodfellow et al.[(2013).

The results for all models that we considered are given in Table[3] Several trends can be observed
from the table. First, confirming previous results from the literature (Srivastava et al.,[2014) the sim-
plest model (model A) already performs remarkably well, achieving 12.5% error. Second, simply
removing the max-pooling layer and just increasing the stride of the previous layer results in dimin-
ished performance in all settings. While this is to be expected we can already see that the drop in
performance is not as dramatic as one might expect from such a drastic change to the network archi-
tecture. Third, surprisingly, when pooling is replaced by an additional convolution layer with stride
r = 2 performance stabilizes and even improves on the base model. To check that this is not only
due to an increase in the number of trainable parameters we compare the results to the “ConvPool”
versions of the respective base model. In all cases the performance of the model without any pooling
and the model with pooling on top of the additional convolution perform about on par. Surprisingly,
this suggests that while pooling can help to regularize CNNs, and generally does not hurt perfor-
mance, it is not strictly necessary to achieve state-of-the-art results (at least for current small scale
object recognition datasets). In addition, our results confirm that small 3 x 3 convolutions stacked
after each other seem to be enough to achieve the best performance.

Perhaps even more interesting is the comparison between the simple all convolutional network de-
rived from base model C and the state of the art on CIFAR-10 shown in Table [4], both with and
without data augmentation. In both cases the simple network performs better than the best previ-
ously reported result. This suggests that in order to perform well on current benchmarks “almost all
you need” is a stack of convolutional layers with occasional stride of 2 to perform subsampling.

Table 4: Test error on CIFAR-10 and CIFAR-100 for the All-CNN compared to the state of the art
from the literature. The All-CNN is the version adapted from base model C (i.e. AII-CNN-C). The
other results are from: [1] (Goodfellow et al., 2013)), [2] (Lin et al.} 2014), [3] (Lee et al.,[2014), [4]
(Stollenga et al., [2014), [5] (Srivastava & Salakhutdinov, |2013), [6] (Graham) 2015). The number
of parameters is given in million parameters.

CIFAR-100 classification error

CIFAR-10 classification error Method - Error (%)

Method Error (%) # params CNN + tree prior [5] 36.85%

N — P Network in Network [2] 35.68%
KV/II ou ia a augmentation 16377 oM Deeply Supervised [3] 34.57%

axout [1] o0 = Maxout (larger) [4] 34.54%
Network in Network [2] 10.41% ~1M

X dasNet [4] 33.78%

Deeply Supervised [3] 9.69% ~1M ALL-CNN (Ours) 33.71%
A.LhL;lCNN (Ours)  9.08%  ~13M g ciional Pooling (1 test) [6] 31.45%
&lt atala“gmematlon - < Fractional Pooling (12 tests) [6] 26.39%

axout [1] 9.38% >0 CIFAR-10 classification error
DropConnect [2] 9.32% - Method Error (%)
dasNet [4.] 9.22% >6M with large data augmentation
Network in Ne?work 21 8.81% ~1M Spatially Sparse CNN [6] 1177
Deeply Supervised [3] 7.97% ~1M Large ALL-CNN (Ours) n 41%
ALL-CNN (Qurs) 7.25% ~1.3M Fractional Pooling (1 test) [6] 4.50%

Fractional Pooling (100 tests) [6] 3.47%

3.2.2 CIFAR-100

We performed an additional experiment on the CIFAR-100 dataset to confirm the efficacy of the
best model (the All-CNN-C) found for CIFAR-10. As is common practice we used the same model
as on CIFAR-10 and also kept all hyperparameters (the learning rate as well as its schedule) fixed.
Again note that this does not necessarily give the best performance. The results of this experiment
are given in Table 4] (right). As can be seen, the simple model using only 3 x 3 convolutions again
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performs comparable to the state of the art for this dataset even though most of the other methods
either use more complicated training schemes or network architectures. It is only outperformed
by the fractional max-pooling approach (Grahaml 2015) which uses a much larger network (on the
order of 50M parameters).

3.2.3 CIFAR-10 WITH ADDITIONAL DATA AUGMENTATION

After performing our experiments we became aware of recent results by |Graham|(2015) who report
a new state of the art on CIFAR-10/100 with data augmentation. These results were achieved using
very deep CNNs with 2 x 2 convolution layers in combination with aggressive data augmentation
in which the 32 x 32 images are placed into large 126 x 126 pixel images and can hence be heavily
scaled, rotated and color augmented. We thus implemented the Large-All-CNN, which is the all
convolutional version of this network (see Table[3in the appendix for details) and report the results
of this additional experiment in Table [4] (bottom right). As can be seen, Large-All-CNN achieves
performance comparable to the network with max-pooling. It is only outperformed by the fractional
max-pooling approach when performing multiple passes through the network. Note that these net-
works have vastly more parameters (> 50 M) than the networks from our previous experiments. We
are currently re-training the Large-AIl-CNN network on CIFAR-100, and will include the results in
Table 4| once training is finished.

