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What’s on tap today!

• Deep Learning methods for TF binding and motif 
discovery

• The interpretation of deep models
– Black box methods (test model from outside)
– White box methods (look inside of model)



Two tasks for deep learning networks:
Motif Discovery and Motif Occupancy



Motif occupancy is key for understanding 
genetic variants

• Discriminate between real vs. artificial sequences (shuffled 
real sequences) (DeepBind): motif discovery

• Bound motif vs. unbound motif:  motif occupancy
• Harder problem than motif discovery

• Forces the model to learn better and higher-level sequence 
determinants 



Systematic benchmarking is important

• Task should be meaningful

• Balance the number of positive and negative samples

• Control any artificial bias, location of the motif in the 
sample

• Conclusion should be the consensus across diverse TF ChIP-
seq experiments  (we used 690 from ENCODE)



CNNs have three important architectural 
dimensions to vary

More layers can capture higher level features

More convolution kernels better capture feature diversity 

Smaller pooling window retains
more location information



CNN architectures compared

Our Name More Conv. Kernels Deeper Smaller pooling size

1layer (DeepBind) - - -

1layer_64motif - -

1layer_128motif - -

1layer_local_win9 - -

1layer_local_win3 - -

2layer - -

3layer - -

2layer_local_win3 -

3layer_local_win3 -

101 bp input sequences /  24 bp filters  / 16 filters default



Baseline model reproduces DeepBind

DeepBind failures



Simple models are best for a motif discovery task

• More convolutional kernels helps model

motif diversity

• Smaller pooling size, more layers

monotonically decrease performance

• possibly because most determinants 

are low-level (motifs) and position-

independent

baseline

+kernels

+ loc. info

+ layers



Depth improves performance in a motif occupancy 
task

• AUC decreases for all architectures
• More convolutional kernels help

model the motif diversity
• Smaller pooling size slightly

decreases the performance
• Deeper networks have slightly better 

performance
• There are more high-level

determinants that can be better
modeled by deeper layers,
consistent with the task design

baseline

+kernels

+ loc. info

+ layers



Observed performance is TF factor specific

Small variance in
performance

Huge variance in
performance

Simple structuresMore layers/smaller pooling window

ChIP-seq
experiments

Performance 
relative to 1layer



More complex networks require more training data

Simple structuresMore layers/local pooling

ChIP-seq
experiments

Training Example Count

Small variance in
performance

Huge variance in
performance

Perf.  
relative 
to 
1layer



Variance increases with fewer training examples

80,000 training examples 20,000 training examples 5,000 training examples

Performance on motif discovery task

baseline

+ loc. info

+ layers



CNNs can outperform 
conventional methods (gkSVM)

• CNNs outperform conventional methods with the right 
structure

• The optimum structure is different from that in computer 
vision

• Different biological tasks and data yield different conclusions 
• Understanding the problem at hand and comparing different 

structures is important to design a good CNN model for 
biology applications



How can we interpret deep models?



Why Interpretability?
● Adoption of neural networks and nonparametric 

methods has led to:
○ Large increase in predictive capabilities 
○ Complex and poorly-understood black-box models

● Imperative that certain model decisions can be 
interpretably rationalized
○ Ex: loan-application screening, recidivism prediction, 

medical diagnoses

● Interpretability is also crucial in scientific applications, 
where goal is to identify general underlying principles 
from accurate predictive models



Black box methods
(Do not look inside of model)

[x1, x2, … xn] F y



Saturated Mutagenesis tries all bases at each 
position to see what matters

Alipanahi et al., Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning



Sufficient Input Subsets

● One simple rationale for why a black-box decision 
is reached is a sparse subset of the input features 
whose values form the basis for the decision

● A sufficient input subset (SIS) is a minimal feature 
subset whose values alone suffice for the model 
to reach the same decision (even without 
information about the rest of the features’ values) 

4 4 4 4



SIS help us understand 
misclassifications

5 (6)

5 (0)

9 (9)

9 (4)

Misclassifications Adversarial Perturbations



Formal Definitions – Sufficient Input Subset
● Black-box model that maps inputs               via a function

