
Introduction to machine learning
Recitation 1
MIT - 6.802 / 6.874 / 20.390 / 20.490 / HST.506 - Spring 2021

Jackie Valeri

Slides adapted from Sachit Saksena and previous course materials

The BE Data & Coding Lab

https://bedatalab.github.io

A	peer-to-peer	educational	community	supporting	
computational	novices,	competent	practitioners,	and	experts	in	
their	journey	to	learn	new	languages	and	use	those	languages	to	
answer	important	world	problems.

https://bedatalab.github.io/

We are a safe space
where it is okay to
ask for help

We will help you
answer your
questions, we will not
solve your problems
for you

We are a
confidential space

We can help with:

…problem sets for classes

…brainstorming ways to incorporate
computational modeling into your projects
or preliminary project design

…brainstorming and implementing
computation into your research projects

…code review, code efficiency, and
reproducibility

…much more – just ask if you aren’t sure!

BE Data and Coding Lab
Inaugural Cohort

Pablo
Cardenas

Dan
Anderson

Itai
Levin

Maxine
Jonas

Patrick
Holec

Jackie
Valeri

Krista
Pullen

Miguel
Alcantar

Divya
Ramamoorthy

Meelim
Lee

Python, Matlab, R, COMSOL

Onto recitation R01!

A. What can you do with ML?

B. Basics of machine learning

C. Neural networks

D. Brief preview of pset 1

What can you do with ML?

What can you do with ML?

f

Input X ∈ X :
• features (in machine learning)
• predictors (in statistics)
• independent variables (in statistics)
• regressors (in regression models)
• input variables
• covariates

9 / 37

Output y ∈ Y:
• labels (in machine learning)
• responses (in statistics)
• dependent variables (in statistics)
• regressand (in regression models)
• target variables

trainingTraining set S = { (i) (i) N
i=1(X ,y)} ∈ {X ,Y} N , where N is number of training examples

An example is a collection of features (and an associated label)
Training: use Straining to learn functional relationship f :X → Y

What can you do with ML? Terminology

f :X → Y
f (x ;θ) = ŷ

θ:

f :

• weights and biases (intercepts)
• coefficients β
• parameters

• model
• hypothesis h
• classifier
• predictor
• discriminative models: P(Y|X)
• generative models: P(X, Y)

What can you do with ML? Terminology

Think of weights and biases like
lots and lots of
y = mx + b

R01 Outline

A. What can you do with ML?

B. Basics of machine learning
I. Get data
II. Identify the space of possible solutions
III. Formulate an objective
IV. Choose algorithm
V. Train (loss)
VI. Validate results (metrics)

C. Neural networks

D. Brief preview of pset 1

Basics of machine learning: data

Train—test split (1-fold)

Cross-validation (6-fold)

https://towardsdatascience.com/cross-validation-code-visualization-kind-of-fun-b9741baea1f8

An objective function J (Θ) is the function that you optimize when training machine learning models.
It is usually in the form of (but not limited to) one or combinations of the following:

Loss / cost / error function L (ŷ ,y):
Classification

• 0-1 loss
• cross-entropy loss
• hinge loss
Regression

2• mean squared error (MSE, L norm)

1• mean absolute error (MAE, L norm)
• Huber loss (hybrid between L1 and L2 norm)

Probabilistic inference
• Kullback-Leibler divergence (KL divergence)

Likelihood function / posterior:
• negative log-likelihood (NLL) in maximum

likelihood estimation (MLE)
• posterior in maximum a posteriori estimation

(MAP)

Regularizers and constraints

Basics of machine learning: objective functions

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

An objective function J (Θ) is the function that you optimize when training machine learning models.
It is usually in the form of (but not limited to) one or combinations of the following:

Loss / cost / error function L (ŷ ,y):
Classification

• 0-1 loss
• cross-entropy loss
• hinge loss
Regression

2• mean squared error (MSE, L norm)

1• mean absolute error (MAE, L norm)
• Huber loss (hybrid between L1 and L2 norm)

Probabilistic inference
• Kullback-Leibler divergence (KL divergence)

