Computational Systems Biology Deep Learning in the Life Sciences

6.802 6.874 20.390 20.490 HST.506

David Gifford Lecture 5 February 21, 2019

Predicting transcription factor binding Deep model Interpretation

http://mit6874.github.io

What's on tap today!

- Deep Learning methods for TF binding and motif discovery
- The interpretation of deep models
 - Black box methods (test model from outside)
 - White box methods (look inside of model)

Two tasks for deep learning networks: Motif Discovery and Motif Occupancy

Motif occupancy is key for understanding genetic variants

- Discriminate between real vs. artificial sequences (shuffled real sequences) (DeepBind): motif discovery
- Bound motif vs. unbound motif: motif occupancy
 - Harder problem than motif discovery
 - Forces the model to learn better and higher-level sequence determinants

Systematic benchmarking is important

- Task should be meaningful
- Balance the number of positive and negative samples
- Control any artificial bias, location of the motif in the sample
- Conclusion should be the consensus across diverse TF ChIPseq experiments (we used **690** from ENCODE)

CNNs have three important architectural dimensions to vary

CNN architectures compared

Our Name	More Conv. Kernels	Deeper	Smaller pooling size		
1layer (DeepBind)	-	-	-		
1layer_64motif	\checkmark	-	-		
1layer_128motif	\checkmark	-	-		
1layer_local_win9	-	-	\checkmark		
1layer_local_win3	-	-	\checkmark		
2layer	-	\checkmark	-		
3layer	-		-		
2layer_local_win3	-	\checkmark	\checkmark		
3layer_local_win3	-	\checkmark	\checkmark		

101 bp input sequences / 24 bp filters / 16 filters default

Baseline model reproduces DeepBind

AUCs of DeepBind

Simple models are best for a **motif discovery task**

• More convolutional kernels helps model

motif diversity

 Smaller pooling size, more layers monotonically decrease performance
. info
possibly because most determinants

are low-level (motifs) and position-

independent

Depth improves performance in a motif occupancy task

- AUC decreases for all architectures
- More convolutional kernels help model the motif diversity
 - Smaller pooling size slightly decreases the performance
 - Deeper networks have slightly better performance
 - There are more high-level determinants that can be better modeled by deeper layers, consistent with the task design

Observed performance is TF factor specific

More complex networks require more training data

Variance increases with fewer training examples

80,000 training examples

20,000 training examples

5,000 training examples

CNNs can outperform conventional methods (gkSVM)

- CNNs outperform conventional methods with the right structure
- The optimum structure is different from that in computer vision
- Different biological tasks and data yield different conclusions
- Understanding the problem at hand and comparing different structures is important to design a good CNN model for biology applications

How can we interpret deep models?

Why Interpretability?

- Adoption of neural networks and nonparametric methods has led to:
 - Large increase in predictive capabilities
 - Complex and poorly-understood black-box models
- Imperative that certain model decisions can be interpretably rationalized
 - Ex: loan-application screening, recidivism prediction, medical diagnoses
- Interpretability is also crucial in scientific applications, where goal is to identify general underlying principles from accurate predictive models

Black box methods (Do not look inside of model)

$$[\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n] \longrightarrow F \longrightarrow \mathbf{y}$$

Saturated Mutagenesis tries all bases at each position to see what matters

Alipanahi et al., Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning

Sufficient Input Subsets

- One simple rationale for *why* a black-box decision is reached is a sparse subset of the input features whose values form the basis for the decision
- A sufficient input subset (SIS) is a minimal feature subset whose values alone suffice for the model to reach the same decision (even without information about the rest of the features' values)

SIS help us understand misclassifications

Formal Definitions – Sufficient Input Subset

- Black-box model that maps inputs $\mathbf{x} \in \mathcal{X}$ via a function $f: \mathcal{X} \to \mathbb{R}$
- Each input has indexable features $\mathbf{x} = [x_1, \dots, x_p]$ with each $x_i \in \mathbb{R}^d$

Formal Definitions – Sufficient Input Subset

- Black-box model that maps inputs $\mathbf{x} \in \mathcal{X}$ via a function $f: \mathcal{X} \to \mathbb{R}$
- Each input has indexable features $\mathbf{x} = [x_1, \dots, x_p]$ with each $x_i \in \mathbb{R}^d$
- A SIS is a subset of the input features $S \subseteq [p]$ (along with their values)
- Presume decision of interest is based on $f(\mathbf{x}) \geq \tau$ (prespecified threshold)
- Our goal is to find a **complete** collection of **minimal**cardinality subsets of features S, each satisfying $f(\mathbf{x}_S) \ge \tau$
- **x**_S = input where values of features outside of S have been masked

SIS avoids local minima by using backward selection

SIS Algorithm

- From a particular input: we extract **SIS-collection** of disjoint feature subsets, each of which alone suffices to reach the same model decision
- Aim to quickly identify each sufficient subset of minimal cardinality via backward selection (preserves interaction between features)
- Aim to identify all such subsets (under disjointness constraint)
- We mask features outside of SIS via their average value (mean-imputation)
- Compared to existing interpretability techniques, SIS is faithful to any type of model (sufficiency of SIS is guaranteed), and does not require: gradients, additional training, or an auxiliary explanation model

