
6.874, 6.802, 20.390, 20.490, HST.506
Computational Systems Biology
Deep Learning in the Life Sciences

Lecture 4:
Recurrent Neural Networks

+ Generalization

Prof. Manolis Kellis

http://mit6874.github.io
Slides credit: Geoffrey Hinton, Ian Goodfellow,
David Gifford, 6.S191 (Ava Soleimany, Alex Amini)

Recurrent Neural Networks (RNNs) + Generalization
1. How do you read/listen/understand/write? Can machines do that?

– Context matters: characters, words, letters, sounds, completion, multi-modal
– Predicting next word/image: from unsupervised learning to supervised learning

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs
– Primitives: hidden state, memory of previous experiences, limitations of HMMs
– RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse

3. Vanishing gradients, Long-Short-Term Memory (LSTM), initialization
– Key idea: gated input/output/memory nodes, model choose to forget/remember
– Example: online character recognition with LSTM recurrent neural network

4. Improving generalization
– More training data
– Tuning model capacity
 Architecture: # layers, # units
 Early stopping: (validation set)
 Weight-decay: L1/L2 regularization
 Noise: Add noise as a regularizer
– Bayesian prior on parameter distribution
– Why weight decay Bayesian prior
– Variance of residual errors

1a. What do you hear and why?

Context matters

Phonemic
restoration

Top-down
processing

Adults: 200 ms delay max disruption.
Children: 500 ms

https://www.sciencedaily.com/releases/2018/11/181129142352.htm

https://youtu.be/PWGeUztTkRA?t=35

Hearing lips and seeing voices
(McGurk, MacDonald, Nature 1976)

Split class into 4 groups: (1) close your
eyes, (2) look left, (3) middle, (4) right

Delayed typing: Google Docs, zoom
video screen sharing, slow computer

https://www.sciencedaily.com/releases/2018/11/181129142352.htm
https://youtu.be/PWGeUztTkRA?t=35

Recurrent Neural Networks (RNNs) + Generalization
1. How do you read/listen/understand/write? Can machines do that?

– Context matters: characters, words, letters, sounds, completion, multi-modal
– Predicting next word/image: from unsupervised learning to supervised learning

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs
– Primitives: hidden state, memory of previous experiences, limitations of HMMs
– RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse

3. Vanishing gradients, Long-Short-Term Memory (LSTM), initialization
– Key idea: gated input/output/memory nodes, model choose to forget/remember
– Example: online character recognition with LSTM recurrent neural network

4. Improving generalization
– More training data
– Tuning model capacity
 Architecture: # layers, # units
 Early stopping: (validation set)
 Weight-decay: L1/L2 regularization
 Noise: Add noise as a regularizer
– Bayesian prior on parameter distribution
– Why weight decay Bayesian prior
– Variance of residual errors

2a. Encoding time

Getting targets when modeling sequences

•When applying machine learning to sequences, we often want to turn an input
sequence into an output sequence that lives in a different domain.

– E. g. turn a sequence of sound pressures into a sequence of word identities.

•When there is no separate target sequence, we can get a teaching signal by trying to
predict the next term in the input sequence.

– The target output sequence is the input sequence with an advance of 1 step.
– This seems much more natural than trying to predict one pixel in an image

from the other pixels, or one patch of an image from the rest of the image.
– For temporal sequences there is a natural order for the predictions.

•Predicting the next term in a sequence blurs the distinction between supervised and
unsupervised learning.

– It uses methods designed for supervised learning, but it doesn’t require a
separate teaching signal.

Memoryless models for sequences

• Autoregressive models
Predict the next term in a
sequence from a fixed number of
previous terms using “delay taps”.

• Feed-forward neural nets
These generalize autoregressive
models by using one or more
layers of non-linear hidden units.

input(t-2) input(t-1) input(t)

hidde
n

input(t-2) input(t-1) input(t)

Beyond memoryless models

• If we give our generative model some hidden state, and if we give
this hidden state its own internal dynamics, we get a much more
interesting kind of model.
– It can store information in its hidden state for a long time.
– If the dynamics is noisy and the way it generates outputs from its

hidden state is noisy, we can never know its exact hidden state.
– The best we can do is to infer a probability distribution over the

space of hidden state vectors.
• This inference is only tractable for two types of hidden state model.

Linear Dynamical Systems (engineers love them!)

• These are generative models. They have a real-
valued hidden state that cannot be observed
directly.
– The hidden state has linear dynamics with

Gaussian noise and produces the observations
using a linear model with Gaussian noise.