3.3 CLASSIFICATION OF IMAGENET

We performed additional experiments using the ILVRC-2012 subset of the ImageNet dataset. Since
training a state of the art model on this dataset can take several weeks of computation on a mod-
ern GPU, we did not aim for best performance, but rather performed a simple ’proof of concept’
experiment. To test if the architectures performing best on CIFAR-10 also apply to larger datasets,
we trained an upscaled version of the All-CNN-B network (which is also similar to the architecture
proposed by [Lin et al.| (2014)). It has 12 convolutional layers (convl-conv12) and was trained for
450, 000 iterations with batches of 64 samples each, starting with a learning rate of v = 0.01 and
dividing it by 10 after every 200, 000 iterations. A weight decay of A = 0.0005 was used in all
layers. The exact architecture used is given in Table[6in the Appendix.

This network achieves a Top-1 validation error of 41.2% on ILSVRC-2012, when only evaluat-
ing on the center 224 x 224 patch, — which is comparable to the 40.7% Top-1 error reported
by Krizhevsky et al.|(2012) — while having less than 10 million parameters (6 times less than the net-
work of |Krizhevsky et al.|(2012)) and taking roughly 4 days to train on a Titan GPU. This supports
our intuition that max-pooling may not be necessary for training large-scale convolutional networks.
However, a more thorough analysis is needed to precisely evaluate the effect of max-pooling on
ImageNet-scale networks. Such a complete quantitative analysis using multiple networks on Ima-
geNet is extremely computation-time intensive and thus out of the scope of this paper. In order to
still gain some insight into the effects of getting rid of max-pooling layers, we will try to analyze the
representation learned by the all convolutional network in the next section.

3.4 DECONVOLUTION

In order to analyze the network that we trained on ImageNet — and get a first impression of how
well the model without pooling lends itself to approximate inversion — we use a ’deconvolution’
approach. We start from the idea of using a deconvolutional network for visualizing the parts of an
image that are most discriminative for a given unit in a network, an approach recently proposed by
Zeiler & Fergus|(2014). Following this initial attempt — and observing that it does not always work
well without max-pooling layers — we propose a new and efficient way of visualizing the concepts
learned by higher network layers.

The deconvolutional network (‘deconvnet’) approach to visualizing concepts learned by neurons
in higher layers of a CNN can be summarized as follows. Given a high-level feature map, the
’deconvnet’ inverts the data flow of a CNN, going from neuron activations in the given layer down to
an image. Typically, a single neuron is left non-zero in the high level feature map. Then the resulting
reconstructed image shows the part of the input image that is most strongly activating this neuron
(and hence the part that is most discriminative to it). A schematic illustration of this procedure is
shown in Figure [1| a). In order to perform the reconstruction through max-pooling layers, which
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are in general not invertible, the method of Zeiler and Fergus requires first to perform a forward
pass of the network to compute ’switches’ — positions of maxima within each pooling region. These
switches are then used in the ’deconvnet’ to obtain a discriminative reconstruction. By using the
switches from a forward pass the ’deconvnet’ (and thereby its reconstruction) is hence conditioned
on an image and does not directly visualize learned features. Our architecture does not include max-
pooling, meaning that in theory we can ’deconvolve’ without switches, i.e. not conditioning on an
input image. This way we get insight into what lower layers of the network learn. Visualizations of

a) Forward pass ° I b) 1[afs 1fofs

: N - .
Input image f EHEP BT : Forward pass 2 |s|[7] — [2]o]o0
Feature map | =2]18 of2]4
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image R ( R | X 23|[0]|= -2 JE -

0|2 Backward pass:
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afi 2|03 2|1]3
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Figure 1: Schematic of visualizing the activations of high layer neurons. a) Given an input image, we
perform the forward pass to the layer we are interested in, then set to zero all activations except one
and propagate back to the image to get a reconstruction. b) Different methods of propagating back
through a ReLU nonlinearity. c¢) Formal definition of different methods for propagating a output
activation out back through a ReLU unit in layer /; note that the ’deconvnet’ approach and guided
backpropagation do not compute a true gradient but rather an imputed version.

features from the first three layers are shown in Figure [2|. Interestingly, the very first layer of the
network does not learn the usual Gabor filters, but higher layers do.

For higher layers of our network the method of Zeiler and Fergus fails to produce sharp, recogniz-
able, image structure. This is in agreement with the fact that lower layers learn general features
with limited amount of invariance, which allows to reconstruct a single pattern that activates them.
However, higher layers learn more invariant representations, and there is no single image maximally
activating those neurons. Hence to get reasonable reconstructions it is necessary to condition on an
input image.

