Introduction to machine learning

Recitation 1

MIT - 6.802 / 6.874 / 20.390 / 20.490 / HST.506 - Spring 2021

Jackie Valeri

Slides adapted from Sachit Saksena and previous course materials

The BE Data & Coding Lab

https://bedatalab.github.io

A peer-to-peer educational community supporting computational novices, competent practitioners, and experts in their journey to learn new languages and use those languages to answer important world problems.

We are a safe space where it is okay to ask for help

We are a confidential space

We will help you answer your questions, we will not solve your problems for you

We can help with:

...problem sets for classes

...brainstorming ways to incorporate computational modeling into your projects or preliminary project design

...brainstorming and implementing computation into your research projects

...code review, code efficiency, and reproducibility

...much more – just ask if you aren't sure!

BE Data and Coding Lab

Inaugural Cohort

Maxine Jonas

Patrick Holec

Divya Ramamoorthy

Dan

Anderson

Meelim Lee

Itai

Levin

Krista Pullen

Miguel Alcantar

Jackie Valeri

Python, Matlab, R, COMSOL

A. What can you do with ML?

- B. Basics of machine learning
- C. Neural networks
- D. Brief preview of pset 1

What can you do with ML?

What can you do with ML?

Y /= Ø	supervised or semi-supervised learning		
Y = R	regression		
Y = R ^K , K > 1	multivariate regression		
Y = {0, 1}	binary classification		
$Y = \{1,, K\}$	multi-class classification (integer encoding)		
$Y = \{0, 1\}^{K}, K > 1$	multi-label classification		
$Y = \emptyset$	unsupervised learning		

What can you do with ML? Terminology

Input $\boldsymbol{X} \in X$:

- **features** (in machine learning)
- predictors (in statistics)
- independent variables (in statistics)
- regressors (in regression models)
- input variables
- covariates

Output $y \in Y$:

- **labels** (in machine learning)
- responses (in statistics)
- dependent variables (in statistics)
- regressand (in regression models)
- target variables

Training set $S_{\text{training}} = \{ (X^{(i)}, y^{(i)}) \}_{i=1}^{N} \in \{X, Y\}^{N}, \text{ where } N \text{ is number of training examples}$ An example is a collection of features (and an associated label)

Training: use S_{training} to learn functional relationship $f : X \rightarrow Y$

What can you do with ML? Terminology

 $f: X \to Y$ $f(x; \theta) = \hat{y}$

θ:

- weights and biases (intercepts)
- coefficients β
- parameters
- *f* :
 - model
 - hypothesis *h*
 - classifier
 - predictor
 - discriminative models: P(Y|X)
 - generative models: P(X, Y)

Think of weights and biases like lots and lots of y = mx + b

R01 Outline

A. What can you do with ML?

B. Basics of machine learning

- I. Get data
- II. Identify the space of possible solutions
- III. Formulate an objective
- IV. Choose algorithm
- V. Train (loss)
- VI. Validate results (metrics)
- C. Neural networks

D. Brief preview of pset 1

Train—test split (1-fold)

$\bigcirc \bigcirc$	\bigcirc	\bigcirc \bigcirc	\bigcirc	\bigcirc	\bigcirc		
$\bigcirc \bigcirc$	\bigcirc	$\bigcirc \bigcirc$	\bigcirc	$\bigcirc \bigcirc$	\bigcirc		
$\bigcirc \bigcirc$	\bigcirc	$\bigcirc \bigcirc$	\bigcirc	$\bigcirc \bigcirc$	\bigcirc		
$\bigcirc \bigcirc$	\bigcirc	$\bigcirc \bigcirc$	\bigcirc				
$\bigcirc \bigcirc$	\bigcirc	$\bigcirc \bigcirc$	\bigcirc				
$\bigcirc \bigcirc$	\bigcirc	$\bigcirc \bigcirc$	\bigcirc				
						(\bigcirc
						(

Training set (S_{training}) :

- set of examples used for learning
- usually 60 80 % of the data

Validation set ($S_{validation}$):

- set of examples used to tune the model hyperparameters
- usually 10 20 % of the data

Test set (S_{test}) :

- set of examples used only to assess the performance of fully-trained model
- after assessing test set performance, model must not be tuned further
- usually 10 30 % of the data

https://towardsdatascience.com/cross-validation-code-visualization-kind-of-fun-b9741baea1f8