– There may also be driving inputs.
• To predict the next output (so that we can shoot

down the missile) we need to infer the hidden
state.
– A linearly transformed Gaussian is a Gaussian. So

the distribution over the hidden state given the data
so far is Gaussian. It can be computed using
“Kalman filtering”.

driving
input

hidden

hidden

hidden

output

output

output

time
driving
input

driving
input

Hidden Markov Models (computer scientists love them!)

• Hidden Markov Models have a discrete one-
of-N hidden state. Transitions between states
are stochastic and controlled by a transition
matrix. The outputs produced by a state are
stochastic.
– We cannot be sure which state produced a

given output. So the state is “hidden”.
– It is easy to represent a probability distribution

across N states with N numbers.
• To predict the next output we need to infer the

probability distribution over hidden states.
– HMMs have efficient algorithms for

inference and learning.

output

output

output

time

A fundamental limitation of HMMs
• Consider what happens when a hidden Markov model generates

data.
– At each time step it must select one of its hidden states. So with N

hidden states it can only remember log(N) bits about what it generated
so far.

• Consider the information that the first half of an utterance contains
about the second half:
– The syntax needs to fit (e.g. number and tense agreement).
– The semantics needs to fit. The intonation needs to fit.
– The accent, rate, volume, and vocal tract characteristics must all fit.

• All these aspects combined could be 100 bits of information that the
first half of an utterance needs to convey to the second half. 2^100
is big!

2b. Recursive Neural Networks
(RNNs)

Recurrent neural networks
• RNNs are very powerful, because they

combine two properties:
– Distributed hidden state that allows

them to store a lot of information
about the past efficiently.

– Non-linear dynamics that allows
them to update their hidden state in
complicated ways.

• With enough neurons and time, RNNs
can compute anything that can be
computed by your computer.
 input

input

input

hidden

hidden

hidden

output

output

output
time

Do generative models need to be stochastic?

• Linear dynamical systems and
hidden Markov models are
stochastic models.
– But the posterior probability

distribution over their
hidden states given the
observed data so far is a
deterministic function of the
data.

• Recurrent neural networks are
deterministic.
– So think of the hidden state

of an RNN as the
equivalent of the
deterministic probability
distribution over hidden
states in a linear dynamical
system or hidden Markov
model.

Recurrent neural networks

• What kinds of behaviour can RNNs exhibit?
– They can oscillate. Good for motor control?
– They can settle to point attractors. Good for retrieving memories?
– They can behave chaotically. Bad for information processing?
– RNNs could potentially learn to implement lots of small programs

that each capture a nugget of knowledge and run in parallel,
interacting to produce very complicated effects.

• But the computational power of RNNs makes them very hard to train.
– For many years we could not exploit the computational power of

RNNs despite some heroic efforts (e.g. Tony Robinson’s speech
recognizer).

The equivalence between feedforward nets and recurrent
nets

w1 w4

w2 w3
w1 w2 W3 W4

time=0

time=2

time=1

time=3

Assume that there is a time
delay of 1 in using each
connection.

The recurrent net is just a
layered net that keeps
reusing the same weights.

w1 w2 W3 W4

w1 w2 W3 W4

2c. Alternative architectures
for RNNs

Different RNN remembering architectures

Recurrent network with no outputs

o: output, y: target, L: loss
Memory: h(t-1) h(t)

o: output, y: target, L: loss
Memory: o(t-1) h(t) . Only train sequentially

Single output
after entire
sequence

Teacher-forcing: train from y and x in parallel

2d. Back-propagation through
time (BPTT)

Reminder: Backpropagation with weight
constraints

• It is easy to modify the
backprop algorithm to
incorporate linear constraints
between the weights.

• We compute the gradients as
usual, and then modify the
gradients so that they satisfy
the constraints.
– So if the weights started off

satisfying the constraints,
they will continue to satisfy
them. 21

21

21

21

21

:

:
:

wandwfor
w
E

w
Euse

w
Eand

w
Ecompute

wwneedwe
wwconstrainTo

∂
∂

+
∂
∂

∂
∂

∂
∂

∆=∆
=

Backpropagation through time

• We can think of the recurrent net as a layered, feed-forward
net with shared weights and then train the feed-forward net
with weight constraints.

• We can also think of this training algorithm in the time domain:
– The forward pass builds up a stack of the activities of all

the units at each time step.
– The backward pass peels activities off the stack to

compute the error derivatives at each time step.
– After the backward pass we add together the derivatives at

all the different times for each weight.

Getting targets when modeling sequences

•When applying machine learning to sequences, we often want to turn an input
sequence into an output sequence that lives in a different domain.

– E. g. turn a sequence of sound pressures into a sequence of word identities.

