Introduction to machine learning

Recitation 1
MIT - 6.802 / 6.874 / 20.390 / 20.490 / HST.506 - Spring 2021

Jackie Valeri

Slides adapted from Sachit Saksena and previous course materials

The BE Data & Coding Lab

https://bedatalab.github.io

A peer-to-peer educational community supporting
computational novices, competent practitioners, and experts in

their journey to learn new languages and use those languages to
answer important world problems.

MIT

BIOLOGICAL ENGINEERING

https://bedatalab.github.io/

DL

We are a safe space

where it is okay to We can help with:

ask for he|p ..problem sets for classes
We are a ...brainstorming ways to incorporate
_ . computational modeling into your projects
confidential space or preliminary project design
We will he|p you ...brainstorming and implementing

computation into your research projects
answer your

guestions, we will not ..code review, code efficiency, and
ducibilit
solve your problems reproducibiiity

for you ...much more — just ask if you aren’t sure!

MIT

BIOLOGICAL ENGINEERING

BE Data and Coding Lab BEDL

Inaugural Cohort

Pablo Dan
Cardenas Anderson

/)

Divya Meelim Krista Miguel Jackie
Ramamoorthy Lee Pullen Alcantar Valeri

Python, Matlab, R, COMSOL

e | B

BIOLOGICAL ENGINEERING

Onto recitation R01!

A. What can you do with ML?

What can you do with ML?

Classification Regression Unsupervised learning
- . y={e,0} | 1 y={}
5 ‘ i ’ 1.0 1.0
@ JI 20 5%
: - . .
® ® @ FTe .
X, 057 x,05-® o o,
2 o0
% .°o...§.0 .
S0
o ® P .
0.0+ v e 0.0 : 0.0f
00 05 10 o o 10 00 05 10

What can you do with ML?

Classification Regression Unsupervised learning
10 y={e,8} " we| y={}
5 ® o e e
o o o ® 2 I
x,05- — x,05 VL.
o @ ® . '.:”§.0 ’
Y /=0 supervised or semi-supervised learning
Y=R regression
Y = RK, K> 1 multivariate regression
Y = {0 1} binary classification
Y ={1..,K} multi-class classification (integer encoding)
Y = {0 1}XK,K>1 multi-label classification

Y=0 unsupervised learning

What can you do with ML? Terminology

f
7 N
Input X € X: Outputy € Y:
* features (in machine learning) * labels (in machine learning)
« predictors (in statistics) * responses (in statistics)
« independent variables (in statistics) « dependent variables (in statistics)
* regressors (in regression models) * regressand (in regression models)
* input variables « target variables

* Covariates
Training set Siaining = {(X),y M)}N. e {X,Y}N, where N is number of training examples
An example is a collection of features (and an associated label)
Training: use Straining to learn functional relationship f : X - Y

9/ 37

What can you do with ML? Terminology

fF: X->Y
f(x;0)=y

« weights and biases (intercepts)

. coefficients 8 Think of weights and biases like
lots and lots of

* parameters
P y=mx+b

* model

 hypothesis h

* classifier

« predictor

« discriminative models: P(Y|X)
 generative models: P(X, Y)

R01 Outline

B. Basics of machine learning
|. Getdata
ll. Identify the space of possible solutions
lll. Formulate an objective
V. Choose algorithm
V. Train (loss)
VI. Validate results (metrics)

Basics of machine learning: data

Train—test split (1-fold)

Training set (Straining):
® set of examples used for learning i i
® usually 60 - 80 % of the data il
Validation set (Svalidation): :;f ,i:’ /";—’\ > @ ;f'\
® set of examples used to tune the model hyperparameters 0 0 O O
e usually 10 - 20 % of the data
Test set (Stest):
® set of examples used only to assess the performance of fully-trained model
® after assessing test set performance, model must not be tuned further
¢ usually 10 - 30 % of the data Cross-validation (6-fold)

Q00
00
0O

™\ e = N\ - ™\
o0 O) > 00 0
o0 O 20 O 90 O
o0 0 @ @) @ @

https://towardsdatascience.com/cross-validation-code-visualization-kind-of-fun-b9741baealf8

Basics of machine learning: objective functions

An objective function J (O) is the function that you optimize when training machine learning models.
It is usually in the form of (but not limited to) one or combinations of the following:

Loss /| cost / errvor function L (y,y): Likelihood function / posterior:

Regularizers and constraints

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

Basics of machine learning: objective functions

An objective function J (O) is the function that you optimize when training machine learning models.
It is usually in the form of (but not limited to) one or combinations of the following:

Loss /| cost / errvor function L (y,y): Likelihood function / posterior:
Classification - negative log-likelihood (NLL) in maximum
« 0-1 loss likelihood estimation (MLE)
- cross-entropy loss * posterior in maximum a posteriori estimation
* hinge loss (MAP)
Regression Regularizers and constraints
* mean squared error (MSE, L,norm) e [, regularization ||©]]; = AN [6;]

< mean absolute error (MAE, L norm)

 Huber loss (hybrid between L1 and L2 norm)
Probabilistic inference

« Kullback-Leibler divergence (KL divergence)

* [, regularization ||©||3 = /\le.vzl 0?

® max-norm ||©||3 < ¢

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

Basics of machine learning: objective functions

An objective function J (O) is the function that you optimize when training machine learning models.
It is usually in the form of (but not limited to) one or combinations of the following:

Loss /| cost / errvor function L (y,y): Likelihood function / posterior:
Classification - negative log-likelihood (NLL) in maximum
« 0-1 loss likelihood estimation (MLE)
- cross-entropy loss * posterior in maximum a posteriori estimation
* hinge loss (MAP)
Regression Regularizers and constraints
* mean squared error (MSE, L,norm) ® [, regularization ||©||; = ,\Zf.vzl 16;]

« mean absolute error (MAE, L norm)

 Huber loss (hybrid between L1 and L2 norm)
Probabilistic inference

« Kullback-Leibler divergence (KL divergence)

* [, regularization ||©||3 = /\le.vzl 0?

® max-norm ||©||3 < ¢

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

Basics of machine learning: loss

Task
Regression (penalize large errors)

Regression (penalize error linearly)

N -
£+
27\71 |
Z\y(’) —

Basics of machine learning: objective functions

An objective function J (O) is the function that you optimize when training machine learning models.
It is usually in the form of (but not limited to) one or combinations of the following:

Loss /| cost / errvor function L (y,y): Likelihood function / posterior:
Classification - negative log-likelihood (NLL) in maximum
e 0-1 loss likelihood estimation (MLE)
« cross-entropy loss * posterior in maximum a posteriori estimation
* hinge loss (MAP)
Regression Regularizers and constraints
* mean squared error (MSE, L,norm) e [, regularization ||©]]; = AN [6;]

< mean absolute error (MAE, L norm)

 Huber loss (hybrid between L1 and L2 norm)
Probabilistic inference

« Kullback-Leibler divergence (KL divergence)

* [, regularization ||©||3 = /\le.vzl 0?

® max-norm ||©||3 < ¢

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

Basics of machine learning: loss

0-1 loss: \
i o l. 1, for pli) £ ()
501()’,)’)—21([)’()]75)’())—2{0 for () = y(0)

i=1 i=1

where [x] is the function that rounds x to the nearest integer.

Binary cross-entropy loss (for binary classification):

Lece(9,y) = > —yDlog(91) — (1 — y) log(1 — 91)

<
=
)
o
S
[
vy]
(@)
m_
<
<

y
[1,0,0] [0.9,0.2,0.4] [L,0,0] 0
[1,1,0] [0.6,0.4,0.1] [L,0,0] 1 1.53
(1,0,1] [0.1,0.7,0.3] [0,1,0] 3

Basics of machine learning: metrics

Predicted
condition

Total
population

Predicted
condition
positive

Predicted

condition
negative

Condition positive

True positive,
Power

False negative,
Type Il error

Recall, Sensitivity

__2 True positive
2z Condition positive

True condition

Condition negative

False positive,
Type | error

True negative

Specificity

- __2 True negative
% Condition negative

Accuracy =

2 True positive + Z True negative

2 Total population

Precision =
Z True positive

2 Predicted condition positive

F4 score =

1

1

Recall

1

x Piafnston

Basics of machine learning: metrics

Predicted
condition

True condition

Totalh Condition positive
population
Predicted True positive
condition Pgwer :
positive
zcr)i(gi(t:itgr? False negative,
: Type |l error
negative

Recall, Sensitivity

__2 True positive
2z Condition positive

True positive rate =
Sensitivity

Condition negative

False positive,
Type | error

True negative

Accuracy =
2 True positive + Z True negative

2 Total population

Precision =
___ 2 True positive
Predicted condition positive

Specificity F1 sc10re -
— 2 True neqative 1 1
~ T Condition negative @2— Predsion
False positive rate =
1 — specificity
False positive rate = # false
positives / all condition negatives