Example SIS for different instances of "4"

SIS Clustered for General Insights

- Identifying the input patterns that justify a decision across many examples helps us better understand the general operating principles of a model
- We cluster all SIS identified across a large number of examples that received the same model decision
- Insights revealed by our SIS-clustering can be used to compare the global operating behavior of different models

SIS Clustering Shows CNN vs. Fully Connected Network Differences (digit 4)

SIS Clustering Shows CNN vs. Fully Connected Network Differences (digit 4)

SIS Clustering Shows CNN vs. Fully Connected Network (MLP) Differences

Cluster	% CNN SIS											
C ₁	100%		\mathcal{A}_{i}	${\mathbb R}^{\mathbb Z}$	\mathbb{R}^{ℓ}	1	1	\mathbb{L}^{l}	\mathbb{R}^{t}	~1	-1	\mathbb{R}^{ℓ}
C ₂	100%	Ī	4	4	٨	4	٨	2	ん	1-	~	<i>'</i> -
C ₃	5%		۶ł	12	٠;	$4r_{\rm s}^{(2)}$	- 4	er!	×4	*	7÷	x i.
C ₄	100%		ζ'	\mathcal{L}^{1}_{i}	${\bf v}^{\rm t}$	\mathcal{L}_{i}^{ℓ}	\mathbf{c}^{\dagger}	د!	\boldsymbol{z}^{t}_{i}	<u>^'</u>	\mathbb{Z}^{1}	4
C ₅	100%		7	7	3	2	2	,	2	7	7	2
C ₆	100%		с.		\sim -	4	N	N= -	۰.	ч.	ы. Н	۰.
C ₇	100%		./	1	1		21	. 1	-1	1	\mathcal{A}^{\prime}	1
C ₈	100%		41	4. ⁶	$\mathcal{L}^{\mathcal{L}}$	~1	\boldsymbol{z}^{\prime}	\mathcal{L}^{ℓ}	د '	\mathcal{L}^{\prime}	\mathcal{A}^{ℓ}_{i}	41
C ₉	0%		4	93°	44	a f	s j	13	27	15	e f	$\circ f$

- CNN: spatially-contiguous strokes comprising small portion of digit
- MLP: decision based on pixels throughout digit, relies on global shape
- CNN is more susceptible to mistaking other (non-digit) handwritten characters for 4 if they happen to share some of the same strokes

Applying SIS to Natural Language

- We use a dataset of beer reviews from BeerAdvocate [McAuley et al. 2012]
- Different LSTM networks are trained to predict userprovided numerical ratings of aspects like aroma, appearance, and palate

LSTMs Learn Aspect-Specific Features

on tap at the brewpub december 27 2010 pours a dark brown color with a good tan head that leaves behind a bit of lacing and sticks around for awhile the nose is really nice and chocolatey really love the level they 've used under that a bit of roasted malt but this was mostly about the chocolate the taste is n't quite as nice though the chocolate notes really still stand out the feel was quite nice with a full body pretty viscous for what it is drinks quite well i 'm a big fan

Aroma

Palate

Multiple SIS in Aroma Review

on tap at a the pour is a dark amber color bordering on mahogany with a finger 's worth of slightly off white head s wow the nose on this beer is phenomenal tons of vanilla bourbon maple syrup brown sugar caramel and toffee provide a wonderful sweetness some dark fruit notes and chocolate fill in the background of the aroma t the flavor is similarly impressive lots of sweet rich vanilla bourbon and oak accompanied by toffee caramel brown sugar and maple syrup the finish is all that prevents this from a perfect score as there is a bit of alcohol and heat but there are some nice hints of chocolate m the mouthfeel is smooth creamy rich and full bodied a light but nearly perfect level of carbonation d i was told this beer was good but i had to see for myself this is one of if not the best barrel aged barleywines i 've come across i might go back again soon to have some more

Aroma SIS 1 Aroma SIS 2

Aroma SIS 3

SIS Produces Minimal Sufficient Subsets

SIS Clustering Shows LSTM/CNN Differences

Example sufficient input subsets for MAFF binding

Two DNA sequences that receive positive TF (MAFF) binding predictions (SIS is shaded):

CACTGTCATTCTCTTGGTCAGCCCTGGACATCCCTGGAAAGG<mark>ATGA</mark>CTCAGCTGTCCGTTTTAAACAGGGTAGTTCAGAAGAATACATTCCTGGTTATTCA TTTTTTTCTCCCCTTCGATTTCCACTATGATTTGTATTTCCTTTGTTCT<mark>GCTGAC</mark>TTT<mark>GCA</mark>ATTTCGGTTGTTTTTTCTAAATTTCTTAGGGTGAAAACTGA

Example clustered SIS for a transcription factor (MAFF factor)