An alternative way of visualizing the part of an image that most activates a given neuron is to use a
simple backward pass of the activation of a single neuron after a forward pass through the network;
thus computing the gradient of the activation w.r.t. the image. The backward pass is, by design,
partially conditioned on an image through both the activation functions of the network and the max-
pooling switches (if present). The connections between the deconvolution and the backpropagation

Figure 2: Visualizations of patterns learned by the lower layers (conv1-conv3) of the network trained
on ImageNet. Each single patch corresponds to one filter. Interestingly, Gabor filters only appear in
the third layer.
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approach were recently discussed in|Simonyan et al.|(2014)). In short the both methods differ mainly
in the way they handle backpropagation through the rectified linear (ReLU) nonlinearity.

In order to obtain a reconstruction conditioned on an input image from our network without pooling
layers we propose a modification of the *deconvnet’, which makes reconstructions significantly more
accurate, especially when reconstructing from higher layers of the network. The deconvolution’ is
equivalent to a backward pass through the network, except that when propagating through a nonlin-
earity, its gradient is solely computed based on the top gradient signal, ignoring the bottom input. In
case of the ReLU nonlinearity this amounts to setting to zero certain entries based on the top gradi-
ent. The two different approaches are depicted in Figure[I]b), rows 2 and 3. We propose to combine
these two methods: rather than masking out values corresponding to negative entries of the top gra-
dient ("deconvnet’) or bottom data (backpropagation), we mask out the values for which at least one
of these values is negative, see row 4 of Figure[I|b). We call this method guided backpropagation,
because it adds an additional guidance signal from the higher layers to usual backpropagation. This
prevents backward flow of negative gradients, corresponding to the neurons which decrease the ac-
tivation of the higher layer unit we aim to visualize. Interestingly, unlike the ’deconvnet’, guided
backpropagation works remarkably well without switches, and hence allows us to visualize interme-
diate layers (Figure [3) as well as the last layers of our network (Figures [] and [5in the Appendix).
In a sense, the bottom-up signal in form of the pattern of bottom ReL.U activations substitutes the
switches.

To compare guided backpropagation and the ’deconvnet’ approach, we replace the stride in our
network by 2 x 2 max-pooling after training, which allows us to obtain the values of switches. We
then visualize high level activations using three methods: backpropagation, ’deconvnet’ and guided
backpropagation. A striking difference in image quality is visible in the feature visualizations of the
highest layers of the network, see Figures [ and[5]in the Appendix. Guided backpropagation works
equally well with and without switches, while the ’deconvnet’ approach fails completely in the
absence of switches. One potential reason why the ’deconvnet’ underperforms in this experiment
is that max-pooling was only ’artificially’ introduced after training. As a control Figure [6] shows
visualizations of units in the fully connected layer of a network initially trained with max-pooling.
Again guided backpropagation produces cleaner visualizations than the deconvnet’ approach.

4 DISCUSSION

To conclude, we highlight a few key observations that we made in our experiments:

e With modern methods of training convolutional neural networks very simple architec-
tures may perform very well: a network using nothing but convolutions and subsampling
matches or even slightly outperforms the state of the art on CIFAR-10 and CIFAR-100. A
similar architecture shows competitive results on ImageNet.

e In particular, as opposed to previous observations, including explicit (max-)pooling op-
erations in a network does not always improve performance of CNNs. This seems to be
especially the case if the network is large enough for the dataset it is being trained on and
can learn all necessary invariances just with convolutional layers.

e We propose a new method of visualizing the representations learned by higher layers of
a convolutional network. While being very simple, it produces sharper visualizations of
descriptive image regions than the previously known methods, and can be used even in the
absence of ’switches’ — positions of maxima in max-pooling regions.

We want to emphasize that this paper is not meant to discourage the use of pooling or more sophisti-
cated activation functions altogether. It should rather be understood as an attempt to both search for
the minimum necessary ingredients for recognition with CNNs and establish a strong baseline on
often used datasets. We also want to stress that the results of all models evaluated in this paper could
potentially be improved by increasing the overall model size or a more thorough hyperparameter
search. In a sense this fact makes it even more surprising that the simple model outperforms many
existing approaches.
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deconv guided backpropagation corresponding image crops

deconv guided backpropagation

Figure 3: Visualization of patterns learned by the layer conv6 (top) and layer conv9 (bottom) of the
network trained on ImageNet. Each row corresponds to one filter. The visualization using “guided
backpropagation” is based on the top 10 image patches activating this filter taken from the ImageNet
dataset. Note that image sizes are not preserved (in order to save space).
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APPENDIX