Precision = # true positive /
predicted positive

Basics of machine learning: metrics

TRUE POSITINE RATE

ROC CURVE

o=

o
®
1

o
o~
'

o
S
1

o
>
L

OO0=

PERFECT CLASSKFIER

1)
0.0 0.2 o4 0.6
FALSE POSITINE RATE

i
08

Precision

1.0 -

0.9 A1

o
@

e
~
L

0.6 1

0.5 -

-==No Skill
~=— Logistic

Basics of machine learning: metrics

Precision = # true positive /

ROC_CURVE # predicted positive
10| FPERFECT CLASSFIER 2 1.01 -—- No Skill
H - ~+— Logistic
08 =
" 0.9 -
<
@
W oL =
E .S 0.8
2 :
eoy=- g__v'
W 0.7 -
=
02=
0.6 -
00=
' ' ' 0 i ‘l] P
0.0 02 ou 0.6 0.8 0 51 1 1 : . :
FALSE POSITNE RATE 0.0 0.2 0.4 . 0.6 0.8 1.0

True positive rate =
true positive /
actually positive

False positive rate =

1 — specificity

False positive rate = # false
positives / all condition negatives

Recall is the same as true
positive rate!

R01 Outline

C. Neural networks
|. Perceptrons to neurons
ll. Activation functions
lll. Training with backpropagation
V. Gradient descent
V. Regularization

Neural networks: perceptrons to neurons

4
“
0

0
BN
0\@ \\t{
W
}}’4’1‘}‘\
&

output layer

‘ output layer
input layer input layer

hidden layer hidden layer 1 hidden layer 2

Neural networks: perceptrons to neurons

/MIV' y
X
2 W,
X m
i § = wo + E TiW;
3=1

Inputs VWeights Sum

© A. Amini, A. Soleimany

Neural networks: perceptrons to neurons

Linear combination
1 Output of inputs

0 1 l
x1w\’ yzg(WO‘FinWz)
W/' Z T / 5; \l_l

X2 Non-linear

activation function

Bias

Inputs VWeights Sum Non-Linearity Output

© A. Amini, A. Soleimany

Neural networks:

single layer feed-forward NN

w(l) W(Z)
9(zy)
Z1
X1
g(fz) =
Z7 Vi
X2
Z 3 y
2 9(z3))’2
Xm
Z
41 4(za,)
Inputs Hidden Final Output

_’lUO)-FZ.’L’J], yz (w()z ZZJ _72)

© A. Amini, A. Soleimany

Neural networks: activation functions

Step function

dtep(D)i= 0 ifz<0
P¥7 =11 otherwise Sigmoid
)
1
> o(z) = —
1+e
Rectified linear unit f
0 ifz<0 ‘
ReLU(z) = {z :)t;erwise = max(0, 2)
}/ > Softmax
. exp(z1)/ >_; exp(2;)
Hyperbolic tangent .
softmax(z) = :
ef—e ?
tanh(z) = exp(zn)/ D_; exp(zi)

e*+e ” f

Neural networks: activation functions

Task

Regression
(penalize large errors)

Regression
(penalize error linearly)

Classification
(binary)

Classification
(multi-class)

Generative

Activation Loss
. 1 My i\ 2
Linear (ReLU, Leaky ReLU, etc) Lase(9,Y) = ;(y(’) —g))
N 1 & G) _ ()
Linear (ReLU, Leaky ReLU, etc) Laae(9,9) = ; vy
N . . x .
Sigmoid, tanh Lrow(B,y) =)~y log (Q(Z)) - (1 - y(l)) log(l _g(z))
=1
N K))
Softmax Looe(,y) =) Zyﬁ” log (@ﬁ”)
i=1 j=1
Linear (ReLU, Leaky ReLU, etc) L minimax (G, D) = E;[log(D(z))] + E:[log(1 — D(G(2)))]

Other considerations: gradient intensity, computational activation cost,
exploding/vanishing gradients, depth of network (linear is useless)

Neural networks: training with backpropagation

W, = m! x n!

