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Introduction

@ Variational inference (VI) is an approach to posterior inference
based on approximating the posterior by a nicer distribution.

@ The general idea is to:

1. choose a nice family of distributions O,
2. find a g € Q that is as close as possible to the posterior, and
3. use g to quantify uncertainty, as a proxy for the posterior.

@ Different choices of O and definitions of “close” lead to
different variational inference techniques.

@ In Bayesian statistics, VI is also known as variational Bayes,
but VI is also useful outside of Bayesian inference.
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Classic variational inference
@ Let 7(#) denote the target distribution, e.g., 7(0) = p(f|x).

@ Classic VI makes the following choices:

1. the approximating family Q consists of all factorized
distributions of the form

q(0) = q1(01) - - - gm(0m)

for some decomposition of # into components 64,...,60,,, and

2. we seek the ¢ € Q that minimizes the Kullback—Leibler
divergence from q to m,

°P' ¢ argmin D(q||).

qeQ

q

e The Kullback-Leibler (KL) divergence, or relative entropy, is

D(q|l) = / 2(6) log %d@ = B, log %)
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Toy example: VI for univariate normal

@ Consider the univariate normal model as a toy example:

(g, A1)

and assume an improper uniform prior on 1 and .

X1, Xolp, A S

@ Define the target distribution to be the posterior:

W(Ma /\) — p(,u, /\|331;n) X p(xlinlﬂa >‘)

o XV exp (— §A Ty (@i — p)?).

o Thus, logm(p, A) = Zlog A — 3AD"" , (z; — pu)? + const.

@ A natural decomposition to try would be 6; = u and 65 = A,
that is, to consider approximations of the form

q(p, A) = @1 (p)a2(N).
For convenience, we write q(u, A) = q(u)q(N).
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Classic variational inference: Algorithm

@ To derive the classic VI updates, we need only specify the
target distribution 7 and the decomposition of 6 into

O1,....0,,.

@ The classic VI algorithm then proceeds as follows:
1. Initialize q1,...,qm.

2. Repeat until convergence:
For j =1,...,m, update g; by setting it to be

g5 (0) o< exp(h;(6;))

where

h;(0;) :=E,(logm(6) | 6;) =/(log7r(9))Hqi(9,,;)d9i.

i#]

3. Use q(0) = q1(01) - - - ¢,n(0,,) as an approximation to 7(6).
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Justification of classic VI algorithm (1/2)
o Let 8 = (64,...,60,,) where 0; ~ q; independently for some

qi,---,qm. Let ™ be the target distribution. Then for any 7,

q1(61) - - Qm(gm))

D(q1 - qm ||7T):E(10g m(6)

Eloggi(6;) — Elog ()

|
NNgE

1=1
Elogg;(0;) — E(E(log m(6)|6;)) + (const wrt g;)

= Elogq;(0;) — Eh;(0;) + (const wrt g;)

0;
— E(log }S (9))) + (const wrt g;)

= D(g; || ce™) + (const wrt g;)

where h;(6;) := E(log7(0) | 6;) and 1/c = [ e"i%)dp;.
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Justification of classic VI algorithm (2/2)

@ Hence,

argmin D(qi - - - ¢ || ) = argmin D(g; || ce™).
g 95

o By the properties of KL divergence, D(g; || ce™) > 0 with
equality if and only if ¢g; = celi almost everywhere.

o Therefore, choosing g; o< € minimizes D(q1 - - - g || 7) with

respect to q;, given g; for ¢ # j.

@ This shows that the classic VI algorithm performs coordinate
descent, updating g; to minimize KL at each step, holding g;
fixed for i # j.
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Normal example: Deriving the VI updates (1/3)
e Updating g(u) given g(\):

ha(u) = / 2(V) log (1, \)dA

n 1

=3 /q()\) log A\ — 5(271(:1:z — u)2)/)\q()\)d)\ + const.
@ Therefore, according to the algorithm, we update g(u) to be

7" (1) ox exp(ha () o< exp (— SEQ) 2y(xi — )?)
N (1| 7, (RE(V) ™).

@ Computationally, we only need to compute and store T and

E()).

o Here, E(A) = [ Ag(A\)d\ is computed using the current g(\).
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Normal example: Deriving the VI updates (2/3)
e Updating q(\) given q(u):

o) = [ a(u)log (1, )
= —log)\ - —)\Z/(:vz p)dy + const.

e Therefore, according to the algorithm, we update ¢()\) to be

g™V (\)  exp(ha(\)) o< A2 exp(—3SA\)
x Gamma(\ | n/2+ 1, §/2)

where, after plugging in q(u) = N (u | Z, (RE(X))™!) and
simplifying,

S = z:‘/(a:Z p)dp = né? + 1/E(N).
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Normal example: Deriving the VI updates (3/3)
@ Thus, the updates to q(u) and g(\) are:

" () =N (p | Z, (nRE(N) ),
¢"*"(\) = Gamma (A | n/2 + 1, %(n&2 + 1/E(N)).

@ The only thing we need to compute at each iteration is E()).

@ From the form of ¢V (), we see that

n/2+1
3(n6? +1/E(N))

Enew (A) —

@ In this example, it turns out that we can analytically solve for
the limiting value of E()), which is E(\) = (n + 1)/(né?).

