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Today: Convolutional Neural Networks (CNNs)

1. Scene understanding and object recognition for machines (and humans)
— Scene/object recognition challenge. Illusions reveal primitives, conflicting info
— Human neurons/circuits. Visual cortex layers==abstraction. General cognition

2. Classical machine vision foundations: features, scenes, filters, convolution
— Spatial structure primitives: edge detectors & other filters, feature recognition
— Convolution: basics, padding, stride, object recognition, architectures

3. CNN foundations: LeNet, de novo feature learning, parameter sharing
— Key ideas: learn features, hierarchy, re-use parameters, back-prop filter learning
— CNN formalization: representations(Conv+RelLU+Pool)*N layers + Fully-connected

4. Modern CNN architectures: millions of parameters, dozens of layers
— Feature invariance is hard: apply perturbations, learn for each variation
— ImageNet progression of best performers
— AlexNet: First top performer CNN, 60M parameters (from 60k in LeNet-5), RelLU
— VGGNet: simpler but deeper (8219 layers), 140M parameters, ensembles
— GoogleNet: new primitive=inception module, 5M params, no FC, efficiency
— ResNet: 152 layers, vanishing gradients = fit residuals to enable learning

5. Countless applications: General architecture, enormous power

— Semantic segmentation, facial detection/recognition, self-driving, image
colorization, optimizing pictures/scenes, up-scaling, medicine, biology, genomics



1a. What do you see, and how?
Can we teach machines to see?



What do you see?
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How do you see?

B~

How can we help §
computers see?



What computers ‘see’: Images as Numbers

What you see What you both see What the computer "sees"
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Input Image Input Image + values Pixel intensity values
(“pix-el”’=picture-element)

An image is just a matrix of numbers [0,255].i.e., 1080x1080x3 for an RGB image.
Question: is this Lincoln? Washington? Jefferson? Obama?
How can the computer answer this question?

Can | just do classification on the 1,166400-long image vector directly?

No. Instead: exploit image spatial structure. Learn patches. Build them up

Levin Image Processing & Computer Vision



1b. Classical machine vision roots
in study of human/animal brains
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Primitives: Neurons & action potentials
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* Neurons connected into circuits (neural networks): emergent properties, learning, memory

* Simple primitives arranged in simple, repetitive, and extremely large networks
* 86 billion neurons, each connects to 10k neurons, 1 quadrillion (10'2) connections



Abstraction layers: edges bars, dir., shapes, objects, scenes
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Structure of the Ear

Close Up of Middle and In
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* Hearing, taste, smell, sight, touch all re-
use similar learning architecture

Visual Cortex Motor Cortex] * Interchangeable
st o e circuitry

* Auditory cortex
learns to ‘see’ if
sent visual signals

* Injury area tasks
shift to uninjured
areas

Mouse Macaque Chimpanzea Human

* Massive recent expanse of human brain has re-used a
relatively simple but general Iearning architecture

0
?

* Not fully-general learning, but well-adapted to our world
* Humans co-opted this circuitry to many new applications
* Modern tasks accessible to any homo sapiens (<70k years)
* ML primitives not too different from animals: more to come?



Today: Convolutional Neural Networks (CNNs)

1. Scene understanding and object recognition for machines (and humans)
— Scene/object recognition challenge. Illusions reveal primitives, conflicting info
— Human neurons/circuits. Visual cortex layers==abstraction. General cognition

2. Classical machine vision foundations: features, scenes, filters, convolution
— Spatial structure primitives: edge detectors & other filters, feature recognition
— Convolution: basics, padding, stride, object recognition, architectures

3. CNN foundations: LeNet, de novo feature learning, parameter sharing
— Key ideas: learn features, hierarchy, re-use parameters, back-prop filter learning
— CNN formalization: representations(Conv+RelLU+Pool)*N layers + Fully-connected

4. Modern CNN architectures: millions of parameters, dozens of layers
— Feature invariance is hard: apply perturbations, learn for each variation
— ImageNet progression of best performers
— AlexNet: First top performer CNN, 60M parameters (from 60k in LeNet-5), RelLU
— VGGNet: simpler but deeper (8219 layers), 140M parameters, ensembles
— GoogleNet: new primitive=inception module, 5M params, no FC, efficiency
— ResNet: 152 layers, vanishing gradients = fit residuals to enable learning

5. Countless applications: General architecture, enormous power

— Semantic segmentation, facial detection/recognition, self-driving, image
colorization, optimizing pictures/scenes, up-scaling, medicine, biology, genomics



2a. Spatial structure
for image recognition



Using Spatial Structure
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Using Spatial Structure
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Connect patch in input layer to a single neuron in subsequent layer.
Use a sliding window to define connections.
How can we weight the patch to detect particular features?



