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Recurrent Neural Networks (RNNs) + Generalization 
1. How do you read/listen/understand/write? Can machines do that?  

– Context matters: characters, words, letters, sounds, completion, multi-modal 
– Predicting next word/image: from unsupervised learning to supervised learning 

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs 
– Primitives: hidden state, memory of previous experiences, limitations of HMMs 
– RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse 

3. Vanishing gradients, Long-Short-Term Memory (LSTM), initialization 
– Key idea: gated input/output/memory nodes, model choose to forget/remember 
– Example: online character recognition with LSTM recurrent neural network 

4. Improving generalization 
– More training data 
– Tuning model capacity 
 Architecture: # layers, # units 
 Early stopping: (validation set) 
 Weight-decay: L1/L2 regularization 
 Noise: Add noise as a regularizer 
– Bayesian prior on parameter distribution 
– Why weight decay  Bayesian prior 
– Variance of residual errors 



1a. What do you hear and why? 



Context matters 

Phonemic  
restoration 

Top-down 
processing 

Adults: 200 ms delay max disruption. 
Children: 500 ms 

https://www.sciencedaily.com/releases/2018/11/181129142352.htm 

https://youtu.be/PWGeUztTkRA?t=35  

Hearing lips and seeing voices  
(McGurk, MacDonald, Nature 1976) 

Split class into 4 groups: (1) close your 
eyes, (2) look left, (3) middle, (4) right 

Delayed typing: Google Docs, zoom 
video screen sharing, slow computer 

https://www.sciencedaily.com/releases/2018/11/181129142352.htm
https://youtu.be/PWGeUztTkRA?t=35
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– Context matters: characters, words, letters, sounds, completion, multi-modal 
– Predicting next word/image: from unsupervised learning to supervised learning 
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– RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse 

3. Vanishing gradients, Long-Short-Term Memory (LSTM), initialization 
– Key idea: gated input/output/memory nodes, model choose to forget/remember 
– Example: online character recognition with LSTM recurrent neural network 
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– More training data 
– Tuning model capacity 
 Architecture: # layers, # units 
 Early stopping: (validation set) 
 Weight-decay: L1/L2 regularization 
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– Why weight decay  Bayesian prior 
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2a. Encoding time 



Getting targets when modeling sequences 
 
•When applying machine learning to sequences, we often want to turn an input 
sequence into an output sequence that lives in a different domain. 

– E. g. turn a sequence of sound pressures into a sequence of word identities. 
 

•When there is no separate target sequence, we can get a teaching signal by trying to 
predict the next term in the input sequence.  

– The target output sequence is the input sequence with an advance of 1 step. 
– This seems much more natural than trying to predict one pixel in an image 

from the other pixels, or one patch of an image from the rest of the image. 
– For temporal sequences there is a natural order for the predictions. 

 
•Predicting the next term in a sequence blurs the distinction between supervised and 
unsupervised learning. 

– It uses methods designed for supervised learning, but it doesn’t require a 
separate teaching signal. 

 



Memoryless models for sequences 

• Autoregressive models          
Predict the next term in a  
sequence from a fixed number of 
previous terms using “delay taps”. 
 

• Feed-forward neural nets        
These generalize autoregressive 
models by using one or more 
layers of non-linear hidden units.   
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Beyond memoryless models 

• If we give our generative model some hidden state, and if we give 
this hidden state its own internal dynamics, we get a much more 
interesting kind of model. 
– It can store information in its hidden state for a long time. 
– If the dynamics is noisy and the way it generates outputs from its 

hidden state is noisy, we can never know its exact hidden state. 
– The best we can do is to infer a probability distribution over the 

space of hidden state vectors. 
• This inference is only tractable for two types of hidden state model. 



Linear Dynamical Systems (engineers love them!) 

• These are generative models. They have a real-
valued hidden state that cannot be observed 
directly.  
– The hidden state has linear dynamics with 

Gaussian noise and produces the observations 
using a linear model with Gaussian noise.  

– There may also be driving inputs. 
• To predict the next output (so that we can shoot 

down the missile) we need to infer the hidden 
state.  
– A linearly transformed Gaussian is a Gaussian. So 

the distribution over the hidden state given the data 
so far is Gaussian. It can be computed using 
“Kalman filtering”.  
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Hidden Markov Models (computer scientists love them!) 