= f1(by + WL'X) = fa(by + Wi Ay)

el Z1 Al A2
X I bl . b2
[| J
Iayer 1 Iayer 2

b=n'x1
Ap = fr(bp + Wi Ap_1) v
AL-1 WE 7 L AL l
o, o | —> Loss

Inspired by 6.036 lecture notes (Leslie Kaebling)

Wi=m'Xxn

b=nlx1

Neural networks: training with backpropagation

Ay = fi(by + WX) A; = fo(by + Wi Ay) Arp = fr(bp + Wi Ap)

Oloss Oloss Oloss Oloss Oloss Hloss Oloss

87, OA, 872 OA, 8AL ; 971 OAL

Inspired by 6.036 lecture notes (Leslie Kaebling)

Neural networks: training with backpropagation

So let’s use the following shorthand from the previous figure,

NN(CE,W) — AL

First, let's break down how the loss depends on the final layer,

Oloss Odloss 0Ap 97y
OWL O0Ap 0Z; OWL

Since,

oz 9
owy — awy (7 Ar) = Av

We can re-write the equation as,

O0loss .y Oloss
owr, Yoz

Since we have the outputs of every layer, all we need to
compute for the gradient of the last layer with respect to the
weights is the gradient of the loss with respect to the pre-
activation output.

Now, to propagate through the whole network, we can keep applying the chain
rule until the first layer of the network,

Oloss Oloss O0A;, 07

B OA1, 4 0A, 072, O0A4
0Z;, OAp_1 07214

" 0Zy OA, 07,

0Z4 OAL

If you spend a few minutes looking at matrix dimensions, it becomes clear that
this is an informal derivation. Here are the dimensions to think about:

Oloss .

AL isnt x 1 O it x nt OAL L,k

ISm- Xn IS Xn
8AL—l 8ZL

Wi =

The equation with the correct dimensions for matrix multiplication,

Oloss 8441 OAZH 3AL_1 BAL Oloss

- Wiiq - . . .
8z, 0z, " 87, 875 . 87, Ap

On your own time!

Inspired by 6.036 lecture notes (Leslie Kaebling)

Neural networks: gradient descent

Gradient-based learning: use derivative to update weights

Learning rate Welght decay momentum
-1\ OE L\ \
wh — wi (wt) + hAwt
Gradlent / Previous change/

where
« Gradient descent: 0E/dw = partial derivative of error E wrt w

« € = learning rate (e.g. <0.1), needed to not overshoot the optimal solution
« A =weight decay, penalizes large weights to prevent overfitting

« n =momentum, based on magnitude+sign of previous update (Aw");
when direction of update is consistent = faster convergence

Neural networks: gradient descent

Batch gradient descent (Gradient calculated
on entire data set)

Stochastic gradient descent (Gradient
calculated for every sample in the dataset

per epoch) \
Gradient descent

NAG (Reduce error by using future step))

Mini-batch gradient descent (Similar to SGD

but on mini batches. Note:This is often
Momentum(Throwing the ball downhill - Go faster if referred to as SGD)
going in nght direction)

Adaptive learning rate

Adadelta (decaying average of all past squared
gradients)

Adagrad(Adapts leaming rate to the parameters based
on previous gradients), but has leaming rate shrinking
problem

RMSProp(decaying average of all past squared
gradients)

f Adam{RMSProp + bias-correction + momentum)
Nadam (Adam + NAG)

Neural networks: regularization

We need to control model complexity for good generalization

— - Training error
Underfitting zone| Overfitting zone C L
—— (Generalization error

Error

0 Optimal Capacity

Capacity

(Goodfellow 2016)

Neural networks: regularization via validation set, early stopping

Leave out small “validation set”
 not used to train the model

Training

« used to evaluate model at each epoch/iteration

(VCE, Validation cross-entropy)

« Stop when VCE increases, prevent overfitting

CE per case

4.6

4.4

Cross—Entropy per case

e CE

42 |

4

38 |

3.6

34 |

3.2

3

2.8

26

0 5 10 15 20 25 30 35 40 45

Learning Epoch

Neural networks: regularization

Objective function

.»l % },o 0\ ", g.’ o\
XKD /XKD
(.%%/‘&%/

(2 (—)
NTANY

§
0.0
LR

A »ab"ro»,.»qb.
SONY NN
s

®
N
© I\
nn.v —
o / W
2 —
) _
> ~
> +
_ c (a\|
o -
o © 5
N =
= 5 "_vu
= 2 o
8 o EX
H o
o —
= g =
N’ = 8
-l £ H
nz I 2 =
o n
o (
= - —
| g =LA
I 2
o —| g
~ .W
. 5 |l
o) —~
- o ==
]
N
L

