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What’s on tap today!

* Deep Learning methods for TF binding and motif
discovery

 The interpretation of deep models
— Black box methods (test model from outside)
— White box methods (look inside of model)



Two tasks for deep learning networks:
Motif Discovery and Motif Occupancy



Motif occupancy is key for understanding
genetic variants

* Discriminate between real vs. artificial sequences (shuffled

real sequences) (DeepBind): motif discovery

* Bound motif vs. unbound motif:

* Harder problem than motif discovery

* Forces the model to learn better and higher-level sequence

determinants



Systematic benchmarking is important

Task should be meaningful

Balance the number of positive and negative samples

Control any artificial bias, location of the motif in the

sample

Conclusion should be the consensus across diverse TF ChlP-

seq experiments (we used 690 from ENCODE)



CNNs have three important architectural
dimensions to vary

More convolution kernels better capture feature diversity

OUTPUT

-

| Full conAection ‘
Convolutions Subsampling Convolutions Subsampling Full connection

Smaller pooling window retains
more location information More layers can capture higher level features



CNN architectures compared

m More Conv. Kernels Deeper Smaller pooling size

llayer (DeepBind)

llayer_64motif / - -
llayer_128motif // - -
llayer_local_win9 - - /
llayer_local_win3 - - //
2layer - / -
3layer - // ;
2layer_local_win3 - / //
3layer_local_win3 - // //

101 bp input sequences / 24 bp filters / 16 filters default



Baseline model reproduces DeepBind
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Simple models are best for a motif discovery task

gkmSVM

deepbind

llayer

llayer_64motif
llayer_128motif

layer_local_win9

Method

llayer_local_win3

2layer

3layer

2layer_local_win3

3layer_local_win3
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baseline

+kernels

+ loc. info

+ layers

More convolutional kernels helps model
motif diversity
Smaller pooling size, more layers
monotonically decrease performance
* possibly because most determinants
are low-level (motifs) and position-

independent



Depth improves performance in a

gkmSVM
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AUC decreases for all architectures

More convolutional kernels help

model the motif diversity

Smaller pooling size slightly

decreases the performance

Deeper networks have slightly better

performance

* There are more high-level

determinants that can be better
modeled by deeper layers,
consistent with the task design



Observed performance is TF factor specific
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More complex networks require more training data
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Performance on motif discovery task
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CNNs can outperform
conventional methods (gkSVM)

CNNs outperform conventional methods with the right
structure

The optimum structure is different from that in computer
vision
Different biological tasks and data yield different conclusions

Understanding the problem at hand and comparing different
structures is important to design a good CNN model for
biology applications



How can we interpret deep models?



Why Interpretability?

o Adoption of neural networks and nonparametric
methods has led to:
- Large increase in predictive capabilities
- Complex and poorly-understood black-box models

o Imperative that certain model decisions can be
interpretably rationalized
- Ex:loan-application screening, recidivism prediction,
medical diagnoses

o Interpretability is also crucial in scientific applications,
where goal is to identify general underlying principles
from accurate predictive models



Black box methods
(Do not look inside of model)

[X{, X5, . X, ] — F —— vy



Saturated Mutagenesis tries all bases at each
position to see what matters

Mutation would
increase score
Mutation would
have no effect

Mutation would
decrease score

Strong
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Alipanahi et al., Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning



Sufficient Input Subsets

« One simple rationale for why a black-box decision
is reached is a sparse subset of the input features
whose values form the basis for the decision

A sufficient input subset (SIS) is a minimal feature
subset whose values alone suffice for the model
to reach the same decision (even without
information about the rest of the features’ values)

t f .
-
1 |



SIS help us understand
misclassifications

Misclassifications Adversarial Perturbations




Formal Definitions — Sufficient Input Subset

o Black-box model that maps inputs x € & via a function
f:X—=-~R

o Eachinput has indexable features x=[z1,...,2,] with
each z; € R?