Feature Extraction with Convolution

seseseveeeseee - Filter of size 4x4 : 16 different weights

R ettt . -
000530000/ - A m

R pply this same filter to 4x4 patches in input

0000 0w eSO
0000006 ;oie;eis?eﬁ%\
0/0/0/0/00/0/0/00'0/0/ 0N
‘o'e'e'ee’e’e'a’e0’e’e’ _
R oy
SRR 000000

- Shift by 2 pixels for next patch

00000000000000 folalal This “patchy’”’ operation is convolution
s0e/000eee000ee 00,0000 patchy op convolutio
000000/00000000 98,9009

0/0/0/0/00/0/0/6'0'0'0'0' OB 0'00'0 00

0000000000000

|) Apply a set of weights — a filter — to extract local features

2) Use multiple filters to extract different features

3) Spatially share parameters of each filter



Fully Connected Neural Network

« 2D image « Each neuron in
* Vector of pixel JJZ——>O——>© hidden layer
values connected to all
: neurons in input
layer
Tp—() » No spatial information
* Many, many
parameters

Input: L 14>O \ Fully Connected:

Key idea: Use spatial structure in input to inform architecture
of the network




High Level Feature Detection

Let’s identify key features in each image category

Nose, Eyes, Mouth Wheels, License Plate, DoorWindows,Steps
Headlights



Fully Connected Neural Network
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2b. Convolutions and filters



Convolution operation is element wise
multiply and add

1xl 1xﬂ 1xl 0 0
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Filter / Kernel 0/1({1(0]|0
Convolved
Image

Feature



Producing Feature Maps

i
Orriginal Sharpen Edge Detect “Strong” Edge
Detect



A simple pattern: Edges
How can we detect edges with a kernel?

Filter

(Goodfellow 2016)



Simple Kernels / Filters

Operation Filter Convolved
Image
0 0 0
Identity 01 0
0 0 0
1 0 -1
0 0 0
-1 0 1
1 0
Edge detection 1 -4 1
1 0
Fil =i =il
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X or X?
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Image is represented as matrix of pixel values... and computers are literal!
We want to be able to classify an X as an X even fif it’s shifted, shrunk, rotated, deformed.

Rohrer How do CNNs work?



There are three approaches to edge cases in
convolution

S(i,5) = (I * K)(§,5) =Y _ Y I(i +m,j+n)K(m,n).

i iy



Zero Padding Controls Output Size
_10/0/0/0/0/0/0/0/0/0/0/0/0/6/0/0 | O (Conteton 2016
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« Same convolution: zero pad input so output  * Valid-only convolution: output only when
is same size as input dimensions entire kernel contained in input (shrinks output)

* Full convolution: zero pad input so output is produced whenever an output value
contains at least one input value (expands output)

S(t,3) = (I K)(i,j) = ZZ Ii +m,j +n)K(m,n)

™ Ti

X = tf.nn.conv2d(x, W, =[1,strides,strides,1], ="'SAME ")
Output Input Kernel Batch H W Input channel

* TF convolution operator takes stride and zero fill option as parameters
« Stride is distance between kernel applications in each dimension
« Padding can be SAME or VALID






Today: Convolutional Neural Networks (CNNs)

1. Scene understanding and object recognition for machines (and humans)
— Scene/object recognition challenge. Illusions reveal primitives, conflicting info
— Human neurons/circuits. Visual cortex layers==abstraction. General cognition

2. Classical machine vision foundations: features, scenes, filters, convolution
— Spatial structure primitives: edge detectors & other filters, feature recognition
— Convolution: basics, padding, stride, object recognition, architectures

3. CNN foundations: LeNet, de novo feature learning, parameter sharing
— Key ideas: learn features, hierarchy, re-use parameters, back-prop filter learning
— CNN formalization: representations(Conv+RelLU+Pool)*N layers + Fully-connected

4. Modern CNN architectures: millions of parameters, dozens of layers
— Feature invariance is hard: apply perturbations, learn for each variation
— ImageNet progression of best performers
— AlexNet: First top performer CNN, 60M parameters (from 60k in LeNet-5), RelLU
— VGGNet: simpler but deeper (8219 layers), 140M parameters, ensembles
— GoogleNet: new primitive=inception module, 5M params, no FC, efficiency
— ResNet: 152 layers, vanishing gradients = fit residuals to enable learning

5. Countless applications: General architecture, enormous power

— Semantic segmentation, facial detection/recognition, self-driving, image
colorization, optimizing pictures/scenes, up-scaling, medicine, biology, genomics



3a. Learning Visual Features
de novo



Key idea:
learn hierarchy of features
directly from the data

(rather than hand-engineering them)

Low level features Mid Ievel features High level features

Edges, dark spots Eyes, ears,nose Facial structure

Lee+ ICML 2009



Key idea: re-use parameters
Convolution shares parameters
Example 3x3 convolution on a 5x5 image




Feature Extraction with Convolution
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|) Apply a set of weights — a filter — to extract local features
2) Use multiple filters to extract different features

3) Spatially share parameters of each filter



LeNet-5

* Gradient Based Learning Applied To Document Recognition -
Y. Lecun, L. Bottou, Y. Bengio, P. Haffner; 1998

* Helped establish how we use CNNs today
* Replaced manual feature extraction

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5
39y32 6@28x28

S2:f. maps
6@14x14

\
| Full conAection | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

[LeCun et al., 1998]