•When there is no separate target sequence, we can get a teaching signal by trying to
predict the next term in the input sequence.

– The target output sequence is the input sequence with an advance of 1 step.
– This seems much more natural than trying to predict one pixel in an image

from the other pixels, or one patch of an image from the rest of the image.
– For temporal sequences there is a natural order for the predictions.

•Predicting the next term in a sequence blurs the distinction between supervised and
unsupervised learning.

– It uses methods designed for supervised learning, but it doesn’t require a
separate teaching signal.

Recurrent Neural Networks (RNNs) + Generalization
1. How do you read/listen/understand/write? Can machines do that?

– Context matters: characters, words, letters, sounds, completion, multi-modal
– Predicting next word/image: from unsupervised learning to supervised learning

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs
– Primitives: hidden state, memory of previous experiences, limitations of HMMs
– RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse

3. Vanishing gradients, Long-Short-Term Memory (LSTM), initialization
– Key idea: gated input/output/memory nodes, model choose to forget/remember
– Example: online character recognition with LSTM recurrent neural network

4. Improving generalization
– More training data
– Tuning model capacity
 Architecture: # layers, # units
 Early stopping: (validation set)
 Weight-decay: L1/L2 regularization
 Noise: Add noise as a regularizer
– Bayesian prior on parameter distribution
– Why weight decay Bayesian prior
– Variance of residual errors

3a. Remembering for
longer time periods

Four effective ways to increase length of memory

• Long Short Term Memory
Make the RNN out of little
modules that are designed to
remember values for a long time.

• Hessian Free Optimization: Deal
with the vanishing gradients
problem by using a fancy
optimizer that can detect
directions with a tiny gradient but
even smaller curvature.
– The HF optimizer (Martens &

Sutskever, 2011) is good at
this.

• Echo State Networks: Initialize the
inputhidden and hiddenhidden and
outputhidden connections very
carefully so that the hidden state has a
huge reservoir of weakly coupled
oscillators which can be selectively driven
by the input.
– ESNs only need to learn the

hiddenoutput connections.
• Good initialization with momentum

Initialize like in Echo State Networks, but
then learn all of the connections using
momentum.

Long Short Term Memory (LSTM)

• Hochreiter & Schmidhuber
(1997) solved the problem of
getting an RNN to remember
things for a long time (like
hundreds of time steps).

• They designed a memory cell
using logistic and linear units
with multiplicative interactions.

• Information gets into the cell
whenever its “write” gate is on.

• The information stays in the
cell so long as its “keep” gate
is on.

• Information can be read from
the cell by turning on its “read”
gate.

Implementing a memory cell in a neural network

To preserve information for a long time in
the activities of an RNN, we use a circuit
that implements an analog memory cell.
– A linear unit that has a self-link with a

weight of 1 will maintain its state.
– Information is stored in the cell by

activating its write gate.
– Information is retrieved by activating

the read gate.
– We can backpropagate through this

circuit because logistics are have nice
derivatives.

output to rest
of RNN

input from
rest of RNN

read
gate

write
gate

keep
gate

 1.73

Backpropagation through a memory cell

read
1

write
0

keep
1

 1.7

read
0

write
0

 1.7

read
0

write
1

 1.7

 1.7 1.7

keep
1

keep
0

keep
0

time

Reading cursive handwriting

• This is a natural task for an
RNN.

• The input is a sequence of
(x,y,p) coordinates of the tip of
the pen, where p indicates
whether the pen is up or down.

• The output is a sequence of
characters.

• Graves & Schmidhuber (2009)
showed that RNNs with LSTM
are currently the best systems
for reading cursive writing.
– They used a sequence of

small images as input
rather than pen
coordinates.

Demonstration of online handwriting recognition by an RNN with
Long Short Term Memory (from Alex Graves)

• Row 1: Shows when characters are
recognized.
– It never revises its output so

difficult decisions are more
delayed.

• Row 2: Shows the states of a subset
of the memory cells.
– Notice how they get reset when it

recognizes a character.

• Row 3: Shows the writing. The net
sees the x and y coordinates.
– Optical input actually works a bit

better than pen coordinates.
• Row 4: Shows the gradient

backpropagated all the way to the x
and y inputs from the currently most
active character.
– This lets you see which bits of the

data are influencing the decision.
https://youtu.be/9T2X6WRUwFU?t=2791

https://youtu.be/9T2X6WRUwFU?t=2791
https://youtu.be/9T2X6WRUwFU?t=2791

3b. Initialization

Initialization: Dealing with boundary cases

• We need to specify the initial activity state of all the hidden and output
units.