Formal Definitions — Sufficient Input Subset

o Black-box model that maps inputs x € & via a function
f:X—=-~R

o Eachinput has indexable features x=[z1,...,2,] with
each z; € R?

o ASIS is a subset of the input features s c [p] (along with
their values)

« Presume decision of interest is based on f(x) >+ (pre-
specified threshold)

e Our goal is to find a complete collection of minimal-
cardinality subsets of features S, each satisfying f(xs) > 7

e xg = input where values of features outside of ¢ have
been masked



SIS avoids local minima by using
backward selection

0.90 0.92 0.94 0.96 0.98 1.00
Fraction of Pixels Masked



SIS Algorithm

From a particular input: we extract SIS-collection of
disjoint feature subsets, each of which alone suffices to
reach the same model decision

Aim to quickly identify each sufficient subset of minimal
cardinality via backward selection (preserves interaction
between features)

Aim to identify all such subsets (under disjointness
constraint)

We mask features outside of SIS via their average value
(mean-imputation)

Compared to existing interpretability techniques, SIS is
faithful to any type of model (sufficiency of SIS is
guaranteed), and does not require: gradients, additional
training, or an auxiliary explanation model



Example SIS for different instances of "4”




SIS Clustered for General Insights

o ldentifying the input patterns that justify a decision
across many examples helps us better understand the
general operating principles of a model

o We cluster all SIS identified across a large number of
examples that received the same model decision

o Insights revealed by our SIS-clustering can be used to
compare the global operating behavior of different
models



SIS Clustering Shows CNN vs. Fully Connected
Network Differences (digit 4)

Cluster % CNN SIS
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SIS Clustering Shows CNN vs. Fully Connected
Network Differences (digit 4)

Cluster % CNN SIS




SIS Clustering Shows CNN vs.
Fully Connected Network (MLP) Differences

Cluster % CNN SIS
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@ CNN: spatially-contiguous strokes comprising small portion of digit
@ MLP: decision based on pixels throughout digit, relies on global shape

@ CNN is more susceptible to mistaking other (non-digit) handwritten
characters for 4 if they happen to share some of the same strokes



Applying SIS to Natural Language

o« We use a dataset of beer reviews from BeerAdvocate
[McAuley et al. 2012]

o Different LSTM networks are trained to predict user-

provided numerical ratings of aspects like aroma,
appearance, and palate



LSTMSs Learn Aspect-Specific Features

on tap at the brewpub december 27 2010 pours a dark brown color with a good tan
head that leaves behind a bit of lacing and sticks around for awhile the nose is really
nice and chocolatey really love the level they 've used under that a bit of roasted malt
but this was mostly about the chocolate the taste is n't quite as nice though the
chocolate notes really still stand out the feel was quite nice with a full body pretty
viscous for what it is drinks quite well i 'm a big fan

Appearance Aroma Palate



Multiple SIS in Aroma Review

on tap at a the pour is a dark amber color bordering on mahogany with a finger 's worth of slightly off white head s wow
the nose on this beer is phenomenal tons of vanilla bourbon maple syrup brown sugar caramel and toffee provide a
wonderful sweetness some dark fruit notes and chocolate fill in the background of the aroma t the flavor is similarly
impressive lots of sweet rich vanilla bourbon and oak accompanied by toffee caramel brown sugar and maple syrup the
finish is all that prevents this from a perfect score as there is a bit of alcohol and heat but there are some nice hints of
chocolate m the mouthfeel is smooth creamy rich and full bodied a light but nearly perfect level of carbonation d i was
told this beer was good but i had to see for myself this is one of if not the best barrel aged barleywines i 've come across i
might go back again soon to have some more

Aroma SIS 1 Aroma SIS 2 Aroma SIS 3




Prediction on Rationale Only

SIS Produces Minimal Sufficient Subsets
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SIS Clustering Shows LSTM/CNN Differences

LSTM SIS Preds by LSTM

CNN SIS Preds by CNN

CNN SIS Preds by LSTM

LSTM SIS Preds by CNN

|
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Prediction
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1.0

Clu. %LSTM SIS#1 SIS #2 SIS #3 SIS #4

C1 0% delicious - - -

C2 0% very nice - - -

C3 20% rich chocolate  veryrich chocolate smells rich

complex

c4 33% oak chocolate  chocolate raisins chocolate oak  raisins
raisins oak chocolate
bourbon

C5 70% complex aroma aroma complex aromacomplex aroma
peaches interesting complex
complex cherries




Example sufficient input subsets for
MAFF binding

Two DNA sequences that receive positive TF (MAFF) binding predictions
(SIS is shaded):

CACTGTCATTCTCTTGGTCAGCCCTGGACATCCCTGGAAAGGAT.C!I.'C.GCTGTCCGTTTTAAACAGGGTAGTTCAGAAGAATACATTCCTGGTTATTCA
TTTTTTTCTCCCTTCGATTTCCACTATGATTTGTATTTCCTTTGTTCTGCTTTGCIATTTCGGTTGTTTTTTCTAAATTTCTTAGGGTGAAAACTGA