Likelihood function / posterior:
• negative log-likelihood (NLL) in maximum

likelihood estimation (MLE)
• posterior in maximum a posteriori estimation

(MAP)

Regularizers and constraints

Basics of machine learning: objective functions

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

An objective function J (Θ) is the function that you optimize when training machine learning models.
It is usually in the form of (but not limited to) one or combinations of the following:

Loss / cost / error function L (ŷ ,y):
Classification

• 0-1 loss
• cross-entropy loss
• hinge loss
Regression

2• mean squared error (MSE, L norm)

1• mean absolute error (MAE, L norm)
• Huber loss (hybrid between L1 and L2 norm)

Probabilistic inference
• Kullback-Leibler divergence (KL divergence)

Likelihood function / posterior:
• negative log-likelihood (NLL) in maximum

likelihood estimation (MLE)
• posterior in maximum a posteriori estimation

(MAP)

Regularizers and constraints

Basics of machine learning: objective functions

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

Basics of machine learning: loss

Task
Regression (penalize large errors)

Loss

Regression (penalize error linearly)

Classification (binary)

Classification (multi-class)

Generative

An objective function J (Θ) is the function that you optimize when training machine learning models.
It is usually in the form of (but not limited to) one or combinations of the following:

Loss / cost / error function L (ŷ ,y):
Classification

• 0-1 loss
• cross-entropy loss
• hinge loss
Regression

2• mean squared error (MSE, L norm)

1• mean absolute error (MAE, L norm)
• Huber loss (hybrid between L1 and L2 norm)

Probabilistic inference
• Kullback-Leibler divergence (KL divergence)

Likelihood function / posterior:
• negative log-likelihood (NLL) in maximum

likelihood estimation (MLE)
• posterior in maximum a posteriori estimation

(MAP)

Regularizers and constraints

Basics of machine learning: objective functions

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

Basics of machine learning: loss

Basics of machine learning: metrics

Basics of machine learning: metrics

False positive rate =
1 – specificity
False positive rate = # false
positives / all condition negatives

True positive rate =
Sensitivity

Precision = # true positive /
predicted positive

Basics of machine learning: metrics

Basics of machine learning: metrics

Recall is the same as true
positive rate!

False positive rate =
1 – specificity
False positive rate = # false
positives / all condition negatives

Precision = # true positive /
predicted positive

True positive rate =
true positive / #
actually positive

R01 Outline

A. What can you do with ML?

B. Basics of machine learning

C. Neural networks
I. Perceptrons to neurons
II. Activation functions
III. Training with backpropagation
IV. Gradient descent
V. Regularization

D. Brief preview of pset 1

13 Jan
2016

Neural networks: perceptrons to neurons

Neural networks: perceptrons to neurons

Neural networks: perceptrons to neurons

Neural networks: single layer feed-forward NN

Neural networks: activation functions

Step function

Sigmoid

Rectified linear unit

Hyperbolic tangent

Softmax

Neural networks: activation functions

Task
Regression

(penalize large errors)

Loss

Regression
(penalize error linearly)

Activation

Classification
(binary)

Classification
(multi-class)

Generative

Linear (ReLU, Leaky ReLU, etc)

Linear (ReLU, Leaky ReLU, etc)

Sigmoid, tanh

Softmax

Linear (ReLU, Leaky ReLU, etc)

Other considerations: gradient intensity, computational activation cost,
exploding/vanishing gradients, depth of network (linear is useless)

X f1W1
b1

Z1 A1

layer 1

f2W2
b2

Z2 A2

layer 2

… fLWL
bL

ZL AL

layer L

AL-1
Loss

y

Inspired by 6.036 lecture notes (Leslie Kaebling)

Neural networks: training with backpropagation

Neural networks: training with backpropagation

X f1W1
b1

Z1 A1
f2W2

b2
Z2 A2

… fLWL
bL

ZL ALAL-1
Loss

Inspired by 6.036 lecture notes (Leslie Kaebling)

y

So let’s use the following shorthand from the previous figure,

First, let’s break down how the loss depends on the final layer,

Since,

We can re-write the equation as,

Now, to propagate through the whole network, we can keep applying the chain
rule until the first layer of the network,

If you spend a few minutes looking at matrix dimensions, it becomes clear that
this is an informal derivation. Here are the dimensions to think about:

Since we have the outputs of every layer, all we need to
compute for the gradient of the last layer with respect to the
weights is the gradient of the loss with respect to the pre-
activation output.