● Each input has indexable features                                   with 
each



Formal Definitions – Sufficient Input Subset
● Black-box model that maps inputs               via a function

● Each input has indexable features                                   with 
each

● A SIS is a subset of the input features                (along with 
their values)

● Presume decision of interest is based on                   (pre-
specified threshold)

● Our goal is to find a complete collection of minimal-
cardinality subsets of features    , each satisfying

● = input where values of features outside of     have 
been masked 



SIS avoids local minima by using 
backward selection

C D



SIS Algorithm
● From a particular input: we extract SIS-collection of 

disjoint feature subsets, each of which alone suffices to 
reach the same model decision 

● Aim to quickly identify each sufficient subset of minimal 
cardinality via backward selection (preserves interaction 
between features)

● Aim to identify all such subsets (under disjointness
constraint)

● We mask features outside of SIS via their average value 
(mean-imputation)

● Compared to existing interpretability techniques, SIS is 
faithful to any type of model (sufficiency of SIS is 
guaranteed), and does not require: gradients, additional 
training, or an auxiliary explanation model



Example SIS for different instances of ”4”



SIS Clustered for General Insights

● Identifying the input patterns that justify a decision 
across many examples helps us better understand the 
general operating principles of a model

● We cluster all SIS identified across a large number of 
examples that received the same model decision 

● Insights revealed by our SIS-clustering can be used to
compare the global operating behavior of different 
models



SIS Clustering Shows CNN vs. Fully Connected 
Network Differences (digit 4)

Cluster % CNN SIS

C1 100%

C2 100%

C3 5%

C4 100%

C5 100%

C6 100%

C7 100%

C8 100%

C9 0%
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SIS Clustering Shows CNN vs. 
Fully Connected Network (MLP) Differences

Cluster % CNN SIS

C1 100%

C2 100%

C3 5%

C4 100%

C5 100%

C6 100%

C7 100%

C8 100%

C9 0%



Applying SIS to Natural Language

● We use a dataset of beer reviews from BeerAdvocate

[McAuley et al. 2012]

● Different LSTM networks are trained to predict user-

provided numerical ratings of aspects like aroma, 

appearance, and palate



LSTMs Learn Aspect-Specific Features

on tap at the brewpub december 27 2010 pours a dark brown color with a good tan
head that leaves behind a bit of lacing and sticks around for awhile the nose is really
nice and chocolatey really love the level they 've used under that a bit of roasted malt
but this was mostly about the chocolate the taste is n't quite as nice though the
chocolate notes really still stand out the feel was quite nice with a full body pretty
viscous for what it is drinks quite well i 'm a big fan

Appearance Aroma Palate 



Multiple SIS in Aroma Review

on tap at a the pour is a dark amber color bordering on mahogany with a finger 's worth of slightly off white head s wow
the nose on this beer is phenomenal tons of vanilla bourbon maple syrup brown sugar caramel and toffee provide a
wonderful sweetness some dark fruit notes and chocolate fill in the background of the aroma t the flavor is similarly
impressive lots of sweet rich vanilla bourbon and oak accompanied by toffee caramel brown sugar and maple syrup the
finish is all that prevents this from a perfect score as there is a bit of alcohol and heat but there are some nice hints of
chocolate m the mouthfeel is smooth creamy rich and full bodied a light but nearly perfect level of carbonation d i was
told this beer was good but i had to see for myself this is one of if not the best barrel aged barleywines i 've come across i
might go back again soon to have some more

Aroma SIS 1 Aroma SIS 2 Aroma SIS 3 



SIS Produces Minimal Sufficient Subsets



SIS Clustering Shows LSTM/CNN Differences

Clu. % LSTM SIS #1 SIS #2 SIS #3 SIS #4 

C1 0% delicious - - -

C2 0% very nice - - -

C3 20% rich chocolate very rich chocolate 
complex 

smells rich 

C4 33% oak chocolate chocolate raisins 
raisins oak 
bourbon 

chocolate oak raisins 
chocolate 

C5 70% complex aroma aroma complex 
peaches 
complex 

aroma complex 
interesting 
cherries 

aroma 
complex 



Example sufficient input subsets for 
MAFF binding



Example clustered SIS for a transcription factor 
(MAFF factor)