A LARGE ALL-CNN MODEL FOR CIFAR-10

The complete model architecture for the large All-CNN derived from the spatially sparse network
of Benjamin Graham (see [Graham| (2015) for an explanation) is givenin Table [5]. Note that the
network uses leaky ReLU units instead of ReLUs as we found these to speed up training. As can
be seen it also requires a much larger input size in which the 32 x 32 pixel image is centered (and
then potentially augmented by applying multiple transformations such as scaling). As a result the
subsampling performed by the convolutional layers with stride 2 can hence be applied much more
slowly. Also note that this network only consists of 2 x 2 convolutions with occasional subsampling
until the spatial dimensionality is reduced to 1 x 1. It does hence not employ global average pooling
at the end of the network. In a sense this architecture hence represents the most simple convolutional
network usable for this task.

Table 5: Architecture of the Large AIl-CNN network for CIFAR-10.
Large All-CNN for CIFAR-10

Layer name Layer description

input Input 126 x 126 RGB image

convl 2 x 2 conv. 320 LeakyReLU, stride 1
conv2 2 x 2 conv. 320 LeakyReLU, stride 1
conv3 2 x 2 conv. 320 LeakyReLU, stride 2
conv4 2 x 2 conv. 640 LeakyReLU, stride 1, dropout 0.1
conv>S 2 x 2 conv. 640 LeakyReL U, stride 1, dropout 0.1
convb 2 x 2 conv. 640 LeakyReLU, stride 2
conv7 2 x 2 conv. 960 LeakyReLU, stride 1, dropout 0.2
convy 2 x 2 conv. 960 LeakyReL. U, stride 1, dropout 0.2
conv9 2 x 2 conv. 960 LeakyReLU, stride 2

convl( 2 x 2 conv. 1280 LeakyReLU, stride 1, dropout 0.3
convll 2 x 2 conv. 1280 LeakyReLU, stride 1, dropout 0.3
convl2 2 x 2 conv. 1280 LeakyReLU, stride 2
convl3 2 x 2 conv. 1600 LeakyReLU, stride 1, dropout 0.4
convl4 2 x 2 conv. 1600 LeakyReLU, stride 1, dropout 0.4
convl5s 2 x 2 conv. 1600 LeakyReL U, stride 2
convl6 2 x 2 conv. 1920 LeakyReLU, stride 1, dropout 0.5
convl7 1 x 1 conv. 1920 LeakyReLU, stride 1, dropout 0.5
softmax 10-way softmax

B IMAGENET MODEL

The complete model architecture for the network trained on the ILSVRC-2102 ImageNet dataset is
given in Table[6].
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Table 6: Architecture of the ImageNet network.

ImageNet model

Layer name Layer description
input Input 224 x 224 RGB image
convl 11 x 11 conv. 96 ReLLU units, stride 4
conv2 1 x 1 conv. 96 ReLLU, stride 1
conv3 3 x 3 conv. 96 ReLLU, stride 2
conv4 5 x 5 conv. 256 RelLU, stride 1
convs 1 x 1 conv. 256 ReLU, stride 1
convb 3 x 3 conv. 256 ReLLU, stride 2
conv7 3 x 3 conv. 384 RelU, stride 1
conv8 1 x 1 conv. 384 ReLU, stride 1
conv9 3 x 3 conv. 384 ReL.U, stride 2, dropout 50 %
convl10 3 x 3 conv. 1024 ReL .U, stride 1
convll 1 x 1 conv. 1024 ReLU, stride 1
convl2 1 x 1 conv. 1000 ReLU, stride 1
global_pool global average pooling (6 x 6)
softmax 1000-way softmax

C ADDITIONAL VISUALIZATIONS

Additional visualizations of the features learned by the last convolutional layer ’conv12’ as well
as the pre-softmax layer ’global_pool” are depicted in Figure {] and Figure [3] respectively. To al-
low fair comparison of "deconvnet’ and guided backpropagation, we additionally show in Figure [6]
visualizations from a model with max-pooling trained on ImageNet.

’deconvnet’

backpropagation

guided backpropagation

(
-

with
pooling +
switches

without
pooling

Figure 4: Visualization of descriptive image regions with different methods from the single largest
activation in the last convolutional layer conv12 of the network trained on ImageNet. Reconstruc-
tions for 4 different images are shown.
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backpropagation ’deconvnet’

Figure 5: Visualization of descriptive image regions with different methods from the single largest
activation in the pre-softmax layer global_pool of the network trained on ImageNet.

guided backpropagation

with
pooling +
switches

without
pooling

’deconvnet’

backpropagation guided backpropagation

Figure 6: Visualization of descriptive image regions with different methods from the single largest
activation in the last layer fc8 of the Caffenet reference network (Jia et al| 2014) trained on Ima-
geNet. Reconstructions for 4 different images are shown.
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