• Hidden Markov Models have a discrete one-
of-N hidden state. Transitions between states 
are stochastic and controlled by a transition 
matrix. The outputs produced by a state are 
stochastic.  
– We cannot be sure which state produced a 

given output. So the state is “hidden”. 
– It is easy to represent a probability distribution 

across N states with N numbers. 
• To predict the next output we need to infer the 

probability distribution over hidden states. 
– HMMs have efficient algorithms for 

inference and learning. 
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A fundamental limitation of HMMs 
• Consider what happens when a hidden Markov model generates 

data. 
– At each time step it must select one of its hidden states. So with N 

hidden states it can only remember log(N) bits about what it generated 
so far. 

• Consider the information that the first half of an utterance contains 
about the second half: 
– The syntax needs to fit (e.g. number and tense agreement). 
– The semantics needs to fit. The intonation needs to fit. 
– The accent, rate, volume, and vocal tract characteristics must all fit. 

• All these aspects combined could be 100 bits of information that the 
first half of an utterance needs to convey to the second half. 2^100 
is big! 



2b. Recursive Neural Networks 
(RNNs) 



Recurrent neural networks 
• RNNs are very powerful, because they 

combine two properties: 
– Distributed hidden state that allows 

them to store a lot of information 
about the past efficiently. 

– Non-linear dynamics that allows 
them to update their hidden state in 
complicated ways. 

• With enough neurons and time, RNNs 
can compute anything that can be 
computed by your computer.  
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Do generative models need to be stochastic? 

• Linear dynamical systems and 
hidden Markov models are 
stochastic models. 
– But the posterior probability 

distribution over their 
hidden states given the 
observed data so far is a 
deterministic function of the 
data. 

• Recurrent neural networks are 
deterministic.  
– So think of the hidden state 

of an RNN as the 
equivalent of the 
deterministic probability 
distribution over hidden 
states in a linear dynamical 
system or hidden Markov 
model. 



Recurrent neural networks 

• What kinds of behaviour can RNNs exhibit? 
– They can oscillate. Good for motor control? 
– They can settle to point attractors. Good for retrieving memories? 
– They can behave chaotically. Bad for information processing? 
– RNNs could potentially learn to implement lots of small programs 

that each capture a nugget of knowledge and run in parallel, 
interacting to produce very complicated effects. 

• But the computational power of RNNs makes them very hard to train. 
– For many years we could not exploit the computational power of 

RNNs despite some heroic efforts (e.g. Tony Robinson’s speech 
recognizer). 
 
 

 

 



The equivalence between feedforward nets and recurrent 
nets 

w1           w4 

w2          w3 
w1    w2  W3     W4 

time=0 

time=2 

time=1 

time=3 

Assume that there is a time 
delay of 1 in using each 
connection. 

The recurrent net is just a 
layered net that keeps 
reusing the same weights. 

w1    w2  W3     W4 

w1    w2  W3     W4 



2c. Alternative architectures  
for RNNs 



Different RNN remembering architectures 

Recurrent network with no outputs 

o: output, y: target, L: loss 
Memory: h(t-1)  h(t) 

o: output, y: target, L: loss 
Memory: o(t-1)  h(t) . Only train sequentially 

Single output 
after entire 
sequence 

Teacher-forcing: train from y and x in parallel 



2d. Back-propagation through 
time (BPTT) 



Reminder: Backpropagation with weight 
constraints 

• It is easy to modify the 
backprop algorithm to 
incorporate linear constraints 
between the weights. 

• We compute the gradients as 
usual, and then modify the 
gradients so that they satisfy 
the constraints. 
– So if the weights started off 

satisfying the constraints, 
they will continue to satisfy 
them. 21
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Backpropagation through time 

• We can think of the recurrent net as a layered, feed-forward 
net with shared weights and then train the feed-forward net 
with weight constraints. 

• We can also think of this training algorithm in the time domain:  
– The forward pass builds up a stack of the activities of all 

the units at each time step.  
– The backward pass peels activities off the stack to 

compute the error derivatives at each time step.  
– After the backward pass we add together the derivatives at 

all the different times for each weight. 