32X32X1

5X5X%16

This slide is taken from Andrew Ng

28X28X6

O
O

O

120

FC

LeNet-5

—>

avg pool’ conv I avg pool

5X%X5
s=1

14X14X6 10X10X16

s—2

N\

— Y

10

Reminder:
Output size = (N+2P-F)/stride + 1

[LeCun et al., 1998]



LeNet-5

Only 60K parameters
As we go deeper in the network: Ny |, Ny |, N 1

General structure:
conv->pool->conv->pool->FC->FC->output

Different filters look at different channels
Sigmoid and Tanh nonlinearity

[LeCun et al., 1998]



Backpropagation of convolution

X11 | X192 | X
O11 | O12 L e 1 Fi1 | Fr2
=T = Convolution{ | X21 | X22 | X23 = =

OE/OF 11 E/OF 45

X111 X12| X413 |9E/9044|9E/9015
= Convolution( X21 | Xo2 | X3 )

OE/8F 54 OE/OF 55 ) |8E/8041|E/80 55

Slide taken from Forward And Backpropagation in Convolutional Neural Network. - Medium



3b. Convolutional Neural
Networks (CNNs)



An image classification CNN

Convolution Pooling Convolution Pooling Fully Fully Output Predictions

+ RelU + RelU Connected Connected

Dog (0)
Cat (0)
Boat (1)
r__r, Bird (0)
I
| [

Eiotal = > %(!ru'gr! — output)?

| l |

Y \/

Y )'

Feature Extraction from Image Classification



Representation Learning in Deep CNNs

Low level features Mid level features High level features

FSEL

Edges, dark spots Eyes, ears,nose Facial structure

Conv Layer | Conv Layer 2 Conv Layer 3

Lee+ ICML 2009



CNNs for Classification

Y . L T

e o e ==~

Fully-

Input image Convolution Maxpooling s,
(feature maps) 1
ayer

I. Convolution:Apply filters to generate feature maps.

2. Non-linearity: Often RelLU.

3. Pooling: Downsampling operation on each feature map.

- ° ° T 1 2
Train model with image data. 1F eras.layers.Conv

Learn weights of filters in convolutional layers. P t£ xeras activations

1F tf.keras.layers.MaxPoolZ



Six convolutional layers

Example
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Convolutional Layers: Local Connectivity
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Convolutional Layers: Local Connectivity

ﬂr tf.keras.layers.Conv2D

9909 9909900900909
QOSSO0 0000000 o
3333*3*313i§*3§*3333 For a neuron in hidden layer:
e -";-*exe‘gig;;fg;g‘gg * Take inputs from patch
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Seccnenane QR - Ay s
0,0/0/0/0000000000 ~
099900000000000 S
99900000000000 ®
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4 4
4x4 filter:
o of Z z Wij Xitpj+q T D |) applying a window of weights
maF”X © i=1 j=1 2) computing linear combinations
weights Wij for neuron (p,q) in hidden layer 3) activating with non-linear function



CNNs: Spatial Arrangement of Output
Volume

32

depth

Layer Dimensions:

32

LO0O0O(

h X w Xd

where h and w are spatial
dimensions d (depth) = number of

height filters
Stride:

Filter step size

Receptive Field:
width Locations in input image
that a node is path
connected to
‘1F tf.keras.layers.Conv2D( filters-d, kernel size=(h,w), strides-s )




Introducing Non-Linearity

- Apply after every convolution operation

(i.e., after convolutional layers) Rectified Linear Unit
- RelU: pixel-by-pixel operation that replaces  (ReLU)
all negative values by zero.

- Non-linear operation o}

Input Feature Map Rectified Feature Map

..........

g(z) = max (0, z)

-

white ='positive values Only non-negative valgel

N tf keras.layers.ReLU

Karn Intuitive CNNs



Pooling

i 2 | 4
max pool with 2x2 filters
516 |7 | 8| andstrde?2 bl o
3 2 1 0 tf.keras.layers.Max 3 4
Pool2D ( =
pool size ,2)
)  strides-2 1F I) Reduced
213 4 dimensionality

2) Spatial invariance

=

y

Max Pooling, average pooling



The REctified Linear Unit (RELU) is a common
non-linear detector stage after convolution

X = tf.nn.conv2d(x, W, =[1, strides, strides, 1], ="'SAME ")
x = tf.nn.bias_add(x, b)
x= tf.nn.relu(x)

....................

f(x) = max(0, x)
When will we backpropagate through this?
Once it “dies” what happens to it?