Loss / cost / error function $L(\hat{y}, y)$:

Likelihood function / posterior:

Regularizers and constraints

- Loss / cost / error function $L(\hat{y}, y)$: Classification
 - 0-1 loss
 - cross-entropy loss
- hinge loss

Regression

- mean squared error (MSE, L_2 norm)
- mean absolute error (MAE, L₁norm)
- Huber loss (hybrid between L₁ and L₂ norm) Probabilistic inference
 - Kullback-Leibler divergence (KL divergence)

Likelihood function / posterior:

- negative log-likelihood (NLL) in maximum likelihood estimation (MLE)
- posterior in maximum a posteriori estimation (MAP)

Regularizers and constraints

- L_1 regularization $||\Theta||_1 = \lambda \sum_{i=1}^N |\theta_i|$
- L_2 regularization $||\Theta||_2^2 = \lambda \sum_{i=1}^N \theta_i^2$
- max-norm $||\Theta||_2^2 \le c$

- Loss / cost / error function $L(\hat{y}, y)$: Classification
 - 0-1 loss
 - cross-entropy loss
- hinge loss

Regression

- mean squared error (MSE, L_2 norm)
- mean absolute error (MAE, L₁norm)
- Huber loss (hybrid between L₁ and L₂ norm) Probabilistic inference
 - Kullback-Leibler divergence (KL divergence)

Likelihood function / posterior:

- negative log-likelihood (NLL) in maximum likelihood estimation (MLE)
- posterior in maximum a posteriori estimation (MAP)

Regularizers and constraints

- L_1 regularization $||\Theta||_1 = \lambda \sum_{i=1}^N |\theta_i|$
- L_2 regularization $||\Theta||_2^2 = \lambda \sum_{i=1}^N \theta_i^2$
- max-norm $||\Theta||_2^2 \le c$

<u>Task</u> **Regression (penalize large errors)**

Regression (penalize error linearly)

$$egin{split} rac{ extsf{Loss}}{N} &= rac{1}{N}\sum_{i=1}^N \Big(y^{(i)} - \hat{y}^{(i)}\Big)^2 \ \mathcal{L}_{ extsf{MAE}}(\hat{oldsymbol{y}},oldsymbol{y}) &= rac{1}{N}\sum_{i=1}^N \Big|y^{(i)} - \hat{y}^{(i)}\Big| \end{split}$$

- Loss / cost / error function $L(\hat{y}, y)$: Classification
 - 0-1 loss
 - cross-entropy loss
- hinge loss

Regression

- mean squared error (MSE, L_2 norm)
- mean absolute error (MAE, L₁norm)
- Huber loss (hybrid between L₁ and L₂ norm) Probabilistic inference
 - Kullback-Leibler divergence (KL divergence)

Likelihood function / posterior:

- negative log-likelihood (NLL) in maximum likelihood estimation (MLE)
- posterior in maximum a posteriori estimation (MAP)

Regularizers and constraints

- L_1 regularization $||\Theta||_1 = \lambda \sum_{i=1}^N |\theta_i|$
- L_2 regularization $||\Theta||_2^2 = \lambda \sum_{i=1}^N \theta_i^2$
- max-norm $||\Theta||_2^2 \le c$

Basics of machine learning: loss

0-1 loss:

$$\mathcal{L}_{0-1}(\hat{\boldsymbol{y}}, \boldsymbol{y}) = \sum_{i=1}^{N} \mathbb{1}([\hat{y}^{(i)}] \neq y^{(i)}) = \sum_{i=1}^{N} \begin{cases} 1, & \text{for } \hat{y}^{(i)} \neq y^{(i)} \\ 0, & \text{for } \hat{y}^{(i)} = y^{(i)} \end{cases}$$

where [x] is the function that rounds x to the nearest integer.