Getting targets when modeling sequences 
 
•When applying machine learning to sequences, we often want to turn an input 
sequence into an output sequence that lives in a different domain. 

– E. g. turn a sequence of sound pressures into a sequence of word identities. 
 

•When there is no separate target sequence, we can get a teaching signal by trying to 
predict the next term in the input sequence.  

– The target output sequence is the input sequence with an advance of 1 step. 
– This seems much more natural than trying to predict one pixel in an image 

from the other pixels, or one patch of an image from the rest of the image. 
– For temporal sequences there is a natural order for the predictions. 

 
•Predicting the next term in a sequence blurs the distinction between supervised and 
unsupervised learning. 

– It uses methods designed for supervised learning, but it doesn’t require a 
separate teaching signal. 
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3a. Remembering for  
longer time periods 



Four effective ways to increase length of memory 

• Long Short Term Memory                
Make the RNN out of little 
modules that are designed to 
remember values for a long time.  

• Hessian Free Optimization: Deal 
with the vanishing gradients 
problem by using a fancy 
optimizer that can detect 
directions with a tiny gradient but 
even smaller curvature. 
– The HF optimizer ( Martens & 

Sutskever, 2011) is good at 
this.  

• Echo State Networks:  Initialize the 
inputhidden and hiddenhidden and 
outputhidden connections very 
carefully so that the hidden state has a 
huge reservoir of weakly coupled 
oscillators which can be selectively driven 
by the input. 
– ESNs only need to learn the 

hiddenoutput connections. 
• Good initialization with momentum    

Initialize like in Echo State Networks, but 
then learn all of the connections using 
momentum. 
 
 



Long Short Term Memory (LSTM) 

• Hochreiter & Schmidhuber 
(1997) solved the problem of 
getting an RNN to remember 
things for a long time (like 
hundreds of time steps).  

• They designed a memory cell 
using logistic and linear units 
with multiplicative interactions.  

• Information gets into the cell 
whenever its “write” gate is on. 

• The information stays in the 
cell so long as its “keep” gate 
is on. 

• Information can be read from 
the cell by turning on its “read” 
gate. 



Implementing a memory cell in a neural network 

To preserve information for a long time in 
the activities of an RNN, we use a circuit 
that implements an analog memory cell. 
– A linear unit that has a self-link with a 

weight of 1 will maintain its state. 
– Information is stored in the cell by 

activating its write gate.  
– Information is retrieved by activating 

the read gate. 
– We can backpropagate through this 

circuit because logistics are have nice 
derivatives. 
 

output to rest 
of RNN 

input from 
rest of RNN 

read 
gate 

write 
gate 

keep 
gate 

 1.73 

 



Backpropagation through a memory cell 
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Reading cursive handwriting 

• This is a natural task for an 
RNN. 

• The input is a sequence of 
(x,y,p) coordinates of the tip of 
the pen, where p indicates 
whether the pen is up or down. 

• The output is a sequence of 
characters. 

• Graves & Schmidhuber (2009) 
showed that RNNs with LSTM 
are currently the best systems 
for reading cursive writing. 
– They used a sequence of 

small images as input 
rather than pen 
coordinates. 



Demonstration of online handwriting recognition by an RNN with 
Long Short Term Memory (from Alex Graves) 

• Row 1:  Shows when characters are 
recognized. 
– It never revises its output so 

difficult decisions are more 
delayed. 

• Row 2:  Shows the states of a subset 
of the memory cells. 
– Notice how they get reset when it 

recognizes a character. 
 

• Row 3:  Shows the writing. The net 
sees the x and y coordinates. 
– Optical input actually works a bit 

better than pen coordinates. 
• Row 4:  Shows the gradient 

backpropagated all the way to the x 
and y inputs from the currently most 
active character. 
– This lets you see which bits of the 

data are influencing the decision. 
https://youtu.be/9T2X6WRUwFU?t=2791  

 

https://youtu.be/9T2X6WRUwFU?t=2791
https://youtu.be/9T2X6WRUwFU?t=2791


3b. Initialization 



Initialization: Dealing with boundary cases 

• We need to specify the initial activity state of all the hidden and output 
units.  