• We could just fix these initial states to have some default value like 0.5.
• But it is better to treat the initial states as learned parameters.
• We learn them in the same way as we learn the weights.

– Start off with an initial random guess for the initial states.
– At the end of each training sequence, backpropagate through time all

the way to the initial states to get the gradient of the error function
with respect to each initial state.

– Adjust the initial states by following the negative gradient.

Teaching signals for recurrent networks

• We can specify targets in several
ways:
– Specify desired final activities

of all the units
– Specify desired activities of all

units for the last few steps
• Good for learning attractors
• It is easy to add in extra error

derivatives as we
backpropagate.

– Specify the desired activity of a
subset of the units.

• The other units are input or
hidden units.

w1 w2 W3 W4

w1 w2 W3 W4

w1 w2 W3 W4

What the network learns

• It learns four distinct patterns of
activity for the 3 hidden units.
These patterns correspond to the
nodes in the finite state
automaton.
– Do not confuse units in a

neural network with nodes in a
finite state automaton. Nodes
are like activity vectors.

– The automaton is restricted to
be in exactly one state at
each time. The hidden units
are restricted to have exactly
one vector of activity at each
time.

• A recurrent network can emulate
a finite state automaton, but it is
exponentially more powerful.
With N hidden neurons it has 2^N
possible binary activity vectors
(but only N^2 weights)
– This is important when the

input stream has two separate
things going on at once.

– A finite state automaton
needs to square its number of
states.

– An RNN needs to double its
number of units.

The backward pass is linear

• There is a big difference between the
forward and backward passes.

• In the forward pass we use squashing
functions (like the logistic) to prevent the
activity vectors from exploding.

• The backward pass, is completely linear. If
you double the error derivatives at the final
layer, all the error derivatives will double.
– The forward pass determines the slope

of the linear function used for
backpropagating through each neuron.

The problem of exploding or vanishing gradients

• What happens to the magnitude of
the gradients as we
backpropagate through many
layers?
– If the weights are small, the

gradients shrink
exponentially.

– If the weights are big the
gradients grow
exponentially.

• Typical feed-forward neural nets
can cope with these exponential
effects because they only have a
few hidden layers.

• In an RNN trained on long
sequences (e.g. 100 time steps)
the gradients can easily explode
or vanish.
– We can avoid this by

initializing the weights very
carefully.

• Even with good initial weights, its
very hard to detect that the
current target output depends on
an input from many time-steps
ago.
– So RNNs have difficulty

dealing with long-range
dependencies.

– Can use ideas for residual
networks (ResNet), pass info
from the input to far away
nodes

Recurrent Neural Networks (RNNs) + Generalization
1. How do you read/listen/understand/write? Can machines do that?

– Context matters: characters, words, letters, sounds, completion, multi-modal
– Predicting next word/image: from unsupervised learning to supervised learning

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs
– Primitives: hidden state, memory of previous experiences, limitations of HMMs
– RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse

3. Vanishing gradients, Long-Short-Term Memory (LSTM)
– Key idea: gated input/output/memory nodes, model choose to forget/remember
– Example: online character recognition with LSTM recurrent neural network

4. Improving generalization
– More training data
– Tuning model capacity
 Architecture: # layers, # units
 Early stopping: (validation set)
 Weight-decay: L1/L2 regularization
 Noise: Add noise as a regularizer
– Bayesian prior on parameter distribution
– Why weight decay Bayesian prior
– Variance of residual errors

4. Improving generalization

Ways to reduce overfitting

• A large number of different methods have been developed.

– Weight-decay
– Weight-sharing
– Early stopping
– Model averaging
– Bayesian fitting of neural nets
– Dropout
– Generative pre-training

• Many of these methods will be described in lecture 7.

Reminder: Overfitting

• The training data contains information about the regularities in the
mapping from input to output. But it also contains sampling error.
– There will be accidental regularities just because of the particular

training cases that were chosen.
• When we fit the model to the training set it cannot tell which

regularities are real and which are caused by sampling error.
– So it fits both kinds of regularity. If the model is very flexible it

can model the sampling error really well.
• If you fitted the model to another training set drawn from the same

distribution over cases, it would make different predictions on the
test data. This is called “variance”.

Preventing overfitting

• Approach 1: Get more data!
– Almost always the best bet if

data is cheap and you have
enough compute power to train
on more data.

• Approach 2: Use a model that has
the right capacity:
– enough to fit the true regularities.
– not enough to also fit spurious

regularities (if they are weaker).

• Approach 3: Average many different
models.
– Use models with different forms.
– Or train the model on different

subsets of the training data (this
is called “bagging”).

• Approach 4: (Bayesian) Use a
single neural network architecture,
but average the predictions made
by many different weight vectors.