Pooling reduces dimensionality by giving up
spatial location

* max pooling reports the maximum output
within a defined neighborhood

* Padding can be SAME or VALID \

x = tf.nn.max_pool(x, =[1, k, k, 17, =[1, k, k, 17, ="'SAME")
Output Input Pooling Batch HW Input channel
Neighborhood

[batch, height, width, channels]



Dilated Convolution

D=2

Output
Dilation = 8

Hidden Layer
Dilation = 4

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 1

Input




CNNs for Classification: Feature Learning

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING

\ ¥,
Y

FEATURE LEARNING

|. Learn features in input image through convolution

2. Introduce non-linearity through activation function (real-world data is
non-linear!)

3. Reduce dimensionality and preserve spatial invariance with pooling



CNNs for Classification: Class Probabilities

i B

P | — CAR
‘ — TRUCK

— VAN

[
|
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D |:| — BICYCLE
FULLY
/ INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN CONNECTED SOFTMAX
\ o8 N o
Y Y
FEATURE LEARNING CLASSIFICATION
eyi
softmax(y;) = 7
) j€e’’

- CONYV and POOL layers output high-level features of input
- Fully connected layer uses these features for classifying input image

- Express output as probability of image belonging to a particular class



Putting it all together

tensorflow tf

def generate model () :

model tf.keras.Sequential ([

tf.keras.layers.Conv2D (32, filter size=3, activation='relu’),

tf.keras.layers.MaxPool2D(pool size=2, strides=2),

tf.keras.layers.ConvZ2D (64, filter size=3, activation='relu’),

tf.keras.layers.MaxPool2D(pool size=2, strides=2),

tf.keras.layers.Flatten(),
tf.keras.layers.Dense (1024, activation='relu’),

tf.keras.layers.Dense (10, activation=‘softmax’)
)

— CAR

/ ] — TRuck
/ — VAN
4 \

£ \n0 ] — BISYCLE

1)

return model

I " inpur CONVOLUTION + RELU POOLING CONVOLUTION + RELU  POOLING FLATTEN __FULLY SOFTMAX
" CONMNECTED

FEATURE LEARNING CLASSIFICATION



Today: Convolutional Neural Networks (CNNs)

1. Scene understanding and object recognition for machines (and humans)
— Scene/object recognition challenge. Illusions reveal primitives, conflicting info
— Human neurons/circuits. Visual cortex layers==abstraction. General cognition

2. Classical machine vision foundations: features, scenes, filters, convolution
— Spatial structure primitives: edge detectors & other filters, feature recognition
— Convolution: basics, padding, stride, object recognition, architectures

3. CNN foundations: LeNet, de novo feature learning, parameter sharing

— Key ideas: learn features, hierarchy, re-use parameters, back-prop filter learning
— CNN formalization: representations(Conv+RelLU+Pool)*N layers + Fully-connected

4. Modern CNN architectures: millions of parameters, dozens of layers
— Feature invariance is hard: apply perturbations, learn for each variation
— ImageNet progression of best performers
— AlexNet: First top performer CNN, 60M parameters (from 60k in LeNet-5), RelLU
— VGGNet: simpler but deeper (8219 layers), 140M parameters, ensembles
— GoogleNet: new primitive=inception module, 5M params, no FC, efficiency
— ResNet: 152 layers, vanishing gradients = fit residuals to enable learning

5. Countless applications: General architecture, enormous power

— Semantic segmentation, facial detection/recognition, self-driving, image
colorization, optimizing pictures/scenes, up-scaling, medicine, biology, genomics



4a. Real-world feature invariance is
hard



How can computers recognize objects?
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How can computers recognize objects?
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Challenge:

* Objects can be anywhere in the scene, in any orientation, rotation, color hue, etc.
 How can we overcome this challenge?

Answer:

e Learn a ton of features (millions) from the bottom up

e Learn the convolutional filters, rather than pre-computing them




Feature invariance to perturbation is hard

Viewpoint variation Scale variation Deformation Occlusion

L

' (e é

Background clutter  Intra-class variation
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Li/Jlohnson/Yeung C231n



Next-generation models
explode # of parameters



LeNet-5

* Gradient Based Learning Applied To Document Recognition -
Y. Lecun, L. Bottou, Y. Bengio, P. Haffner; 1998

* Helped establish how we use CNNs today
* Replaced manual feature extraction

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5
39y32 6@28x28

S2:f. maps
6@14x14

\
| Full conAection | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

[LeCun et al., 1998]



ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) winners

First CNN-based winner

152 layers
A \
\
A
A
\ 16.4
A
\
\
\ 11.7
| 22 layers I ‘ 19 layers ‘
‘\ 6.7 7.3
3.57 I_ I | 8 layers | 8 layers |
ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 | ILSVRC'12
ResNet GoogleNet VGG AlexNet

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.
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AlexNet

* ImageNet Classification with Deep Convolutional
Neural Networks - Alex Krizhevsky, Ilya Sutskever,
Geoffrey E. Hinton; 2012

* Facilitated by GPUs, highly optimized convolution
implementation and large datasets (ImageNet)

* One of the largest CNNs to date

* Has 60 Million parameter compared to 60k
parameter of LeNet-5

[Krizhevsky et al., 2012]



ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) winners

The annual “Olympics” of computer vision.

Teams from across the world compete to see who has the
best computer vision model for tasks such as classification,
localization, detection, and more.

2012 marked the first year where a CNN was used to
achieve a top 5 test error rate of 15.3%.

The next best entry achieved an error of 26.2%.



ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) winners

First CNN-based winner

152 layers
A \
\
A
A
\ 16.4
A
\
\
\ 11.7
| 22 layers I ‘ 19 layers ‘
‘\ 6.7 7.3
3.57 I_ I | 8 layers | 8 layers |
ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 | ILSVRC'12
ResNet GoogleNet VGG AlexNet

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.
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Architecture
CONV1
MAX POOL1

CONV2
MAX POOL2

CONV3
CONV4
CONV5
Max POOL3

AlexNet

e Input: 227x227x3 images (224x224 before
padding)

* First layer: 96 11x11 filters applied at stride 4

* Output volume size?

(N-F)/s+1 = (227-11)/4+1 = 55 ->
[55x55x96]

* Number of parameters in this layer?
(11*11*3)*96 = 35K

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [Krlzhevsky et al-; 2012]



AlexNet

[Krizhevsky et al., 2012]



Architecture
CONV1
MAX POOL1

CONV2
MAX POOL2

CONV3
CONV4
CONV5
Max POOL3

AlexNet

Input: 227x227x3 images (224x224 before
padding)

After CONV1: 55x55x96
Second layer: 3x3 filters applied at stride 2

Output volume size?
(N-F)/s+1 = (55-3)/2+1 = 27 -> [27x27x96]

Number of parameters in this layer?
0!

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [Krlzhevsky et al-; 2012]



AlexNet

conv ’ max pool conv max pool
. > _ — ...
1x 11 3x%x3 5%X5 3x3
s=4 s=2 S=1 s=2
P=0 27%x27 x96 P=2 27%27 x256

no X

conv conv conv max pool
3%x3 3 3X3 r
S s=2

13X13 X384 13X13 X384 13X13 X256 6X6 X256

This slide is taken from Andrew Ng [Krizhevsky et al-; 2012]



This slide is taken from Andrew Ng

FC

AlexNet

O
O

O

4096

FC

O
O

Softmax

O

4096

1000

[Krizhevsky et al., 2012]



AlexNet

Details/Retrospectives:

* first use of ReLU

* used Norm layers (not common anymore)
* heavy data augmentation

 dropout 0.5

* batch size 128

* 7CNN ensemble

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [Krlzhevsky et al-; 2012]



AlexNet

* Trained on GTX 580 GPU with only 3 GB of memory.

* Network spread across 2 GPUs, half the neurons (feature
maps) on each GPU.

* CONV1, CONV2, CONV4, CONVS:
Connections only with feature maps on same GPU.

* CONV3, FC6, FC7, FC8:
Connections with all feature maps in preceding layer,
communication across GPUs.

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [Krlzhevsky et al-; 2012]



AlexNet

AlexNet was the coming out party for CNNs in the computer
vision community. This was the first time a model performed
so well on a historically difficult ImageNet dataset. This
paper illustrated the benefits of CNNs and backed them up
with record breaking performance in the competition.

[Krizhevsky et al., 2012]



ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) winners

ZFNet: Improved 28.2
, hyperparameters over
152 layers AlexNet
\ 16.4

\ 11.7

| 22 layers | ‘ 19 layers
S 6T - I
ﬁ I —_— _I | 8 layers ||| 8 layers I

ILSVRC'15 ILSVRC'14  ILSVRC'14 | ILSVRC'13 | ILSVRC'12  ILSVRC'11l ILSVRC'10
ResNet GoogleNet VGG AlexNet

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.



ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) winners

28.2

' Deeper Networks
152 layers 1

\\
| 22 layers | ‘ 19 layers
'\ 6.7 %3 I

i l"‘“‘l | 8 layers || 8 layers

ILSVRC'15 | ILSVRC'14 ILSVRC'14 | ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.



VGGNet

Very Deep Convolutional Networks For Large Scale
Image Recognition - Karen Simonyan and Andrew
Zisserman; 2015

The runner-up at the ILSVRC 2014 competition
Significantly deeper than AlexNet
140 million parameters

[Simonyan and Zisserman, 2014]



Input

3x3 , 64
3§3 Ez:z, 64 VG G N Et

Pool 1/2

3x3 conv, 128

3x3 conv, 128 * Smaller filters

Pool 1/2 Only 3x3 CONV filters, stride 1, pad 1
3x3 conv, 256 .

3x3 conv, 256 and 2x2 MAX POOL, stride 2
Pool 1/2

3x3 conv, 512

3x3 conv, 512 * Deeper network

iziff/nzv >t AlexNet: 8 layers

3x3 conv, 512 VGGNet: 16 - 19 layers

3x3 conv, 512
3x3 conv, 512

Pool 1/2 e ZFNet: 11.7% top 5 error in ILSVRC’13

* VGGNet: 7.3% top 5 error in ILSVRC’'14

Softmax

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [Slmonyan and leserman, 2014]



VGGNet

 Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has the same effective
receptive field as one 7x7 conv layer.

* What is the effective receptive field of three 3x3 conv (stride
1) layers?

7x7
But deeper, more non-linearities
And fewer parameters: 3 * (32C?) vs. 72C? for C channels per layer

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [Slmonyan and leserman, 2014]



Sl

Input

3x3 conv, 64
3x3 conv, 64
Pool

3x3 cony, 128
3x3 cony, 128
Pool

3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
Pool

3x3 cony, 512
3x3 cony, 512
3x3 cony, 512
Pool

3x3 cony, 512
3x3 cony, 512
3x3 cony, 512
Pool

Softmax

de taken from Fei-Fei & Justing

VGGNet

VGG16:

TOTAL memory: 24M * 4 bytes ~= 96MB / image
TOTAL params: 138M parameters

hnson & Serena Yeung. Lecture 9.