Binary cross-entropy loss (for binary classification):

$$egin{split} \mathcal{L}_{\mathsf{BCE}}(oldsymbol{\hat{y}},oldsymbol{y}) &= \sum_{i=1}^{N} -y^{(i)}\log(\hat{y}^{(i)}) - (1-y^{(i)})\log(1-\hat{y}^{(i)}) \ &= \sum_{i=1}^{N} egin{cases} -\log(\hat{y}^{(i)}), & ext{for } y^{(i)} = 1 \ -\log(1-\hat{y}^{(i)}), & ext{for } y^{(i)} = 0 \end{split}$$

		True co		
	Total population	Condition positive	Condition negative	Accuracy = <u>Σ True positive + Σ True negative</u> Σ Total population
Predicted condition	Predicted condition positive	True positive, Power	False positive, Type I error	Precision = Σ True positive Σ Predicted condition positive
	Predicted condition negative	False negative, Type II error	True negative	
		Recall, Sensitivity = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	Specificity = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	F ₁ score = 1 <u>Recall + Precision</u> 2

		True co	ndition		
	Total population	Condition positive	Condition negative	Accuracy = <u>Σ True positive + Σ True negative</u> Σ Total population	
Predicted	Predicted condition positive	True positive, Power	False positive, Type I error	Precision = Σ True positive Σ Predicted condition positive	Precision = # true positive / # predicted positive
condition	Predicted condition negative	False negative, Type II error	True negative		
		Recall, Sensitivity	Specificity	F ₁ score =	
		$= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	$= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	1 Recall + Precision 2	
	True p Sensit	ositive rate = ivity	False positive rate = 1 – specificity	=	
			False positive rate :	= # false	

positives / all condition negatives

Basics of machine learning: metrics

Basics of machine learning: metrics

R01 Outline

A. What can you do with ML?

B. Basics of machine learning

- C. Neural networks
 - I. Perceptrons to neurons
 - II. Activation functions
 - III. Training with backpropagation
 - IV. Gradient descent
 - V. Regularization

D. Brief preview of pset 1

Neural networks: perceptrons to neurons

Neural networks: perceptrons to neurons

Neural networks: perceptrons to neurons

Inputs Weights Sum Non-Linearity Output

© A. Amini, A. Soleimany

Neural networks: single layer feed-forward NN

Neural networks: activation functions

Neural networks: activation functions

Activation Loss Task Regression $\mathcal{L}_{ ext{MSE}}(\hat{oldsymbol{y}},oldsymbol{y}) = rac{1}{N}\sum_{i=1}^{N} \Bigl(y^{(i)} - \hat{y}^{(i)}\Bigr)^2$ Linear (ReLU, Leaky ReLU, etc) (penalize large errors) $\mathcal{L}_{ ext{MAE}}(\hat{oldsymbol{y}},oldsymbol{y}) = rac{1}{N}\sum_{i=1}^{N} \Bigl|y^{(i)} - \hat{y}^{(i)} \Bigr|$ Regression Linear (ReLU, Leaky ReLU, etc) (penalize error linearly) $\mathcal{L}_{ ext{BCE}}(\hat{oldsymbol{y}},oldsymbol{y}) = \sum_{i=1}^N -y^{(i)}\log\Bigl(\hat{y}^{(i)}\Bigr) - \Bigl(1-y^{(i)}\Bigr)\log\Bigl(1-\hat{y}^{(i)}\Bigr)$ Classification Sigmoid, tanh (binary) $\mathcal{L}_{ ext{CCE}}(\hat{oldsymbol{y}},oldsymbol{y}) = \sum_{i=1}^N \sum_{i=1}^K y_j^{(i)} \log\Bigl(\hat{y}_j^{(i)}\Bigr)$ Classification Softmax (multi-class) $\mathcal{L}_{ ext{minimax}}(oldsymbol{G},oldsymbol{D}) = E_x[\log(D(x))] + E_z[\log(1-D(G(z)))]$ Generative Linear (ReLU, Leaky ReLU, etc)

Other considerations: gradient intensity, computational activation cost, exploding/vanishing gradients, depth of network (linear is useless)

Inspired by 6.036 lecture notes (Leslie Kaebling)

So let's use the following shorthand from the previous figure,

 $NN(x;W) = A_L$

First, let's break down how the loss depends on the final layer,

$$rac{\partial \mathrm{loss}}{\partial \mathrm{W}_\mathrm{L}} = rac{\partial \mathrm{loss}}{\partial \mathrm{A}_\mathrm{L}} \cdot rac{\partial \mathrm{A}_\mathrm{L}}{\partial \mathrm{Z}_\mathrm{L}} \cdot rac{\partial \mathrm{Z}_\mathrm{L}}{\partial \mathrm{W}_\mathrm{L}}$$