White Box Methods
(Look inside of model)



Visualizing filters
Only first layer filters are interesting and interpretable

layer 1 weights

from ConvNetJS CIFAR-10 demo



Visualizing activations

First layer 5th conv layer

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014



Transposed convolution times 
received gradient is layer gradient

Convolution
3x3 filter on 4x4 input

2x2 output



Transposed convolution times 
received gradient is layer gradient

Convolution
3x3 filter on 4x4 input

2x2 output

Transposed Convolution
3x3 filter on 2x2 input

4x4 output



Deconvolute node activations

Zeiler et al., Visualizing and Understanding Convolutional Networks

Deconvolutional neural net: A novel way to map high level activities back to 
the input pixel space, showing what input pattern originally caused a given 
activation in the feature maps

Zeiler et al., Adaptive Deconvolutional Networks for Mid and High Level Feature Learning



Deconvolute node activations



Deconvolute node activations



Deconvolute node activations

Zeiler et al., Visualizing and Understanding Convolutional Networks

Deconvolutional neural net: A novel way to map high level activities back to 
the input pixel space, showing what input pattern originally caused a given 
activation in the feature maps

Zeiler et al., Adaptive Deconvolutional Networks for Mid and High Level Feature Learning



CAM: Class Activation Mapping

Use additional layer on top of the GAP (Global activation pooling) to learn class 
specific linear weights for each high level feature map and use them to weight 
the activations mapped back into input space. 

Zhou et al., Learning Deep Features for Discriminative Localization



CAM: Class Activation Mapping

Use additional layer on top of the GAP (Global activation pooling) to learn class 
specific linear weights for each high level feature map and use them to weight 
the activations mapped back into input space. 

Zhou et al., Learning Deep Features for Discriminative Localization



Visualizing gradient: Saliency map

Simonyan et al., Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps



Gradient variation 1: guided back-propagation

Springenberg et al., Striving for Simplicity: The All Convolutional Net

Only back propagate positive gradients



Gradient variation 1: guided back-propagation

Springenberg et al., Striving for Simplicity: The All Convolutional Net

Only back propagate positive gradients



Grad-CAM: combining CAM and guided 
backprop

Selvaraju et al., Grad-CAM: Gradient-weighted Class Activation Mapping



Integrated Gradient
Given an input image xi and a baseline input xi

’ :

Sundararajan et al., Axiomatic Attribution 
for Deep Networks



DeepLIFT
compares the activation of each neuron to its reference activation and assigns 
contribution scores according to the difference

Shrikumar et al., Learning Important Features Through Propagating Activation Differences
Shrikumar et al., Not Just A Black Box: Learning Important Features Through Propagating Activation Differences



Other input dependent attribution score 
approaches:

• LIME (Local Interpretable Model-agnostic 
Explanations)
– identify an interpretable model over the interpretable representation that is 

locally faithful to the classifier by approximating the original function with 
interpretable models locally.

• SHAP(SHapley Additive explanation)
– Unified several additive attribution score methods by using definition of Sharpley 

value from game theory

• maximum entropy
– Locally sample inputs that maximum the entropy of predicted score



Input independent visualization: gradient ascent
Generate input that maximum activation of certain neuron or final activation of the class

Simonyan et al., Deep Inside 
Convolutional Networks: 
Visualising Image Classification 
Models and Saliency Maps



Input independent visualization: gradient ascent
Generate input that maximum activation of certain neuron or final activation of the class

Yosinski et al., Understanding Neural Networks Through Deep Visualization



DeepMotif uses gradient ascent

Lanchantin et al., Deep Motif Dashboard: Visualizing and Understanding Genomic Sequences Using Deep Neural Networks



FIN - Thank You



SIS Resources

Full paper in arXiv:
https://arxiv.org/abs/1810.03805

Code for paper and analysis:
https://github.com/b-carter/SufficientInputSubsets

Code for open-source SIS library and tutorial:
https://github.com/google-research/google-research/tree/master/sufficient_input_subsets

https://arxiv.org/abs/1810.03805
https://github.com/b-carter/SufficientInputSubsets
https://github.com/google-research/google-research/tree/master/sufficient_input_subsets