Get more data
Figure 5.4: The effect of the training dataset size on
the train and test error, as well as on the optimal
model capacity. We constructed a synthetic
regression problem based on adding a moderate
amount of noise to a degree-5 polynomial,
generated a single test set, and then generated
several different sizes of training set. For each size,
we generated 40 different training sets in order to
plot error bars showing 95 percent confidence
intervals. (Top)The MSE on the training and test set
for two different models: a quadratic model, and a
model with degree chosen to minimize the test error.
Both are fit in closed form. For the quadratic model,
the training error increases as the size of the training
set increases. This is because larger datasets are
harder to fit. Simultaneously, the test error
decreases, because fewer incorrect hypotheses are
consistent with the training data. The quadratic
model does not have enough capacity to solve the
task, so its test error asymptotes to a high value.
The test error at optimal capacity asymptotes to the
Bayes error. The training error can fall below the
Bayes error, due to the ability of the training
algorithm to memorize specific instances of the
training set. As the training size increases to infinity,
the training error of any fixed-capacity model (here,
the quadratic model) must rise to at least the Bayes
error. As the training (Bottom) set size increases, the
optimal capacity (shown here as the degree of the
optimal polynomial regressor) increases. The
optimal capacity plateaus after reaching sufficient
complexity to solve the task.

4. Improving generalization:
a. Controlling model capacity
 Architecture: # layers, # units
 Early stopping: (validation set)
 Weight-decay: L1/L2 regularization
 Noise: Add noise

Some ways to limit the capacity of a neural net

• The capacity can be controlled in many ways:
– Architecture: Limit the number of hidden layers and the number

of units per layer.
– Early stopping: Start with small weights and stop the learning

before it overfits.
– Weight-decay: Penalize large weights using penalties or

constraints on their squared values (L2 penalty) or absolute
values (L1 penalty).

– Noise: Add noise to the weights or the activities.
• Typically, a combination of several of these methods is used.

Effect of model capacity on generalization

Tuning model capacity: Overfitting, underfitting

Figure 5.2: We fit three models to this example training set. The training data was generated
synthetically, by randomly sampling x values and choosing y deterministically by evaluating a
quadratic function. (Left)A linear function fit to the data suffers from underfitting—it cannot capture
the curvature that is present in the data. (Center)A quadratic function fit to the data generalizes well
to unseen points. It does not suffer from a significant amount of overfitting or underfitting. (Right)A
polynomial of degree 9 fit to the data suffers from overfitting. Here we used the Moore-Penrose
pseudoinverse to solve the underdetermined normal equations. The solution passes through all of
the training points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true underlying
function. It also increases sharply on the left side of the data, while the true function decreases in
this area.

4a. Architecture hyperparams
(# layers, # units)

How to choose meta parameters that control capacity
(like the number of hidden units or the size of the weight penalty)

• The wrong method is to try lots of
alternatives and see which gives the
best performance on the test set.
– This is easy to do, but it gives a

false impression of how well the
method works.

– The settings that work best on
the test set are unlikely to work
as well on a new test set drawn
from the same distribution.

• An extreme example:
Suppose the test set has
random answers that do not
depend on the input.
– The best architecture will

do better than chance on
the test set.

– But it cannot be expected
to do better than chance
on a new test set.

Cross-validation: A better way to choose meta parameters

• Divide the total dataset into three subsets:
– Training data is used for learning the parameters of the model.
– Validation data is not used for learning but is used for deciding

what settings of the meta parameters work best.
– Test data is used to get a final, unbiased estimate of how well the

network works. We expect this estimate to be worse than on the
validation data.

• We could divide the total dataset into one final test set and N other
subsets and train on all but one of those subsets to get N different
estimates of the validation error rate.
– This is called N-fold cross-validation.
– The N estimates are not independent.

4b. Early stopping
(training/validation/testing)

Preventing overfitting by early stopping

• If we have lots of data and a big model, its very expensive to keep
re-training it with different sized penalties on the weights or different
architectures.

• It is much cheaper to start with very small weights and let them grow
until the performance on the validation set starts getting worse.
– But it can be hard to decide when performance is getting worse.

• The capacity of the model is limited because the weights have not
had time to grow big.
– Smaller weights give the network less capacity. Why?

Why early stopping works

• When the weights are very
small, every hidden unit is in its
linear range.
– So even with a large layer of

hidden units it’s a linear
model.

– It has no more capacity than
a linear net in which the
inputs are directly connected
to the outputs!