Since,

$$rac{\partial \mathrm{Z}_\mathrm{L}}{\partial \mathrm{W}_\mathrm{L}} = rac{\partial}{\partial \mathrm{W}_\mathrm{L}} (W^T A_{L-1}) = A_{L-1}$$

We can re-write the equation as,

$$rac{\partial \, \mathrm{loss}}{\partial \mathrm{W}_\mathrm{L}} = A_{L-1} rac{\partial \mathrm{loss}}{\partial \mathrm{Z}_\mathrm{L}}$$

Since we have the outputs of every layer, all we need to compute for the gradient of the last layer with respect to the weights is the gradient of the loss with respect to the preactivation output. Now, to propagate through the whole network, we can keep applying the chain rule until the first layer of the network,

$$\frac{\partial \operatorname{loss}}{\partial Z_1} = \frac{\partial \operatorname{loss}}{\partial A_L} \cdot \frac{\partial A_L}{\partial Z_L} \cdot \frac{\partial Z_L}{\partial A_{L-1}} \cdot \frac{\partial A_{L-1}}{\partial Z_{L-1}} \cdots \frac{\partial A_2}{\partial Z_2} \cdot \frac{\partial Z_2}{\partial A_1} \cdot \frac{\partial A_1}{\partial Z_1}$$

If you spend a few minutes looking at matrix dimensions, it becomes clear that this is an informal derivation. Here are the dimensions to think about:

$$rac{\partial \log s}{\partial A^L} ext{ is } n^L imes 1 \qquad W_{L-1} = rac{\partial \operatorname{Z}_{\operatorname{L}}}{\partial A_{L-1}} ext{ is } m^L imes n^L \qquad \quad rac{\partial \operatorname{A}_{\operatorname{L}}}{\partial Z_L} ext{ is } n^L imes n^L$$

The equation with the correct dimensions for matrix multiplication,

$$rac{\partial \log s}{\partial Z_l} = rac{\partial A_l}{\partial Z_l} \cdot W_{l+1} \cdot rac{\partial A_{l+1}}{\partial Z_{l+1}} \cdot \ldots W_{L-1} \cdot rac{\partial A_{L-1}}{\partial Z_{L-1}} \cdot W_L \cdot rac{\partial A_L}{\partial Z_L} \cdot rac{\partial loss}{A_L}$$

On your own time!

Inspired by 6.036 lecture notes (Leslie Kaebling)

Gradient-based learning: use derivative to update weights

$$w_{\cdot}^{t} \leftarrow w_{\cdot}^{t-1} - \epsilon \left(\frac{\partial E}{\partial w_{\cdot}} + \lambda w_{\cdot}^{t-1}\right) + \eta \Delta w^{t-1}$$

$$\underset{\text{Gradient}}{\text{Frevious change}}$$

where

- Gradient descent: **∂**E**/∂**w = partial derivative of error E wrt w
- ϵ = **learning rate** (e.g. <0.1), needed to not overshoot the optimal solution
- λ = weight decay, penalizes large weights to prevent overfitting
- η = momentum, based on magnitude+sign of previous update (Δw^{t-1}); when direction of update is consistent \rightarrow faster convergence

Neural networks: gradient descent

We need to control model complexity for good generalization

Neural networks: regularization via validation set, early stopping

Leave out small "validation set"

- not used to train the model
- used to evaluate model at each epoch/iteration (VCE, Validation cross-entropy)
- Stop when VCE increases, prevent overfitting

Neural networks: regularization

(a) Standard Neural Net

 \otimes (b) After applying dropout.

 \otimes

 \otimes

 \otimes

 \otimes

 \otimes

$$\mathbf{a}^\ell {=} \, \mathbf{f}ig(z^\ell) * \mathbf{d}^\ell$$

A. What can you do with ML?

- B. Basics of machine learning
- C. Neural networks
- D. Brief preview of pset 1