[Simonyan and Zisserman, 2014]



Input

3x3 conv, 64
3x3 conv, 64
Pool

3x3 conv, 128

3x3 conv, 128
147,456

Pool

3x3 cony, 256
3x3 cony, 256
3x3 cony, 256
Pool

3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool

3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool

FC 4096

FC 4096

FC 1000

memory.

224*224*3=150K

memory:

224%224*64=3.2M

memory:
memory:
memory:

memory:

memory:
memory:
memory:
memory:
memory:
memory:
memory:
memory:
memory:
memory:
memory:
memory:
memory:
memory:
memory:
memory:

224%224*64=3.2M
112*112*64=800K

112*112*128=1.6M

112*112*128=1.6M

56*56%128=400K
56*56*256=800K
56*56*256=800K
56*56*256=800K
28*28%256=200K
28%28*512=400K
28%28*512=400K
28%28*512=400K
14*14*512=100K
14*14*512=100K
14*14*512=100K
14*14*512=100K

params: 0
params: (3*3*3)*64 = 1,728
params: (3*3*64)*64 = 36,864
params: 0
params: (3*3*64)*128 = 73,728

params: (3*3%128)*128 =

params: 0

params: (3*3*128)*256 = 294,912
params: (3*3*256)*256 = 589,824
params: (3*3*256)*256 = 589,824
params: 0

params: (3*3*256)*512 = 1,179,648
params: (3*3*512)*512 = 2,359,296
params: (3*3*512)*512 = 2,359,296
params: 0

params: (3*3*512)*512 = 2,359,296
params: (3*3*512)*512 = 2,359,296
params: (3*3*512)*512 = 2,359,296

7*7%512=25K params: 0

4096 params: 7*7*512*4096 = 102,760,448
4096 params: 4096*4096 = 16,777,216
1000 params: 4096*1000 = 4,096,000

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

[Simonyan and Zisserman, 2014]



VGGNet

Details/Retrospectives :

 |LSVRC’14 2nd in classification, 1st in localization
e Similar training procedure as AlexNet

* No Local Response Normalisation (LRN)

 Use VGG16 or VGG19 (VGG19 only slightly better, more
memory)

e Use ensembles for best results

 FC7 features generalize well to other tasks
* Trained on 4 Nvidia Titan Black GPUs for two to three weeks.

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [Slmonyan and leserman, 2014]



VGGNet

VGG Net reinforced the notion that convolutional neural
networks have to have a deep network of layers in order for
this hierarchical representation of visual data to work.

Keep it deep.
Keep it simple.

[Simonyan and Zisserman, 2014]



ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) winners

28.2

' Deeper Networks
152 layers 1

\\
| 22 layers | ‘ 19 layers
'\ 6.7 %3 I

i l"‘“‘l | 8 layers || 8 layers

ILSVRC'15 | ILSVRC'14 ILSVRC'14 | ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.



GoogleNet

* Going Deeper with Convolutions - Christian Szegedy et
al.; 2015

* |LSVRC 2014 competition winner
* Also significantly deeper than AlexNet
* x12 less parameters than AlexNet

* Focused on computational efficiency

[Szegedy et al., 2014]



=
- GoogleNet

\W % * 22 layers

e Efficient “Inception” module - strayed from

\p&/. the general approach of simply stacking conv
C} % and pooling layers on top of each other in a

el sequential structure

‘“\ffif» * No FC layers

i * Only 5 million parameters!

?; * |LSVRC’14 classification winner (6.7% top 5
:jl error)

[Szegedy et al., 2014]



GoogleNet

“Inception module”: design a good local network topology (network within
a network) and then stack these modules on top of each other

Filter
concatenation
o 3x3 5x5 1x1
convolution convolution convolution convolution
4 8 3
1x1 1x1 3x3 max
convolution convolution pooling

Previous layer

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [Szegedy et aI., 2014]



i
= GoogleNet
\_\fi’”’ =) Details/Retrospectives :
SEa] * Deeper networks, with computational efficiency
e * 22 layers
< TOETT B e Efficient “Inception” module
o * No FC layers
Kﬁ * 12xless params than AlexNet
s e |LSVRC’14 classification winner (6.7% top 5 error)
=
Ea

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [SzegEdy et aI., 2014]



GoogleNet

Introduced the idea that CNN layers didn’t always have to be
stacked up sequentially. Coming up with the Inception
module, the authors showed that a creative structuring of
layers can lead to improved performance and
computationally efficiency.

[Szegedy et al., 2014]



ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) winners

“Revolution of Depth”
1‘,a””” 28.2

r152|ayers

\\
\
| R2 layers | ‘ 19 Iayers ‘
', 6.7 III

ﬁ l_-“_l | 8 layers || 8 layers

ILSVRC'15 LSVRC'14  ILSVRC'14 ILSVRC'13  ILSVRC'12 ILSVRC'11l ILSVRC'10
ResNet oogleNet VGG AlexNet

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.