• We could just fix these initial states to have some default value like 0.5. 
• But it is better to treat the initial states as learned parameters. 
• We learn them in the same way as we learn the weights. 

– Start off with an initial random guess for the initial states. 
– At the end of each training sequence, backpropagate through time all 

the way to the initial states  to get the gradient of the error function 
with respect to each initial state. 

– Adjust the initial states by following the negative gradient. 



Teaching signals for recurrent networks 

• We can specify targets in several 
ways: 
– Specify desired final activities 

of all the units 
– Specify desired activities of all 

units for the last few steps 
• Good for learning attractors 
• It is easy to add in extra error 

derivatives as we 
backpropagate. 

– Specify the desired activity of a 
subset of the units. 

• The other units are input or 
hidden units. 

w1     w2 W3      W4 

w1     w2 W3      W4 

w1     w2 W3      W4 



What the network learns 

• It learns four distinct patterns of 
activity for the 3 hidden units. 
These patterns correspond to the 
nodes in the finite state 
automaton. 
– Do not confuse units in a 

neural network with nodes in a 
finite state automaton. Nodes 
are like activity vectors. 

– The automaton is restricted to 
be in exactly one state at 
each time. The hidden units 
are restricted to have exactly 
one vector of activity at each 
time. 

• A recurrent network can emulate 
a finite state automaton, but it is 
exponentially more powerful. 
With N hidden neurons it has 2^N 
possible binary activity vectors     
(but only N^2 weights) 
– This is important when the 

input stream has two separate 
things going on at once.  

– A finite state automaton 
needs to square its number of 
states. 

– An RNN needs to double its   
number of units. 

 



The backward pass is linear 

• There is a big difference between the 
forward and backward passes. 

• In the forward pass we use squashing 
functions (like the logistic) to prevent the 
activity vectors from exploding. 

• The backward pass, is completely linear. If 
you double the error derivatives at the final 
layer, all the error derivatives will double.  
– The forward pass determines the slope 

of the linear function used for 
backpropagating through each neuron. 

 



The problem of exploding or vanishing gradients 

• What happens to the magnitude of 
the gradients as we 
backpropagate through many 
layers?  
– If the weights are  small, the 

gradients shrink 
exponentially. 

– If the weights are big the 
gradients grow 
exponentially. 

• Typical feed-forward neural nets 
can cope with these exponential 
effects because they only have a 
few hidden layers. 

• In an RNN trained on long 
sequences (e.g. 100 time steps) 
the gradients can easily explode 
or vanish. 
– We can avoid this by 

initializing the weights very 
carefully. 

• Even with good initial weights, its 
very hard to detect that the 
current target output depends on 
an input from many time-steps 
ago. 
– So RNNs have difficulty 

dealing with long-range 
dependencies. 

– Can use ideas for residual 
networks (ResNet), pass info 
from the input to far away 
nodes 



Recurrent Neural Networks (RNNs) + Generalization 
1. How do you read/listen/understand/write? Can machines do that?  

– Context matters: characters, words, letters, sounds, completion, multi-modal 
– Predicting next word/image: from unsupervised learning to supervised learning 

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs 
– Primitives: hidden state, memory of previous experiences, limitations of HMMs 
– RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse 

3. Vanishing gradients, Long-Short-Term Memory (LSTM) 
– Key idea: gated input/output/memory nodes, model choose to forget/remember 
– Example: online character recognition with LSTM recurrent neural network 

4. Improving generalization 
– More training data 
– Tuning model capacity 
 Architecture: # layers, # units 
 Early stopping: (validation set) 
 Weight-decay: L1/L2 regularization 
 Noise: Add noise as a regularizer 
– Bayesian prior on parameter distribution 
– Why weight decay  Bayesian prior 
– Variance of residual errors 



4. Improving generalization 



Ways to reduce overfitting 
 
• A large number of different methods have been developed. 

– Weight-decay  
– Weight-sharing  
– Early stopping 
– Model averaging 
– Bayesian fitting of neural nets 
– Dropout 
– Generative pre-training 

• Many of these methods will be described in lecture 7.  