PS1: TensorFlow Warm Up

ground truth: 5

input space: X = $\{0, 1, ..., 255\}^{28 \times 28}$

after rescaling: X^I = $[0, 1]^{28 \times 28}$

after flattening: $X^{II} = [0, 1]^{784}$

PS1: Data

Problem Set 1			
input space: X = $\{0, 1,, 255\}^{28 \times 28}$	$\mathbf{X}^{(i)} \in \mathcal{X}$		
after rescaling: X ¹ = $[0, 1]^{28 \times 28}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
after flattening: X ^{II} = $[0, 1]^{784}$	$28 \begin{bmatrix} x_{28,1} & x_{28,2} & \cdots & x_{28,28} \end{bmatrix}$		
integer-encoded label space: $Y_i = \{0, 1,, 9\}$	$\begin{array}{c} \mathbf{y}^{(i)} \in \mathcal{Y}_h \\ \hline 1 2 \cdots 10 \\ \hline \end{bmatrix}$		
one-hot-encoded label space: $Y_h = [0, 1]^{10}$	$\begin{bmatrix} y_1 \ y_2 \ \cdots \ y_{10} \end{bmatrix}$		

One hot encoding turns 1, 2, 3 into				
1	0	0		
0	1	0		
0	0	1		

PS1: Structure

i goes from 0 to # of training examples
z is one of 10 digits
$$z^{i} = W^{T}x^{i} + b$$

 $L_{i} = -\log(p_{k}^{i})$ where $k = y^{i}$, $p_{k}^{i} = \frac{e^{z_{k}^{i}}}{\sum_{j} e^{z_{j}^{i}}}$
 $\frac{\partial L_{i}}{\partial z_{j}} = p_{j}^{i} - \mathbf{1}(\mathbf{y_{i}} = \mathbf{j})$ Update weights for j
 $p^{i} = [0.6, 0.3, 0.1]$ then gradient $\rightarrow [0.6, -0.4, 0.1]$

Correct Label

http://cs231n.github.io/neural-networks-case-study/

i goes from 0 to # of training examples
z is one of 10 digits
$$Z^{i} = W^{T} X^{i} + b$$

L is loss $L_{i} = -\log(p_{k}^{i})$ where $k = y^{i}$, $p_{k}^{i} = \frac{e^{z_{k}^{i}}}{\sum_{j} e^{z_{j}^{i}}}$ igoes from 0 to 9
 $\frac{\partial L_{i}}{\partial z_{j}} = p_{j}^{i} - \mathbf{1}(\mathbf{y_{i}} = \mathbf{j})$ Update weights for j
 $p^{i} = [0.6, 0.3, 0.1]$ then gradient $\rightarrow [0.6, -0.4, 0.1]$

Correct Label

http://cs231n.github.io/neural-networks-case-study/

i goes from 0 to # of training examples
z is one of 10 digits
$$z^{i} = W^{T} x^{i} + b$$

L is loss $L_{i} = -\log(p_{k}^{i})$ where $k = y^{i}$, $p_{k}^{i} = \frac{e^{z_{k}^{i}}}{\sum_{j} e^{z_{j}^{j}}}$ igoes from 0 to 9
 $\frac{\partial L_{i}}{\partial z_{j}} = p_{j}^{i} - \mathbf{1}(\mathbf{y_{i}} = \mathbf{j})$ Update weights for j
if \mathbf{y}_{i} (the actual label) is j (a digit), then $d_{L_{i}/z_{j}} = p_{j}^{i}$
 $p^{i} = [0.6, 0.3, 0.1]$ then gradient $\rightarrow [0.6, -0.4, 0.1]$
Correct Label

http://cs231n.github.io/neural-networks-case-study/

```
# tf Graph Input
X = tf.placeholder("float")
Y = tf.placeholder("float")
# Set model weights
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")
# Construct a linear model
pred = tf.add(tf.mul(X, W), b)
# Mean squared error
cost = tf.reduce sum(tf.pow(pred-Y, 2))/(2*n samples)
# Gradient descent
optimizer =
```

tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

More neural network review Convolutional neural networks Recurrent neural networks

A. What can you do with ML?

- B. Basics of machine learning
- C. Neural networks
- D. Brief preview of pset 1

E. BONUS CONTENT if time!

Non-parametric models

<u>Gradient descent – batch vs stochastic</u>

Momentum

<u>Adam</u>

Lecture question: "how do we actually calculate these derivatives?" Answer: automatic differentiation

Basics of machine learning: non-parametric models

1
$$D = \{(X_{\$}, Y_{\$}), (X_{(}, Y_{(}), ..., (X_{*}, Y_{*}))\}$$
2 function knn(k, dist, $D_{\{tra/*\}}, D_{\{t01t\}})$:
3 votes = []
4 for $i = 1$ to len($D_{\{t01t\}}$)
5 d = []
6 for j = 1 to len($D_{\{tra/*\}}$)
7 d[j] = dist($x_{/}, x_{4}$)
8 d = argsort(d)
9 votes[i] = most_common(set(labels[d]))