• As the weights grow, the hidden
units start using their non-linear
ranges so the capacity grows.

outputs

inputs

4c. Weight regularization
(L1, L2, Elastic Net)

Effect of weight decay

Figure 5.5. We fit a high-degree polynomial regression model to our example training set from figure 5.2. The
true function is quadratic, but here we use only models with degree 9. We vary the amount of weight decay to
prevent these high-degree models from overfitting. (Left)With very large λ, we can force the model to learn a
function with no slope at all. This underfits because it can only represent a constant function. (Center)With a
medium value of λ, the learning algorithm recovers a curve with the right general shape. Even though the
model is capable of representing functions with much more complicated shape, weight decay has encouraged
it to use a simpler function described by smaller coefficients. (Right)With weight decay approaching zero (i.e.,
using the Moore-Penrose pseudoinverse to solve the underdetermined problem with minimal regularization),
the degree-9 polynomial overfits significantly, as we saw in figure 5.2

Limiting the size of the weights

• The standard L2 weight
penalty involves adding an
extra term to the cost function
that penalizes the squared
weights.
– This keeps the weights

small unless they have big
error derivatives.

w

The effect of L2 weight cost

• It prevents the network from using weights
that it does not need.
– This can often improve generalization a

lot because it helps to stop the network
from fitting the sampling error.

– It makes a smoother model in which the
output changes more slowly as the input
changes.

• If the network has two very similar inputs it
prefers to put half the weight on each rather
than all the weight on one.

w/2 w/2

w 0

Other kinds of weight penalty

• Sometimes it works better to penalize
the absolute values of the weights.
– This can make many weights

exactly equal to zero which helps
interpretation a lot.

• Sometimes it works better to use a
weight penalty that has negligible
effect on large weights.
– This allows a few large weights.

0

0

Weight penalties vs weight constraints

• We usually penalize the
squared value of each
weight separately.

• Instead, we can put a
constraint on the maximum
squared length of the
incoming weight vector of
each unit.
– If an update violates this

constraint, we scale
down the vector of
incoming weights to the
allowed length.

• Weight constraints have several
advantages over weight penalties.
– Its easier to set a sensible value.
– They prevent hidden units getting

stuck near zero.
– They prevent weights exploding.

• When a unit hits it’s limit, the effective
weight penalty on all of it’s weights is
determined by the big gradients.
– This is more effective than a fixed

penalty at pushing irrelevant
weights towards zero.

4d. Adding noise
(as a regularizer)

L2 weight-decay via noisy inputs

• Suppose we add Gaussian noise to the
inputs.
– The variance of the noise is amplified by

the squared weight before going into the
next layer.

• In a simple net with a linear output unit
directly connected to the inputs, the
amplified noise gets added to the output.

• This makes an additive contribution to the
squared error.
– So minimizing the squared error tends to

minimize the squared weights when the
inputs are noisy.

i

j

Gaussian noise

So is equivalent to an L2 penalty

output on
one case

Noisy weights in more complex nets

• Adding Gaussian noise to the weights of a
multilayer non-linear neural net is not exactly
equivalent to using an L2 weight penalty.
– It may work better, especially in recurrent

networks.
– Alex Graves’ recurrent net that recognizes

handwriting, works significantly better if
noise is added to the weights.

Using noise in the activities as a regularizer

• Suppose we use backpropagation to
train a multilayer neural net
composed of logistic units.
– What happens if we make the

units binary and stochastic on the
forward pass, but do the
backward pass as if we had done
the forward pass “properly”?

• It does worse on the training set and
trains considerably slower.
– But it does significantly better on

the test set! (unpublished result).

0.5

0
0

1

z

4e. Prior distribution on params
(Bayesian fitting)

The Bayesian framework

• The Bayesian framework assumes that we always have a prior
distribution for everything.
– The prior may be very vague.
– When we see some data, we combine our prior distribution

with a likelihood term to get a posterior distribution.
– The likelihood term takes into account how probable the

observed data is given the parameters of the model.
• It favors parameter settings that make the data likely.
• It fights the prior
• With enough data the likelihood terms always wins.

A coin tossing example

• Suppose we know nothing about coins except that each
tossing event produces a head with some unknown
probability p and a tail with probability 1-p.
– Our model of a coin has one parameter, p.

• Suppose we observe 100 tosses and there are 53 heads.

What is p?

• The frequentist answer (also called maximum likelihood):
Pick the value of p that makes the observation of 53 heads
and 47 tails most probable.
– This value is p=0.53

A coin tossing example: the math

probability of
a particular
sequence
containing 53
heads and 47
tails.

Some problems with picking the parameters
that are most likely to generate the data

• What if we only
tossed the coin once
and we got 1 head?
– Is p=1 a sensible

answer?
– Surely p=0.5 is a

much better
answer.