Reminder: Overfitting  

• The training data contains information about the regularities in the 
mapping from input to output. But it also contains sampling error. 
– There will be accidental regularities just because of the particular 

training cases that were chosen. 
• When we fit the model to the training set it cannot tell which 

regularities are real and which are caused by sampling error.  
– So it fits both kinds of regularity. If the model is very flexible it 

can model the sampling error really well.  
• If you fitted the model to another training set drawn from the same 

distribution over cases, it would make different predictions on the 
test data.  This is called “variance”. 



Preventing overfitting 

• Approach 1: Get more data! 
– Almost always the best bet if 

data is cheap and you have 
enough compute power to train 
on more data. 

• Approach 2: Use a model that has 
the right capacity: 
– enough to fit the true regularities. 
– not enough to also fit spurious 

regularities (if they are weaker). 

• Approach 3: Average many different 
models. 
– Use models with different forms. 
– Or train the model on different 

subsets of the training data (this 
is called “bagging”). 

• Approach 4: (Bayesian) Use a 
single neural network architecture, 
but average the predictions made 
by many different weight vectors.  



Get more data 
Figure 5.4: The effect of the training dataset size on 
the train and test error, as well as on the optimal 
model capacity. We constructed a synthetic 
regression problem based on adding a moderate 
amount of noise to a degree-5 polynomial, 
generated a single test set, and then generated 
several different sizes of training set. For each size, 
we generated 40 different training sets in order to 
plot error bars showing 95 percent confidence 
intervals. (Top)The MSE on the training and test set 
for two different models: a quadratic model, and a 
model with degree chosen to minimize the test error. 
Both are fit in closed form. For the quadratic model, 
the training error increases as the size of the training 
set increases. This is because larger datasets are 
harder to fit. Simultaneously, the test error 
decreases, because fewer incorrect hypotheses are 
consistent with the training data. The quadratic 
model does not have enough capacity to solve the 
task, so its test error asymptotes to a high value. 
The test error at optimal capacity asymptotes to the 
Bayes error. The training error can fall below the 
Bayes error, due to the ability of the training 
algorithm to memorize specific instances of the 
training set. As the training size increases to infinity, 
the training error of any fixed-capacity model (here, 
the quadratic model) must rise to at least the Bayes 
error. As the training (Bottom) set size increases, the 
optimal capacity (shown here as the degree of the 
optimal polynomial regressor) increases. The 
optimal capacity plateaus after reaching sufficient 
complexity to solve the task. 



4. Improving generalization:  
a. Controlling model capacity 
 Architecture: # layers, # units 
 Early stopping: (validation set) 
 Weight-decay: L1/L2 regularization 
 Noise: Add noise 



Some ways to limit the capacity of a neural net 

• The capacity can be controlled in many ways: 
– Architecture: Limit the number of hidden layers and the number 

of  units per layer. 
– Early stopping: Start with small weights and stop the learning 

before it overfits. 
– Weight-decay: Penalize large weights using penalties or 

constraints on their squared values (L2 penalty) or absolute 
values (L1 penalty). 

– Noise: Add noise to the weights or the activities. 
• Typically, a combination of several of these methods is used. 
   

 



Effect of model capacity on generalization 



Tuning model capacity: Overfitting, underfitting 

Figure 5.2: We fit three models to this example training set. The training data was generated 
synthetically, by randomly sampling x values and choosing y deterministically by evaluating a 
quadratic function. (Left)A linear function fit to the data suffers from underfitting—it cannot capture 
the curvature that is present in the data. (Center)A quadratic function fit to the data generalizes well 
to unseen points. It does not suffer from a significant amount of overfitting or underfitting. (Right)A 
polynomial of degree 9 fit to the data suffers from overfitting. Here we used the Moore-Penrose 
pseudoinverse to solve the underdetermined normal equations. The solution passes through all of 
the training points exactly, but we have not been lucky enough for it to extract the correct structure. 
It now has a deep valley in between two training points that does not appear in the true underlying 
function. It also increases sharply on the left side of the data, while the true function decreases in 
this area. 



4a. Architecture hyperparams 
(# layers, # units) 



How to choose meta parameters that control capacity  
(like the number of hidden units or the size of the weight penalty) 

• The wrong method is to try lots of 
alternatives and see which gives the 
best performance on the test set. 
– This is easy to do, but it gives a 

false impression of how well the 
method works. 