ResNet

Deep Residual Learning for Image Recognition -
Kaiming He, Xiangyu Zhang, Shaoging Ren, Jian Sun;
2015

Extremely deep network — 152 layers
Deeper neural networks are more difficult to train.

Deep networks suffer from vanishing and
exploding gradients.

Present a residual learning framework to ease the
training of networks that are substantially deeper
than those used previously.

[He et al., 2015]
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Sid Cony, B4
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S ey 128
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%

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

ResNet

e [LSVRC’15 classification winner (3.57% top 5
error, humans generally hover around a 5-
10% error rate)

Swept all classification and detection
competitions in ILSVRC’15 and COCO’15!

[He et al., 2015]



ResNet

* What happens when we continue stacking deeper layers on a
convolutional neural network?

bG-layer
56-layer

Training error
Test error

[terations lterations

e 56-layer model performs worse on both training and test error
-> The deeper model performs worse (not caused by overfitting)!

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [He et aI., 2015]



ResNet

* Hypothesis: The problem is an optimization problem. Very
deep networks are harder to optimize.

* Solution: Use network layers to fit residual mapping instead
of directly trying to fit a desired underlying mapping.

* We will use skip connections allowing us to take the activation
from one layer and feed it into another layer, much deeper
into the network.

* Use layers to fit residual F(x) = H(x) — x
instead of H(x) directly

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [He et aI., 2015]



ResNet

Residual Block

Input x goes through conv-relu-conv series and gives us F(x).
That result is then added to the original input x. Let’s call that
H(x) = F(x) + x.

In traditional CNNs, H(x) would just be equal to F(x). So, instead
of just computing that transformation (straight from x to F(x)),
we’re computing the term that we have to add, F(x), to the

input, x. H(x) | retu
T F(x) + x
X
T relu Fed Irelu identity
f
X X
“Plain” layers Residual block

[He et al., 2015]
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ResNet %
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'

Short cut/ skip connection

alll 1» Linear —+ ReLU—» Linear —L ReLU— gll*2]
q[1+1]
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[He et al., 2015]



— ResNet

A gy P

Full ResNet architecture:

Sid Cony, B4
| 3 poy P

e Stack residual blocks

* Every residual block has two 3x3 conv layers

S ey 128

e Periodically, double # of filters and
downsample spatially using stride 2 (in each
dimension)

Sxd ooy 128

Zxd cony 198

3 ooy B

* Additional conv layer at the beginning

* No FC layers at the end (only FC 1000 to
output classes)

23 ooy Bl
| Fed proy B

| Bl |

%

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [He et aI., 2015]



— ResNet

A gy P

* Total depths of 34, 50, 101, or 152 layers for
ImageNet

Sid Cony, B4
| 3 poy P

* For deeper networks (ResNet-50+), use
“bottleneck” layer to improve efficiency
(similar to GooglLeNet)

S ey 128

Sxd ooy 128

Zxd cony 198

3 ooy B

23 ooy Bl
| Fed proy B

| Bl |

%

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [He et aI., 2015]



ResNet

Experimental Results:
* Able to train very deep networks without degrading

* Deeper networks now achieve lower training errors as
expected

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [He et aI., 2015]



ResNet

The best CNN architecture that we currently have and is a
great innovation for the idea of residual learning.

Even better than human performance!

[He et al., 2015]



Accuracy comparison
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Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.



Forward pass time and power

consumption

200 A s - BN-NIN
/’—\ = GoogleNet
Inception-v3
100 A Inception-v4
= 1 AlaxNet
B e BN-AlexNet
B T — R ; - — VGG-16
5 \ ~—— ResNet-18
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§ iy \ ResNetl-101
g : ResNet-152
b \ = ENet
10 4
5 - . . . . .
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Batch size | /]

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

Net power consumption [W]
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ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) winners

/ “Revolution of Depth”

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.
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Today: Convolutional Neural Networks (CNNs)

1. Scene understanding and object recognition for machines (and humans)
— Scene/object recognition challenge. Illusions reveal primitives, conflicting info
— Human neurons/circuits. Visual cortex layers==abstraction. General cognition

2. Classical machine vision foundations: features, scenes, filters, convolution
— Spatial structure primitives: edge detectors & other filters, feature recognition
— Convolution: basics, padding, stride, object recognition, architectures

3. CNN foundations: LeNet, de novo feature learning, parameter sharing
— Key ideas: learn features, hierarchy, re-use parameters, back-prop filter learning
— CNN formalization: representations(Conv+RelLU+Pool)*N layers + Fully-connected

4. Modern CNN architectures: millions of parameters, dozens of layers
— Feature invariance is hard: apply perturbations, learn for each variation
— ImageNet progression of best performers
— AlexNet: First top performer CNN, 60M parameters (from 60k in LeNet-5), RelLU
— VGGNet: simpler but deeper (8219 layers), 140M parameters, ensembles
— GoogleNet: new primitive=inception module, 5M params, no FC, efficiency
— ResNet: 152 layers, vanishing gradients = fit residuals to enable learning

5. Countless applications: General architecture, enormous power

— Semantic segmentation, facial detection/recognition, self-driving, image
colorization, optimizing pictures/scenes, up-scaling, medicine, biology, genomics




Countless applications



An Architecture for Many Applications

/ 47 4 A

IS

[
-;9’:,9
' \\\" -H‘.: e
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING

b i

FEATURE LEARNING
Detection N

Semantic segmentation p
End-to-end robotic control




Semantic Segmentation: Fully Convolutional Networks

FCN: Fully Convolutional Network.