Example clustered SIS for a transcription factor
(MAFF factor)

Clustering results for a particular TF (MAFF), two clusters were found:

SIS Freq. o
GCTGAGTCAT 197
ATGACTCAGC 185 &1
GCTGAGTCA-C 83
GCTGAGTCAC 53 ST A= | Y _ru:}{}[}[, )
GCTGACTCAGCA 42 TNeTwereefsee e e e
SIS Freq. GCTGAGTCAT --------
-ATGACTCAGC---=-—-—--
TGCTGA--GCA-TTT 12
GCTGAC--GCA-TTT 8 ng%g%a:::gg%:%%%::
TGCTGAC--GCA-TT 6
TGCTGAC--GCA-AA 5
TGCTGAC--GCA-AT 4

Right image: known JASPAR motif (top) and alignment with cluster
modes (bottom)



White Box Methods
(Look inside of model)



Visualizing filters

Only first layer filters are interesting and interpretable

nmE

&

layer 1 weights

ResNet-101:
64 xXx3X7Xx7 64 Xx3X7X7

AlexNet:
64 x3x11x11

Weights:

(EF NI SREAPEAS IS AN )( N ZRENENNGESNEAAND

CEETT UL EFETEL DT RN ERET TR EE TSP TR TR

CNCETT TR SRR TS T TP ST T R T

CCL FECEET TSP IR PULTSATCEF S T F T F B R ST :
SEF)(PINETEEREEAneNEREnNE) o nasnananapeng |AYEr 3 weights
RAAZ)(PRENEYENEEHRAENERCAN)(FIN SRS NUE R DY
FACAN)(ENREEERELCEDERENLnS)(ennseaancnaens 20X 20X 7 X7
CETE PR REENFEUTE S TR TG E L FEEE T S
AARNYEN)(SANERSE AR AN AR ) (RN T R

ST LEET L ST TR T LR E PR E TSR BT L T

GRS ERENER) from ConvNetJS CIFAR-10 demo



Visualizing activations

First layer 5th conv layer

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014




Transposed convolution times
received gradient is layer gradient

Convolution
3x3 filter on 4x4 input
2x2 output



Transposed convolution times
received gradient is layer gradient

Convolution Transposed Convolution
3x3 filter on 4x4 input 3x3 filter on 2x2 input

2x2 output 4x4 output



Deconvolute node activations

Deconvolutional neural net: A novel way to map high level activities back to
the input pixel space, showing what input pattern originally caused a given
activation in the feature maps
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Zeiler et al., Visualizing and Understanding Convolutional Networks
Zeiler et al., Adaptive Deconvolutional Networks for Mid and High Level Feature Learning



Deconvolute node activations
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Deconvolute node activations
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Deconvolute node activations

Deconvolutional neural net: A novel way to map high level activities back to
the input pixel space, showing what input pattern originally caused a given

) € o
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Zeiler et al., Visualizing and Understanding Convolutional Networks
Zeiler et al., Adaptive Deconvolutional Networks for Mid and High Level Feature Learning




CAM: Class Activation Mapping

Australian

c GAPD WQ / : terrier
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Class Activation Mapping

Class
Activation
Map

. (Australian terrier)
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Use additional layer on top of the GAP (Global activation pooling) to learn class
specific linear weights for each high level feature map and use them to weight

the activations mapped back into input space.
Zhou et al., Learning Deep Features for Discriminative Localization



CAM: Class Activation Mapping

palace
0.459

Use additional layer on top of the GAP (Global activation pooling) to learn class
specific linear weights for each high level feature map and use them to weight

the activations mapped back into input space.
Zhou et al., Learning Deep Features for Discriminative Localization



Visualizing gradient: Saliency map

&ftm..\,mtm\.” '

Simonyan et al., Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps



Gradient variation 1: guided back-propagation

Only back propagate positive gradients

a) Forward pass 1o | b) 1l1ls 1lols
i 0 — L L ...l l l
Input image f f ' 15 f | Forward pass > e — 1
Feature map | 3124 0|24
Backward pass
Reconstructed _ - o Ledof .. | Tola Taa
Image Rr' 0|2 | Backward pass:
| backpropagation B <— I -
———————————————————— | 0|-1]3 2|13
C) . I+1 gl I |
tivation: T =relul f;) = (
activatio f; relu( f;) = max(f;,0) I T30 T3 12
ou Backward pass:
o pl ol pltl . of ™ | 6loJ1| «— |6]|-3]|1
backpropagation: R; = (f; > 0)- R,"", where R™' = df’“ | “deconvnet”
210)]3 2 1-1}13
I
I(tj)ackwardt' Rf‘ — (R 0) _ngl |
econvnet': ‘ '
| Backward pass: O i 0 -2 [ -1
guided R=(f>0)-( ). R I guided 6|0jJo| <« |6]|-3]1
backpropagation: " ¢ T ! I backpropagation olols 51113