The equation with the correct dimensions for matrix multiplication,

Inspired by 6.036 lecture notes (Leslie Kaebling)

Neural networks: training with backpropagation

On your own time!

Gradient-based learning: use derivative to update weights

where
• Gradient descent: ∂E/∂w = partial derivative of error E wrt w
• ϵ = learning rate (e.g. <0.1), needed to not overshoot the optimal solution
• λ = weight decay, penalizes large weights to prevent overfitting
• η = momentum, based on magnitude+sign of previous update (∆wt−1);

when direction of update is consistent è faster convergence

The usage of the partial derivatives to update network
weights

w
t
. w

t�1
. � ✏(

@E

@w.
+ �w t�1

.) + ⌘�w
t�1

where
I ✏ is often termed as the “learning rate” (usually set to 0.1 or smaller)

that is necessary to not overshoot the optimal solution;

I � controls “weight decay” to penalize large weight w t�1
. in order to

prevent overfitting (discussed further below)

I ⌘ is the rate to weight the gradient �w t�1
at the previous update to

build “momentum” in the update; when the direction of the update is

consistent, this will speed up the convergence process

For large dataset, stochastic gradient descent (SGD) is often used by
randomly sampling a batch of samples and update the weights
accordingly. When the batch contains only one training data point, the
special case is often called on-line learning.

Learning rate Weight decay momentum

Gradient Previous change

Neural networks: gradient descent

Neural networks: gradient descent

(Goodfellow 2016)

We need to control model complexity for good generalization

Neural networks: regularization

Leave out small “validation set”
• not used to train the model
• used to evaluate model at each epoch/iteration

(VCE, Validation cross-entropy)
• Stop when VCE increases, prevent overfitting

Training
set

Test
set

Validation
set

0 5 10 15 20 25 30 35 40

Learning Epoch
45

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

C
E

pe
rc

as
e

Cross−Entropy per case
Training CE
Validation CE Test
CE

Neural networks: regularization via validation set, early stopping

Neural networks: regularization

Objective function

Objective function with ridge regularization Penalize

Dropout

R01 Outline

A. What can you do with ML?

B. Basics of machine learning

C. Neural networks

D. Brief preview of pset 1

PS1: TensorFlow Warm Up

Problem Set 1

input space:
X = {0, 1, . . . , 255}28×28

after rescaling:
X I		= [0, 1]28×28

after flattening:
X II		= [0, 1]784

Classification

PS1: Data

Problem Set 1
input space:
X = {0, 1, . . . , 255}28×28

after rescaling:
X I		= [0, 1]28×28

after flattening:
X II		= [0, 1]784

integer-encoded label space:
Yi = {0, 1, . . . , 9}

one-hot-encoded label space:
Yh = [0, 1]10

PS1: Data

One hot encoding turns 1, 2, 3 into
1 0 0
0 1 0
0 0 1

x W by

tf.matmul

+

tf.nn.softmax

loss function

tf.placeholder tf.placeholder tf.variable tf.variable

optimizer

[None, 10] [None, 784] [784,10] [10]

PS1: Structure

Problem Set 1
x ∈ [0,1]784

ŷ ∈ [0,1]10
W ∈ R784×10

b ∈ R10

softmaxf (x ;W ,b) = φ (W rx + b)

http://cs231n.github.io/neural-networks-case-study/

!
"
= $

%
&
"
+ (

)*
"
=

+
,
-

.