• Is it reasonable to give a single
answer?
– If we don’t have much data,

we are unsure about p.
– Our computations of

probabilities will work much
better if we take this
uncertainty into account.

Using a distribution over parameter values

• Start with a prior distribution
over p. In this case we used a
uniform distribution.

• Multiply the prior probability of
each parameter value by the
probability of observing a head
given that value.

• Then scale up all of the
probability densities so that
their integral comes to 1. This
gives the posterior distribution.

probability
density

p

area=1

area=1

0 1

1

1

2

probability
density

probability
density

Lets do it again: Suppose we get a tail

• Start with a prior
distribution over p.

• Multiply the prior
probability of each
parameter value by the
probability of observing a
tail given that value.

• Then renormalize to get
the posterior distribution.
Look how sensible it is!

probability
density

p

area=1

area=1

0 1

1

2

Lets do it another 98 times

• After 53 heads and 47
tails we get a very
sensible posterior
distribution that has its
peak at 0.53 (assuming a
uniform prior).

probability
density

p

area=1

0 1

1

2

Bayes Theorem

prior probability of
weight vector W

posterior probability of
weight vector W given
training data D

probability of observed
data given W

joint probability conditional
probability

4c+4e. Why weight decay is
Bayesian regularization

Supervised Maximum Likelihood Learning

• Finding a weight vector that
minimizes the squared
residuals is equivalent to
finding a weight vector that
maximizes the log probability
density of the correct answer.

• We assume the answer is
generated by adding
Gaussian noise to the output
of the neural network.

 t
correct
answer

 y
model’s
estimate of
most probable
value

Supervised Maximum Likelihood Learning

output of the net

Gaussian
distribution
centered at the
net’s output

probability
density of the
target value
given the net’s
output plus
Gaussian noise

Cost

Minimizing squared
error is the same as
maximizing log prob
under a Gaussian.

MAP: Maximum a Posteriori

• The proper Bayesian approach
is to find the full posterior
distribution over all possible
weight vectors.
– If we have more than a

handful of weights this is
hopelessly difficult for a
non-linear net.

– Bayesians have all sort of
clever tricks for
approximating this
horrendous distribution.

• Suppose we just try to find the
most probable weight vector.
– We can find an optimum by

starting with a random weight
vector and then adjusting it in
the direction that improves p(
W | D).

– But it’s only a local optimum.
• It is easier to work in the log

domain. If we want to minimize a
cost we use negative log probs

Why we maximize sums of log probabilities

• We want to maximize the product of the probabilities of the
producing the target values on all the different training cases.
– Assume the output errors on different cases, c, are independent.

• Because the log function is monotonic, it does not change where the

maxima are. So we can maximize sums of log probabilities

MAP: Maximum a Posteriori

This is an integral over
all possible weight
vectors so it does not
depend on W

log prob of
W under
the prior

log prob
of target
values
given W

The log probability of a weight under its prior

• Minimizing the squared weights is equivalent to maximizing the log
probability of the weights under a zero-mean Gaussian prior.

w 0

p(w)

The Bayesian interpretation of weight decay

assuming a Gaussian prior
for the weights

assuming that the model
makes a Gaussian prediction

constant

So the correct value of the weight decay
parameter is the ratio of two variances.
It’s not just an arbitrary hack.

4f. Variance of residual errors
(MacKay’s quick and dirty method)

Estimating the variance of the output noise

• After we have learned a model that minimizes the squared error, we
can find the best value for the output noise.
– The best value is the one that maximizes the probability of

producing exactly the correct answers after adding Gaussian
noise to the output produced by the neural net.

– The best value is found by simply using the variance of the
residual errors.

Estimating the variance of the Gaussian prior on the
weights

• After learning a model with some initial choice of variance for the
weight prior, we could do a dirty trick called “empirical Bayes”.
– Set the variance of the Gaussian prior to be whatever makes the

weights that the model learned most likely.
• i.e. use the data itself to decide what your prior is!

– This is done by simply fitting a zero-mean Gaussian to the one-
dimensional distribution of the learned weight values.

• We could easily learn different variances for different sets of
weights.

• We don’t need a validation set!

MacKay’s quick and dirty method of choosing the ratio of
the noise variance to the weight prior variance.

• Start with guesses for both the noise variance and the weight prior
variance.

• While not yet bored
– Do some learning using the ratio of the variances as the weight

penalty coefficient.
– Reset the noise variance to be the variance of the residual errors.
– Reset the weight prior variance to be the variance of the

distribution of the actual learned weights.
• Go back to the start of this loop.