R01 Outline

D. Brief preview of pset 1

PS1: TensorFlow Warm Up

0 5 10

ground truth: 5

15

20

25

- 250

- 200

150

100

PS1: Data

Problem Set 1

input space:
X ={0,1,...,255)28~28

after rescaling:
X1 = [0’ 1]28><28

after flattening:
X1 = [0, 1]784

0

10

20

0

10

20

0

10

20

<

(=]

20

/

0 20

Classification

PS1: Data

Problem Set 1

input space:
X ={0,1,...,255)28x8

after rescaling:
X1 =0, 1]28x28

after flattening:
X1 = [0, 1]784

integer-encoded label space:
Yi={0,1,...,9}

one-hot-encoded label space:

Yn = [0, 1]10

X0 e x
1 2 28
1 X1.1 X12 -+ X1.28
Z X21 X22 -+ X228
28 | X28,1 X282 *** X28,28 |
y(i) € Vh
1 2 10
[Y1 Y2 - Y1o]

One hot encoding turns 1, 2, 3 into
1 0 0
0 1 0
0 0 1

PS1: Structure

: [Ioss function] —[optimizerj
|

Problem Set 1

x € [0, 1]% [tf.nn.softmax]
y € [0,1]'°
W e R784x10 |
b € R0
f(X;W:b)= gasoftmax(WRx'Fb) [+ j

J /
[tf.matmul

) G/D
tf.placeholder tf.placeholder tfwvariable tfvariable
[None, 10] [None, 784] [784,10] [10]

PS1: Gradient of loss with respect to logits

i goes from O to # of training examples

z is one of 10 digits Zl — WTXl —+ b

| . ek
L; = —log(p.)wherek = y', Py = i
Zj e’
dL; - : : -
a_Zl = p; — 1(y; = j) Update weights for

j
pt = [0.6,0.3,0.1] then gradient » [0.6,—0.4,0.1]

Correct Label
http://cs231n.github.io/neural-networks-case-study/

PS1: Gradient of loss with respect to logits

z is one of 10 digits

L is loss

i goes from O to # of training examples

zi=WTx' +b

L; = —log(p.)wherek = y?, i =

y is actual labels

pt = [0.6,0.3,0.1] then gradient —

Correct Label

http://cs231n.github.io/neural-networks-case-study/

[
ek

7t
Zje J|jgoes fromOto9

o= p]i. — 1(y; = j) Update weights forj

(0.6, —0.4,0.1]

PS1: Gradient of loss with respect to logits

i goes from O to # of training examples

z is one of 10 digits Zl — WT.X'l —+ b

| o o7k
L is loss Li — —log(p]l{) where k = y‘, pllc — P
y is actual labels Z] e"J|jgoesfrom0to9
a_Zl — le. — 1(y; = j) Update weights for j
j

if y; (the actual label) is j (a digit), then dL/z; = p|,

pt = [0.6,0.3,0.1] then gradient » [0.6,—0.4,0.1]

Correct Label
http://cs231n.github.io/neural-networks-case-study/

PS1: Implementation

tf Graph Input
X = tf.placeholder("float")
Y = tf.placeholder("float")

Set model weights
W = tf.Variable(rng.randn(), name="weight")
tf.Variable(rng.randn(), name="bias")

o)
Il

Construct a linear model
pred = tf.add(tf.mul(X, W), b)

Mean squared error
cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)

Gradient descent
optimizer =
tf.train.GradientDescentOptimizer(learning rate).minimize(cost)

Next week

More neural network review
Convolutional neural networks
Recurrent neural networks

R01 Outline

What can you do with ML"?

. Basics of machine learning
. Neural networks
. Brief preview of pset 1

. BONUS CONTENT if time!

BONUS CONTENT!