– The settings that work best on 
the test set are unlikely to work 
as well on a new test set drawn 
from the same distribution. 

• An extreme example: 
Suppose the test set has 
random answers that do not 
depend on the input.  
– The best architecture will 

do better than chance on 
the test set. 

– But it cannot be expected 
to do better than chance 
on a new test set.  



Cross-validation: A better way to choose meta parameters 

• Divide the total dataset into three subsets: 
– Training data is used for learning the parameters of the model. 
– Validation data is not used for learning but is used for deciding 

what settings of the meta parameters work best. 
– Test data is used to get a final, unbiased estimate of how well the 

network works. We expect this estimate to be worse than on the 
validation data. 

• We could divide the total dataset into one final test set and N other 
subsets and train on all but one of those subsets to get N different 
estimates of the validation error rate.  
– This is called N-fold cross-validation. 
– The N estimates are not independent. 



4b. Early stopping 
(training/validation/testing) 



Preventing overfitting by early stopping 

• If we have lots of data and a big model, its very expensive to keep 
re-training it with different sized penalties on the weights or different 
architectures. 

• It is much cheaper to start with very small weights and let them grow 
until the performance on the validation set starts getting worse. 
– But it can be hard to decide when performance is getting worse. 

• The capacity of the model is limited because the weights have not 
had time to grow big. 
– Smaller weights give the network less capacity. Why? 



Why early stopping works 

• When the weights are very 
small, every hidden unit is in its 
linear range. 
– So even with a large layer of 

hidden units it’s a linear 
model. 

– It has no more capacity than 
a linear net in which the 
inputs are directly connected 
to the outputs! 

• As the weights grow, the hidden 
units start using their non-linear 
ranges so the capacity grows. 

outputs 

inputs 



4c. Weight regularization 
(L1, L2, Elastic Net) 



Effect of weight decay 

Figure 5.5. We fit a high-degree polynomial regression model to our example training set from figure 5.2. The 
true function is quadratic, but here we use only models with degree 9. We vary the amount of weight decay to 
prevent these high-degree models from overfitting. (Left)With very large λ, we can force the model to learn a 
function with no slope at all. This underfits because it can only represent a constant function. (Center)With a 
medium value of λ, the learning algorithm recovers a curve with the right general shape. Even though the 
model is capable of representing functions with much more complicated shape, weight decay has encouraged 
it to use a simpler function described by smaller coefficients. (Right)With weight decay approaching zero (i.e., 
using the Moore-Penrose pseudoinverse to solve the underdetermined problem with minimal regularization), 
the degree-9 polynomial overfits significantly, as we saw in figure 5.2  



Limiting the size of the weights 

• The standard L2 weight 
penalty involves adding an 
extra term to the cost function 
that penalizes the squared 
weights. 
– This keeps the weights 

small unless they have big 
error derivatives.  

 

w   



The effect of L2 weight cost 

• It prevents the network from using weights 
that it does not need. 
– This can often improve generalization a 

lot because it helps to stop the network 
from fitting the sampling error.  

– It makes a smoother model in which the 
output changes more slowly as the input 
changes.  

• If the network has two very similar inputs it 
prefers to put half the weight on each rather 
than all the weight on one. 

w/2 w/2 

w 0 



Other kinds of weight penalty 

• Sometimes it works better to penalize 
the absolute values of the weights. 
– This can make many weights 

exactly equal to zero which helps 
interpretation a lot. 

• Sometimes it works better to use a 
weight penalty that has negligible 
effect on large weights. 
– This allows a few large weights. 

 

0 

0 



Weight penalties vs weight constraints 

• We usually penalize the 
squared value of each 
weight separately. 

• Instead, we can put a 
constraint on the maximum 
squared length of the 
incoming weight vector of 
each unit. 
– If an update violates this 

constraint, we scale 
down the vector of 
incoming weights to the 
allowed length. 

• Weight constraints have several 
advantages over weight penalties. 
– Its easier to set a sensible value. 
– They prevent hidden units getting 

stuck near zero. 
– They prevent weights exploding. 

• When a unit hits it’s limit, the effective 
weight penalty on all of it’s weights is 
determined by the big gradients.  
– This is more effective than a fixed 

penalty at pushing irrelevant 
weights towards zero. 