Neural networks: gradient descent - batch gradient update

Gradient of objective J with respect to parameter vector W

$$abla_W \mathrm{J} = egin{bmatrix} \partial \mathrm{J} / \partial W_1 \ dots \ \partial \mathrm{J} / \partial W_\mathrm{m} \end{bmatrix}$$

Batch gradient update

$$W := W - \eta \sum_{i=1}^n
abla_W \mathrm{J}\Big(h\Big(x^{(i)};W\Big),y^{(i)}\Big)$$

Pseudocode for gradient update algorithm

1 function gradient_update $(W_{/*/t}, \eta, J, \epsilon)$: 2 $W^0 = W_{init}$ 3 t = 0 4 while $|J(W^t) - J(W^{t<\$})| > \epsilon$ This is an arbitrary 5 t = t+1 6 $W^t = W^{t<\$} - \eta \nabla_{@}(J)$

Neural networks: gradient descent - stochastic gradient descent

Stochastic gradient update (per randomly sampled training example):

$$W := W - \eta
abla_W \mathrm{J}\Big(h\Big(x^{(i)};W\Big),y^{(i)}\Big)$$

Pseudocode for stochastic gradient update algorithm

1 function sgd(
$$W_{/*/t}, \eta, J, T, \epsilon$$
):
2 $W^0 = W_{init}$
3 for $t = 1$ to T
4 randomly select i $\in \{1, 2, ..., n\}$
5 $W^t = W^{t < \$} - \eta(t) \nabla_{@}(J)$

Mini-batch gradient descent

$$W := W - \eta \sum_{i=1}^k
abla_W \mathcal{L}\Big(h\Big(x^{(i)};W\Big),y^{(i)}\Big)$$

Optimization: momentum

$$egin{aligned} oldsymbol{v}_{k+1} &= eta v_k +
abla f(w_k) \ w_{k+1} &= w_k - \eta v_{k+1} \end{aligned}$$

Nesterov inequality? How can we make momentum better?

$$egin{aligned} v_{k+1} &= eta v_k +
abla f(w_k + eta v_k) \ w_{k+1} &= w_k - \eta v_{k+1} \end{aligned}$$

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

Require: α : Stepsize

Require: $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates **Require:** $f(\theta)$: Stochastic objective function with parameters θ **Require:** θ_0 : Initial parameter vector $m_0 \leftarrow 0$ (Initialize 1st moment vector) $v_0 \leftarrow 0$ (Initialize timestep) **while** θ_t not converged **do** $t \leftarrow t + 1$ $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t) $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate) $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate) $\widehat{m}_t \leftarrow m_t/(1 - \beta_1^t)$ (Compute bias-corrected first moment estimate) $\widehat{v}_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t/(\sqrt{\widehat{v}_t} + \epsilon)$ (Update parameters) **end while return** θ_t (Resulting parameters)

Neural networks: automatic differentiation

Dual numbers

Augment a standard Taylor series (numerical differentiation), with a "dual number",

$$f(a+\epsilon)=f(a)+rac{f'(a)}{1!}\epsilon+rac{f''(a)}{2!}\epsilon^2+\cdots+rac{f^n}{n!}\epsilon^n$$

Because "dual numbers" have the (manufactured) property,

 $\epsilon^2=0$

The Taylor Series simplifies to,

$$f(a+\epsilon)=f(a)+f'(a)\epsilon$$

Which recovers the function output as well as the first derivative.

Forward automatic differentiation

End result

$$J^T \cdot v = egin{pmatrix} rac{\partial y_1}{\partial x_1} & \cdots & rac{\partial y_m}{\partial x_1} \ dots & \ddots & dots \ rac{\partial y_1}{\partial x_n} & \cdots & rac{\partial y_m}{\partial x_n} \end{pmatrix} egin{pmatrix} rac{\partial l}{\partial y_1} \ dots \ rac{\partial l}{\partial y_m} \end{pmatrix} = egin{pmatrix} rac{\partial l}{\partial x_1} \ dots \ rac{\partial l}{\partial x_n} \end{pmatrix}$$