Network designed with all convolutional layers, with downsampling and
upsampling operations

2 Med-res: Med-res: ;
< | D,x HI4 x W/4 D,x H/4 x Wi4 ¢

=

Low-res:
D3x H/4 x W/4 y
Input: High-res: High-res: Predictions:
3xHxW D, x H/2 x W/2 D, x H/I2 x W/2 Hx W

“ tf.keras.layers.ConvZ2DTranspose

Long+ CVPR 2015



Facial Detection & Recognition




Self-Driving Cars

24.0 mph

Amini+ ICRA2019.



Self-Driving Cars: Navigation from Visual Perception

Possible Control Commands

Raw
Perception

/ A
(ex.camera)

Coarse
Maps

(ex GPS)

Amini+ ICRA 2019



End-to-End Framework for Autonomous Navigation

et Probabilistic Control Output
¢i = ZK e .
g j=1 - ¢i 1]
(3 > i
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0] <
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Routed Map N N
[T
g |
: 7 g 8
convolutional 1> § — cony  —> g — _ ,
z & Optional output if routed map
is provided as input

Amini+ ICRA 2019
Entire model trained end-to-end

without any human labelling or annotations



Automatic Colorization of Black and White Images




Optimizing Images

Post Processing Feature Optimization
(Color Curves and Details)

\ | "'Q: 33 =Yt 4“.:—} ‘—H“;‘c ; - ”3 == ‘ - : V -I;;” L --,. 5 » _:: :_;1
Post Processing Feature Optimization Post Processing Feature Optimization
(Illumination) (Color Tone: Warmness)




Up-scaling low-resolution images

8 X 8 input 32 x 32 samples ground truth

8x8 pixel photos were inputted into a Deep Learning network which tried to guess what the
original face looked like. As you can see it was fairly close (the correct answer is under "ground
truth™).



Medicine, Biology, Healthcare

@ A. HEALTHY B. DISEASED

\Hemorrhages

1

Gulshan+ JAMA 2016.



Breast Cancer Screening

International evaluation of an Al system for

breast cancer screening nature
b Breast cancer in 2 years (USA) . Breast cancer in 1 year (USA)
1.0- _ - I
0.8- "J! 1 7 .
5 0ed/ :
- — Al 1 — Al

o 02 04 06 08 10 0 02 04 06 08 10

1 - Specificity 1 - Specificity
CNN-based system outperformed expert Breast cancer case
radiologists at detecting breast missed by radiologist

cancer from mammograms but detected by Al



Semantic Segmentation: Biomedical Image Analysis

Original Ground Truth Segmentation Original Ground Truth Segmentation
A B Wy ™ P
Brain Tumors MRS S8 R 5
Dong+ MIUA N 1® & f I
2017. By oy -

Ground Segmenta Uncertai
Truth tion

Malaria Infection

Soleimany+ arXiv
2019.

Dong+ MIUA 2017; Soleimany+ arXiv 2019



DeepBind
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Predicting disease mutations
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Today: Convolutional Neural Networks (CNNs)

1. Scene understanding and object recognition for machines (and humans)
— Scene/object recognition challenge. Illusions reveal primitives, conflicting info
— Human neurons/circuits. Visual cortex layers==abstraction. General cognition

2. Classical machine vision foundations: features, scenes, filters, convolution
— Spatial structure primitives: edge detectors & other filters, feature recognition
— Convolution: basics, padding, stride, object recognition, architectures

3. CNN foundations: LeNet, de novo feature learning, parameter sharing
— Key ideas: learn features, hierarchy, re-use parameters, back-prop filter learning
— CNN formalization: representations(Conv+RelLU+Pool)*N layers + Fully-connected

4. Modern CNN architectures: millions of parameters, dozens of layers
— Feature invariance is hard: apply perturbations, learn for each variation
— ImageNet progression of best performers
— AlexNet: First top performer CNN, 60M parameters (from 60k in LeNet-5), RelLU
— VGGNet: simpler but deeper (8219 layers), 140M parameters, ensembles
— GoogleNet: new primitive=inception module, 5M params, no FC, efficiency
— ResNet: 152 layers, vanishing gradients = fit residuals to enable learning

5. Countless applications: General architecture, enormous power

— Semantic segmentation, facial detection/recognition, self-driving, image
colorization, optimizing pictures/scenes, up-scaling, medicine, biology, genomics



Deep Learning for Computer Vision: Summary

* Why computer vision? * CNN architecture  * Segmentation,image

* Representing images * Application to captioning, control

 Convolutions for feature classification * Security,medicine,
extraction * ImageNet robotics
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