4d. Adding noise 
(as a regularizer) 



L2 weight-decay via noisy inputs 

• Suppose we add Gaussian noise to the 
inputs. 
– The variance of the noise is amplified by 

the squared weight before going into the 
next layer.  

• In a simple net with a linear output unit 
directly connected to the inputs, the 
amplified noise gets added to the output. 

• This makes an additive contribution to the 
squared error. 
– So minimizing the squared error tends to 

minimize the squared weights when the 
inputs are noisy. 
 
 
 
 

i 

j 

Gaussian noise 



So       is equivalent to an L2 penalty 

output on 
one case 



Noisy weights in more complex nets 

• Adding Gaussian noise to the weights of a 
multilayer non-linear neural net is not exactly 
equivalent to using an L2 weight penalty. 
– It may work better, especially in recurrent 

networks. 
– Alex Graves’ recurrent net that recognizes 

handwriting, works significantly better if 
noise is added to the weights.  
 

 



Using noise in the activities as a regularizer 

• Suppose we use backpropagation to 
train a multilayer neural net 
composed of logistic units. 
– What happens if we make the 

units binary and stochastic on the 
forward pass, but do the 
backward pass as if we had done 
the forward pass “properly”? 

• It does worse on the training set and 
trains considerably slower. 
– But it does significantly better on 

the test set! (unpublished result). 
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4e. Prior distribution on params 
(Bayesian fitting) 



The Bayesian framework 

• The Bayesian framework assumes that we always have a prior 
distribution for everything. 
– The prior may be very vague. 
– When we see some data, we combine our prior distribution 

with a likelihood term to get a posterior distribution. 
– The likelihood term takes into account how probable the 

observed data is given the parameters of the model.  
• It favors parameter settings that make the data likely.  
• It fights the prior 
• With enough data the likelihood terms always wins. 



A coin tossing example 

• Suppose we know nothing about coins except that each 
tossing event produces a head with some unknown 
probability p and a tail with probability 1-p.  
– Our model of a coin has one parameter, p. 

 
• Suppose we observe 100 tosses and there are 53 heads.  

What is p? 
 

• The frequentist answer (also called maximum likelihood): 
Pick the value of p that makes the observation of 53 heads 
and 47 tails most probable. 
– This value is p=0.53 

 

 



A coin tossing example: the math 

probability of 
a particular 
sequence 
containing 53 
heads and 47 
tails. 



Some problems with picking the parameters 
that are most likely to generate the data 

• What if we only 
tossed the coin once 
and we got 1 head? 
– Is p=1 a sensible 

answer? 
– Surely p=0.5 is a 

much better 
answer. 

• Is it reasonable to give a single 
answer? 
– If we don’t have much data, 

we are unsure about p. 
–  Our computations of 

probabilities will work much 
better if we take this 
uncertainty into account. 

 



Using a distribution over parameter values 

• Start with a prior distribution 
over p. In this case we used a 
uniform distribution. 

• Multiply the prior probability of 
each parameter value by the 
probability of observing a head 
given that value. 

• Then scale up all of the 
probability densities so that 
their integral comes to 1. This 
gives the posterior distribution. 
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Lets do it again: Suppose we get a tail 

• Start with a prior 
distribution over p. 
 

• Multiply the prior 
probability of each 
parameter value by the 
probability of observing a 
tail given that value. 
 

• Then renormalize to get 
the posterior distribution. 
Look how sensible it is! 
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Lets do it another 98 times 

• After 53 heads and 47 
tails we get a very 
sensible posterior 
distribution that has its 
peak at 0.53 (assuming a 
uniform prior). 
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Bayes Theorem 

prior probability of 
weight vector W 

posterior probability of 
weight vector W given 
training data D 

probability of observed 
data given W 

joint probability conditional 
probability 



4c+4e. Why weight decay is  
Bayesian regularization 



Supervised Maximum Likelihood Learning 

• Finding a weight vector that 
minimizes the squared 
residuals is equivalent to 
finding a weight vector that 
maximizes the log probability 
density of the correct answer. 
 