∑
0
+
,
1

.2" = −log()*
"
)where = = >

",

?2"

?!0
=)0

"
− @(AB = C) Update weights for j

)
"
= [0.6,0.3,0.1]then gradient → [0.6, −0.4,0.1]

Correct Label

PS1: Gradient of loss with respect to logits

z is one of 10 digits

i goes from 0 to # of training examples

http://cs231n.github.io/neural-networks-case-study/

!
"
= $

%
&
"
+ (

)*
"
=

+
,
-

.

∑
0
+
,
1

.2" = −log()*
"
)where = = >

",

?2"

?!0
=)0

"
− @(AB = C) Update weights for j

)
"
= [0.6,0.3,0.1]then gradient → [0.6, −0.4,0.1]

Correct Label

PS1: Gradient of loss with respect to logits

z is one of 10 digits

L is loss

i goes from 0 to # of training examples

y is actual labels j goes from 0 to 9

http://cs231n.github.io/neural-networks-case-study/

!
"
= $

%
&
"
+ (

)*
"
=

+
,
-

.

∑
0
+
,
1

.2" = −log()*
"
)where = = >

",

?2"

?!0
=)0

"
− @(AB = C) Update weights for j

)
"
= [0.6,0.3,0.1]then gradient → [0.6, −0.4,0.1]

Correct Label

PS1: Gradient of loss with respect to logits

z is one of 10 digits

L is loss

i goes from 0 to # of training examples

y is actual labels

if yi (the actual label) is j (a digit), then dLi/zj = pi
j

j goes from 0 to 9

tf Graph Input
X = tf.placeholder("float")
Y = tf.placeholder("float")

Set model weights
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")

Construct a linear model
pred = tf.add(tf.mul(X, W), b)

Mean squared error
cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)

Gradient descent
optimizer =
tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

PS1: Implementation

Next week

More neural network review
Convolutional neural networks

Recurrent neural networks

R01 Outline

A. What can you do with ML?

B. Basics of machine learning

C. Neural networks

D. Brief preview of pset 1

E. BONUS CONTENT if time!

BONUS CONTENT!

Non-parametric models

Gradient descent – batch vs stochastic

Momentum

Adam

Lecture question: “how do we actually calculate these derivatives?”
Answer: automatic differentiation

Basics of machine learning: non-parametric models

= []
for j = 1 to len(! tra/*)

d[j] = dist('/, '4)
d = argsort(d)

1 ! = {(,$, .$), ,(, .(, … , (,* , .*)}
2 function knn(0,dist, ! tra/* , ! t01t):
3 votes = []
4 for 3 = 1 to len(! t01t)
5 d
6
7
8
9 votes[i] = most_common(set(labels[d]))

Neural networks: gradient descent - batch gradient update

!0 Winit

!t − # !t<$ >)
t = t+1
!t = !t<$ − + ∇@ #

Pseudocode for gradient update algorithm

1 function gradient_update(W/*/t, +, #,)):
2 =
3 t = 0
4 while
5
6

Gradient of objective J with respect to parameter vector W

Batch gradient update

This is an arbitrary
update criteria

Neural networks: gradient descent - stochastic gradient descent

Stochastic gradient update (per randomly sampled training example):

Pseudocode for stochastic gradient update algorithm

!0 = Winit

randomly select i ∈ {1,2,...,n}

1 function sgd(W/*/t,), *, T, ,):
2
3 for . = 1 to T
4
5 !t = !t<$ −)(.) ∇@ *

Mini-batch gradient descent

Optimization: momentum

Goh, "Why Momentum Really Works", Distill, 2017. http://doi.org/10.23915/distill.00006

Nesterov inequality? How can we make momentum better?

http://doi.org/10.23915/distill.00006

Optimization: adam

https://arxiv.org/pdf/1412.6980.pdf

Neural networks: automatic differentiation

https://www.robots.ox.ac.uk/~tvg/publications/talks/autodiff.pdf

Which recovers the function output as well as the first derivative.

End result

Augment a standard Taylor series (numerical differentiation), with a “dual number”,

Forward automatic differentiation

Because ”dual numbers” have the (manufactured) property,

The Taylor Series simplifies to,

Dual numbers

http://www.robots.ox.ac.uk/~tvg/publications/talks/autodiff.pdf