Springenberg et al., Striving for Simplicity: The All Convolutional Net



Gradient variation 1: guided back-propagation

Only back propagate positive gradients

guided backpropagation corresponding image crops

backpropagation "deconvnet’ guided backpropagation
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Springenberg et al., Striving for Simplicity: The All Convolutional Net




Grad-CAM: combining CAM and guided
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Guided Grad-CAM
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Guided Backpropagation

= A Rectified Conv FC Layer

Guided Backpropagation Feature Maps Activations
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ReLU«—Q o T K - -

C | Tiger Cat

Grad-CAM

Selvaraju et al., Grad-CAM: Gradient-weighted Class Activation Mapping



Integrated Gradient

Given an input image x; and a baseline input x; :

1
AR S aF(z' +ax(z—z")) ,
IntegratedGrads, (z) ::= (z; —x;) X 52, do
a=0
1,k '
appror o |, - ™ OF (z +Ex(m_m ) 1
IntegratedGrads, (z) = (z; — x}) x B4 z; X —
Original image Top label and score Integrated gradients Gradients at image

T
r I R ‘Y' ! Top label: reflex camera
. "o Score: 0.993755

Top label: fireboat
Score: 0.999961

Top label: school bus

Score: 0.997033

Sundararajan et al., Axiomatic Attribution
for Deep Networks




DeeplLIFT

compares the activation of each neuron to its reference activation and assigns
contribution scores according to the difference

By Sy Wi

Original Absolute Grdients Positive grad*inp  Positive DeepLIFT (3)321? B ?é ATAA_'_’___: k::\:ilx ' _eéCA ‘ AT | TI
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e j_w, gradients (10) . S -
N-‘ ¥ & s “ 53] &) i 13 i i
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Shrikumar et al., Learning Important Features Through Propagating Activation Differences
Shrikumar et al., Not Just A Black Box: Learning Important Features Through Propagating Activation Differences




Other input dependent attribution score
approaches:

e LIME (Local Interpretable Model-agnostic
Explanations)

— identify an interpretable model over the interpretable representation that is
locally faithful to the classifier by approximating the original function with
interpretable models locally.

 SHAP(SHapley Additive explanation)

— Unified several additive attribution score methods by using definition of Sharpley
value from game theory

* maximum entropy

— Locally sample inputs that maximum the entropy of predicted score



Input independent visualization: gradient ascent

Generate input that maximum activation of certain neuron or final activation of the class

- 2 Simple regularizer: Penalize L2
arg mIa.x S C(I ) )‘”I ”2 norm of generated image

dumbbell cup dalmatian

Simonyan et al., Deep Inside
Convolutional Networks:
Visualising Image Classification
bell pepper lemon husky Models and Saliency Maps




Input independent visualization: gradient ascent

Generate input that maximum activation of certain neuron or final activation of the class

- 2 Simple regularizer: Penalize L2
arg mIa‘X S C(I ) )‘”I ”2 norm of generated image
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Yosinski et al., Understanding Neural Networks Through Deep Visualization



DeepMotif uses gradient ascent

NFYB

JASPAR Motifs Forward: ' m::IC Backward: _L ,',ﬂ .
CNN Positive Class Maximization | ,, ' IR gf,‘TT ex _acy
RNN Positive Class Maximization [ (_ ..A . . C¢..¢Cg o[ e o o eeoe br] an

Lanchantin et al., Deep Motif Dashboard: Visualizing and Understanding Genomic Sequences Using Deep Neural Networks



FIN - Thank You



SIS Resources

Full paper in arXiv:
https://arxiv.org/abs/1810.03805

Code for paper and analysis:
https://github.com/b-carter/SufficientinputSubsets

Code for open-source SIS library and tutorial:
https://github.com/google-research/google-research/tree/master/sufficient input subsets



https://arxiv.org/abs/1810.03805
https://github.com/b-carter/SufficientInputSubsets
https://github.com/google-research/google-research/tree/master/sufficient_input_subsets