• We assume the answer is 
generated by adding 
Gaussian noise to the output 
of the neural network. 

      t 
correct 
answer 
 

    y 
model’s 
estimate of 
most probable 
value 



Supervised Maximum Likelihood Learning 

output of the net 

Gaussian 
distribution 
centered at the 
net’s output 

probability 
density of the 
target value 
given the net’s 
output plus 
Gaussian noise 

Cost  

Minimizing squared 
error is the same as 
maximizing log prob 
under a Gaussian. 



MAP: Maximum a Posteriori 

• The proper Bayesian approach 
is to find the full posterior 
distribution over all possible 
weight vectors.  
– If we have more than a 

handful of weights this is 
hopelessly difficult for a 
non-linear net. 

– Bayesians have all sort of 
clever tricks for 
approximating this 
horrendous distribution. 

 
 
 

• Suppose we just try to find the 
most probable weight vector. 
– We can find an optimum by 

starting with a random weight 
vector and then adjusting it in 
the direction that improves  p( 
W | D ). 

– But it’s only a local optimum. 
• It is easier to work in the log 

domain. If we want to minimize a 
cost we use negative log probs 
 



Why we maximize sums of log probabilities 

• We want to maximize the product of the probabilities of the 
producing the target values on all the different  training cases. 
– Assume the output errors on different cases, c, are independent. 
 
  

 
• Because the log function is monotonic, it does not change where the 

maxima are. So we can maximize sums of log probabilities 



MAP: Maximum a Posteriori 

This is an integral over 
all possible weight 
vectors so it does not 
depend on W 

log prob of 
W under 
the prior 

log prob 
of target 
values 
given W 



The log probability of a weight under its prior 

• Minimizing the squared weights is equivalent to maximizing the log 
probability of the weights under a zero-mean Gaussian prior.  

w 0 

p(w) 



The Bayesian interpretation of weight decay 

assuming a Gaussian prior 
for the weights 

assuming that the model 
makes a Gaussian prediction 

constant 

So the correct value of the weight decay 
parameter is the ratio of two variances. 
It’s not just an arbitrary hack. 



4f. Variance of residual errors 
(MacKay’s quick and dirty method) 



Estimating the variance of the output noise 

• After we have learned a model that minimizes the squared error, we 
can find the best value for the output noise. 
– The best value is the one that maximizes the probability of 

producing exactly the correct answers after adding Gaussian 
noise to the output produced by the neural net. 

– The best value is found by simply using the variance of the 
residual errors. 



Estimating the variance of the Gaussian prior on the 
weights 

• After learning a model with some initial choice of variance for the 
weight prior, we could do a dirty trick called “empirical Bayes”. 
– Set the variance of the Gaussian prior to be whatever makes the 

weights that the model learned most likely. 
• i.e. use the data itself to decide what your prior is! 

– This is done by simply fitting a zero-mean Gaussian to the one-
dimensional distribution of the learned weight values. 

• We could easily learn different variances for different sets of 
weights. 

• We don’t need a validation set! 



MacKay’s quick and dirty method of choosing the ratio of 
the noise variance to the weight prior variance. 

• Start with guesses for both the noise variance and the weight prior 
variance. 

• While not yet bored 
– Do some learning using the ratio of the variances as the weight 

penalty coefficient. 
– Reset the noise variance to be the variance of the residual errors. 
– Reset the weight prior variance to be the variance of the  

distribution of the actual learned weights. 
• Go back to the start of this loop. 



Recurrent Neural Networks (RNNs) + Generalization 
1. How do you read/listen/understand/write? Can machines do that?  

– Context matters: characters, words, letters, sounds, completion, multi-modal 
– Predicting next word/image: from unsupervised learning to supervised learning 

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs 
– Primitives: hidden state, memory of previous experiences, limitations of HMMs 
– RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse 

3. Vanishing gradients, Long-Short-Term Memory (LSTM) 
– Key idea: gated input/output/memory nodes, model choose to forget/remember 
– Example: online character recognition with LSTM recurrent neural network 

4. Improving generalization 
– More training data 
– Tuning model capacity 
 Architecture: # layers, # units 
 Early stopping: (validation set) 
 Weight-decay: L1/L2 regularization 
 Noise: Add noise as a regularizer 
– Bayesian prior on parameter distribution 
– Why weight decay  Bayesian prior 
– Variance of residual errors 
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