Recurrent Neural Networks (RNNs) + Generalization
1. How do you read/listen/understand/write? Can machines do that?

– Context matters: characters, words, letters, sounds, completion, multi-modal
– Predicting next word/image: from unsupervised learning to supervised learning

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs
– Primitives: hidden state, memory of previous experiences, limitations of HMMs
– RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse

3. Vanishing gradients, Long-Short-Term Memory (LSTM)
– Key idea: gated input/output/memory nodes, model choose to forget/remember
– Example: online character recognition with LSTM recurrent neural network

4. Improving generalization
– More training data
– Tuning model capacity
 Architecture: # layers, # units
 Early stopping: (validation set)
 Weight-decay: L1/L2 regularization
 Noise: Add noise as a regularizer
– Bayesian prior on parameter distribution
– Why weight decay Bayesian prior
– Variance of residual errors

	6.874, 6.802, 20.390, 20.490, HST.506�Computational Systems BiologyDeep Learning in the Life Sciences
	Recurrent Neural Networks (RNNs) + Generalization
	1a. What do you hear and why?
	Context matters
	Recurrent Neural Networks (RNNs) + Generalization
	2a. Encoding time
	Getting targets when modeling sequences
	Memoryless models for sequences
	Beyond memoryless models
	Linear Dynamical Systems (engineers love them!)
	Hidden Markov Models (computer scientists love them!)
	A fundamental limitation of HMMs
	2b. Recursive Neural Networks (RNNs)
	Recurrent neural networks
	Do generative models need to be stochastic?
	Recurrent neural networks
	The equivalence between feedforward nets and recurrent nets
	2c. Alternative architectures �for RNNs
	Different RNN remembering architectures
	2d. Back-propagation through time (BPTT)
	Reminder: Backpropagation with weight constraints
	Backpropagation through time
	Getting targets when modeling sequences
	Recurrent Neural Networks (RNNs) + Generalization
	3a. Remembering for �longer time periods
	Four effective ways to increase length of memory
	Long Short Term Memory (LSTM)
	Implementing a memory cell in a neural network
	Backpropagation through a memory cell
	Reading cursive handwriting
	Demonstration of online handwriting recognition by an RNN with Long Short Term Memory (from Alex Graves)
	3b. Initialization
	Initialization: Dealing with boundary cases
	Teaching signals for recurrent networks
	What the network learns
	The backward pass is linear
	The problem of exploding or vanishing gradients
	Recurrent Neural Networks (RNNs) + Generalization
	4. Improving generalization
	Ways to reduce overfitting
	Reminder: Overfitting
	Preventing overfitting
	Get more data
	4. Improving generalization: �a. Controlling model capacity� Architecture: # layers, # units� Early stopping: (validation set)� Weight-decay: L1/L2 regularization� Noise: Add noise
	Some ways to limit the capacity of a neural net
	Effect of model capacity on generalization
	Tuning model capacity: Overfitting, underfitting
	4a. Architecture hyperparams�(# layers, # units)
	How to choose meta parameters that control capacity �(like the number of hidden units or the size of the weight penalty)
	Cross-validation: A better way to choose meta parameters
	4b. Early stopping�(training/validation/testing)
	Preventing overfitting by early stopping
	Why early stopping works
	4c. Weight regularization�(L1, L2, Elastic Net)
	Effect of weight decay
	Limiting the size of the weights
	The effect of L2 weight cost
	Other kinds of weight penalty
	Weight penalties vs weight constraints
	4d. Adding noise�(as a regularizer)
	L2 weight-decay via noisy inputs
	Slide Number 62
	Noisy weights in more complex nets
	Using noise in the activities as a regularizer
	4e. Prior distribution on params�(Bayesian fitting)
	The Bayesian framework
	A coin tossing example
	A coin tossing example: the math
	Some problems with picking the parameters that are most likely to generate the data
	Using a distribution over parameter values
	Lets do it again: Suppose we get a tail
	Lets do it another 98 times
	Bayes Theorem
	4c+4e. Why weight decay is �Bayesian regularization
	Supervised Maximum Likelihood Learning
	Supervised Maximum Likelihood Learning
	MAP: Maximum a Posteriori
	Why we maximize sums of log probabilities
	MAP: Maximum a Posteriori
	The log probability of a weight under its prior
	The Bayesian interpretation of weight decay
	4f. Variance of residual errors�(MacKay’s quick and dirty method)
	Estimating the variance of the output noise
	Estimating the variance of the Gaussian prior on the weights
	MacKay’s quick and dirty method of choosing the ratio of the noise variance to the weight prior variance.
	Recurrent Neural Networks (RNNs) + Generalization