Non-parametric models

Gradient descent — batch vs stochastic

Momentum

Adam

Lecture question: “how do we actually calculate these derivatives?”
Answer: automatic differentiation

Basics of machine learning: non-parametric models

1 D= {(Xs,Ys), X, YO, oo, (Xx,Yx) }

2 function knn(k,dist,[%uap},[%wlq):
3 votes = []

4 for i = 1 to len(DFaup

5 d = []

6 for 37 = 1 to len(D{tra/*})

7 d[j] = dist(x/x4)

8 d = argsort (d)

9 votes[1] = most common (set (labels[d]))

Neural networks: gradient descent - batch gradient update

Gradient of objective J with respect to parameter vector W
" 03/ OW;
Vwd = :

8T) OW,y, |
Batch gradient update

Wi=W — nzn: Vird (h(a;“); W) , y(i))
=1

Pseudocode for gradient update algorithm

function gradient update (Wy+p,n,J,€):
WO = Wi,
t =0

This is an arbitrary

while [J(WY) —](Wt<$)| > € «— pdate criteria
t = t+l
Wt =W —nVe()

oY U x W DN -

Neural networks: gradient descent - stochastic gradient descent

Stochastic gradient update (per randomly sampled training example):

W =W — gVyJ (h (m“); W) | y(i)) :

Pseudocode for stochastic gradient update algorithm

function sgd (Wyu,n,J, T, €):
WO = Winit 10
fort=1 to T

randomly select 1 € {1,2,...,n}

Wt = WS — (6} () 6

O = w N -

Mini-batch gradient descent

W::W—nzk:vwﬁ(h(w(i);w>,y(i)) -2 - U
i=1

Optimization: momentum

Vi1 = Pog + V f(wg)
Wg41 = Wi — NUk+1

- 1.26

ilnnnininninInnanannn

- 2.46

-2.16

- 1.86

- 1.56

loss

- 0.96

- 0.66

- 0.36

- 0.06

- 2.46

-2.16

- 1.86

- 1.56

loss

- 1.26

- 0.96

- 0.66

- 0.36

CLELE LT T

- 0.06

X
Nesterov inequality? How can we make momentum better?

Vi+1 = Pug + V f(wg + Bog)
Wi+1 = Wg — NUk+1

Goh, "Why Momentum Really Works", Distill, 2017. http://doi.org/10.23915/distill.00006

http://doi.org/10.23915/distill.00006

Optimization: adam

1 MNIST Multilayer Neural Network + dropout
Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, 10 2 ; '
and for a slightly more efficient (but less clear) order of computation. g2 indicates the elementwise — AdaGrad
square g; ©® g:. Good default settings for the tested machine learning problems are o = 0.001, : : RMSProp
B1 = 0.9, B2 = 0.999 and € = 10~8. All operations on vectors are element-wise. With 3% and 3% SGDNesterov
we denote 3, and (5 to the power t. AdaDelta
Require: o: Stepsize Adam

Require: (3, 32 € [0,1): Exponential decay rates for the moment estimates
Require: f(6): Stochastic objective function with parameters 6
Require: 6: Initial parameter vector
mg < 0 (Initialize 1°* moment vector)
vo ¢+ 0 (Initialize 2™ moment vector)
t < 0 (Initialize timestep)
while 6; not converged do
t+—t+1
9¢ < Vofi(0:—1) (Get gradients w.r.t. stochastic objective at timestep t)
my < B1-my—1 + (1 — B1) - g+ (Update biased first moment estimate)
v < Po-v—1+ (1 — B2) - g],g2 (Update biased second raw moment estimate)
my < my/(1 — B¢) (Compute bias-corrected first moment estimate)
Uy « v;/(1 — B%) (Compute bias-corrected second raw moment estimate)
O < 0;—1 — -/ (\/%Tt + €) (Update parameters)
end while :

|]
return 6; (Resulting parameters) 0 50 100 150 200
iterations over entire dataset

training cost

102 b T— A T o

https://arxiv.org/pdf/1412.6980.pdf

Neural networks: automatic differentiation

Dual numbers Forward automatic differentiation
Augment a standard Taylor series (hnumerical differentiation), with a “dual number”, f(x1 X2)
Y
/ a " n : 3 .
f(a+e)=f(a)+ff,) +f2()e -i---'—l—f—'e" Ws = w3 + Wy
! n

Because "dual numbers” have the (manufactured) property,

=0 Wy = COS(Wl)Wl W3 = WiWs + wiwp
The Taylor Series simplifies to,
fla+e) = f(a) + f'(a)e

Wo } seeds, wi, w» € {0,1}
Which recovers the function output as well as the first derivative.

X1 X2

End result

R AV e /axl\

35?2 gg::) %) a?cln/

https://www.robots.ox.ac.uk/~tvg/publications/talks/autodiff.pdf

http://www.robots.ox.ac.uk/~tvg/publications/talks/autodiff.pdf