Clustering results for a particular TF (MAFF), two clusters were found:

Right image: known JASPAR motif (top) and alignment with cluster modes (bottom)

White Box Methods (Look inside of model)

Visualizing filters

Only first layer filters are interesting and interpretable

AlexNet: 64 x 3 x 11 x 11

Weights:

(國憲憲 建苯基苯基乙基基)(制造工作品名称)(回讀 我想你怎)(思想还算你都你能没有的事 운영비원로 船)(團團 昭和美麗)(開業着後別遊園 思麗)(開調 転落)(夏季調運 進過臺(總是 周囲()(論社法調測 12 陽底相談)(海際副員 動植品牌)(製電団県科学院市 #D:3#1 (建筑造直路)(新筑施設) 高级网络消费率)(市内高级数据 周期新聞書を)(清潔者な言語が 福雪站高耸远)(阿萨西沙泥 非遗辞别淫淫的)(影而迷 建脂肪酸医尿酸脂肪)(非常能能的酸盐酸盐酸 國家自然在對政府)(國際會議的保護委員會的保護委員會的政府的)(法律教育的要求要召集会

layer 3 weights

20 x 20 x 7 x 7

Visualizing activations

First layer

5th conv layer

Transposed convolution times received gradient is layer gradient

Convolution 3x3 filter on 4x4 input 2x2 output Transposed convolution times received gradient is layer gradient

Convolution 3x3 filter on 4x4 input 2x2 output

Transposed Convolution 3x3 filter on 2x2 input 4x4 output

Deconvolutional neural net: A novel way to map high level activities back to the input pixel space, showing what input pattern originally caused a given activation in the feature maps

Zeiler et al., Visualizing and Understanding Convolutional Networks Zeiler et al., Adaptive Deconvolutional Networks for Mid and High Level Feature Learning

Deconvolutional neural net: A novel way to map high level activities back to the input pixel space, showing what input pattern originally caused a given

Zeiler et al., Visualizing and Understanding Convolutional Networks Zeiler et al., Adaptive Deconvolutional Networks for Mid and High Level Feature Learning

CAM: Class Activation Mapping

Use additional layer on top of the GAP (Global activation pooling) to learn <u>class</u> <u>specific</u> linear weights for each high level feature map and use them to weight the activations mapped back into input space.

Zhou et al., Learning Deep Features for Discriminative Localization

CAM: Class Activation Mapping

Use additional layer on top of the GAP (Global activation pooling) to learn <u>class</u> <u>specific</u> linear weights for each high level feature map and use them to weight the activations mapped back into input space.

Visualizing gradient: Saliency map

Simonyan et al., Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps

Gradient variation 1: guided back-propagation

Only back propagate positive gradients

Gradient variation 1: guided back-propagation

Only back propagate positive gradients

guided backpropagation

corresponding image crops

Springenberg et al., Striving for Simplicity: The All Convolutional Net

Grad-CAM: combining CAM and guided backprop

Integrated Gradient

Given an input image x_i and a **<u>baseline input</u>** x_i' :

Top label: reflex camera Score: 0.993755

Top label: fireboat Score: 0.999961

Top label: school bus Score: 0.997033

Sundararajan et al., Axiomatic Attribution for Deep Networks

DeepLIFT

compares the activation of each neuron to its **reference activation** and assigns contribution scores according to the difference

Shrikumar et al., *Learning Important Features Through Propagating Activation Differences* Shrikumar et al., *Not Just A Black Box: Learning Important Features Through Propagating Activation Differences*

Other input dependent attribution score approaches:

- LIME (Local Interpretable Model-agnostic Explanations)
 - identify an interpretable model over the interpretable representation that is locally faithful to the classifier by approximating the original function with interpretable models locally.

• SHAP(SHapley Additive explanation)

Unified several additive attribution score methods by using definition of Sharpley value from game theory

maximum entropy

Locally sample inputs that maximum the entropy of predicted score

Input independent visualization: gradient ascent

Generate input that maximum activation of certain neuron or final activation of the class

 $\arg\max_{I} S_c(I)$

Simple regularizer: Penalize L2 norm of generated image

dumbbell

bell pepper

husky

Simonyan et al., Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps

Input independent visualization: gradient ascent

Generate input that maximum activation of certain neuron or final activation of the class

DeepMotif uses gradient ascent

NFYB					
JASPAR Motifs	Forward: Backward:				
CNN Positive Class Maximization					
RNN Positive Class Maximization	Co 444_I_2000 Coop CIATAAX SEGERAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA				

Lanchantin et al., Deep Motif Dashboard: Visualizing and Understanding Genomic Sequences Using Deep Neural Networks

FIN - Thank You

SIS Resources

Full paper in arXiv: https://arxiv.org/abs/1810.03805

Code for paper and analysis: <u>https://github.com/b-carter/SufficientInputSubsets</u>

Code for open-source SIS library and tutorial:

https://github.com/google-research/google-research/tree/master/sufficient_input_subsets