@ However, in more complex models, we will have to iterate
until convergence.
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Convolutional neural networks: overview

Next layer

Pooling layer

\

Detector layer: Nonlinearity

e.g., rectified linear

A

Convolution layer:

Affine transform

f

Input to layers

https://www.deeplearningbook.org/contents/convnets.html
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Convolutional neural networks: overview

Next layer

Pooling layer / 17
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Input to layers

https://www.mathworks.com/solutions/deep-learning/convolutional-neural- network.html



Convolutional neural networks: convolution operation

Imagine a position x taken at a time point t, which are both continuous,

z(t)

Suppose this measurement is noisy. To obtain a less noisy estimate of the position, we want a weighted average of recent

measurements. Using a weighting function w(a), where a is the age of the measurement,
input

s(t) = f:c(a)w(t —a)da = (:c{ w)@

convolutional kernel/filter

Generally, sensor inputs are not continuous and most signal processing tasks rely on discretized data—data provided at regular intervals.
In machine learning, input is generally a multi-dimensional array of data and the kernel is a multi-dimensional array of parameters:

S(i,5) = (W I)(i,5) = Y Y I(i+m,j+n)W(m,n)
m T
This operation also exhibits translational equivariance. Let g be a function mapping one image function to another image function that shifts
inputs to the right by one,

I'(i, j) = g(1(i,5)) = I(i — 1, 5)

If we apply the transformation to /, then apply a convolution, the output is equivalent to applying a convolution to I’ then applied the

transformation g to the output, , |
(W I') (i, ) = g(W * I)(i, /))

So, a filter applied over an input pattern that is shifted in an image will result in the same convolutional output as the same translational
transformation applied after the convolutional—translational equivariance.

https://www.deeplearningbook.org/contents/convnets.html
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Convolutional neural networks: 1D convolution

Image:| 0 |0 |1 |1 |1|/0|1|/0/|O0]|O

F1 -1 | +1
After convolution (w/ Fy): oj]11]0,0|-1f1}|-1{01|0
|
Fo| -1 [+1]|-1
After convolution (w/ Fp): 110 |-1,0|-2111]-1]0

6.036 lecture notes (Leslie Kaelbling)



Convolutional neural networks: 2D convolution

Input
Kernel
c d
w x
g h
Y z
i J k l
v Output
_>
aw + br + bw + cx + cw + dr +
ey + [z fy + gz g9y + hz
ew + fz + fw + g + gw + hr +
W o+ Jz Jjy + kz ky + |z

https://www.deeplearningbook.org/contents/convnets.html
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Convolutional neural networks: 2D convolution

Filter / Kernel

Image

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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Convolutional neural networks: 2D convolution

1x1 1x0 1x1 0 0
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0 0 oxl OxO 1x1 1 1
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https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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Convolutional neural networks: multi-channel inputs

o|lo|o|o| o] o] . RGO o | o | o o|of o
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https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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Recurrent neural networks: state machine

Recurrence relation w/ external input

st) — f(s(f-—l)’m(t);g)

OO
| h( 2 \- R Nes ,\
_> f f f f\\_

f Unfold

https://www.deeplearningbook.org/contents/rnn.html
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Recurrent neural networks: back pro

pagation through time

Idea: Learn sequential / temporal relationships

output vector

Ve

RNN

recurrent cell

\ 4

input vector Xt

Apply a recurrence relation at every
time step to process a sequence:

ht fW (Iht—l

Xt

)

new state function  old state input vector at
parameterized time step t
by W

Note: the same function and set of

parameters are used at every time step
© A. Soleimany, A. Amini



Model Interpretabllity
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Model interpretability: model interpretation overview

« Adoption of deep learning has led to:
- Large increase in predictive capabilities
- Complex and poorly-understood black-box models

o Imperative that certain model decisions can be
interpretably rationalized
- Ex:loan-application screening, recidivism prediction,
medical diagnoses, autonomous vehicles

o Explain model failures and improve architectures

o Interpretability is also crucial in scientific applications,
where goal is to identify general underlying principles
from accurate predictive models



Model interpretability: black-box models

"~ ProteinY

Perturbations




Model Interpretability: Four Basic Strategies

e Visualize the filters

* Measure the Gradient of node with respect to the input (Saliency
Map)

* Choose an input that maximizes a node

* Perturb Input and See the effect on output
e Others!
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Types of DNN Interpretability

WeightVisualization Surrogate Model

2.

Slides by Beomsu Kim, KAIST

DNN Interpretability

I Interpreting Models |

Interpreting Decisions |

—

Representation Analysis |

Data Generation |

I Example-based |

I Attribution Methods

Model

Input

- Filter visualization in Convolutional Neural Networks

- Can understand what kind of features CNN has learned

- Still too many filters!

“Deep Inside Convolutional Networks: Visualizing Image Classification Models and Saliency Maps”, https://arxiv.org/pdf/1312.6034.pdf

Data Generation Example-based
Low-Level| |Mid-Level| [High-Level Trainable
- —b p—b
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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Model interpretability: saliency maps

Visualizing saliency

The procedure is related to back-propagation, but in this case the
optimization is performed with respect to the input image, while the
weights are fixed to those found during the training stage.

More concretely,
S.(I) ~WTI +b
Where,

S,
W= L

Optimization by gradient ascent

More formally, let Sc(l) be the score of the class ¢, computed by
the classification layer of the ConvNet for an image I. We would

like to find (via backprop) an L2-regularised image, such that the
score Sc is high,

arg max S (I) — A[| ||z

dumbbell

cup

dalmatian

https://arxiv.org/pdf/1312.6034.pdf
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Interpreting Models

Types of DNN Interpretability

| Representation Analysis | | Data Generation | | Example-based | |Attribution Methods I

Model Input

Example-based Attribution Methods Gradient Based Backprop.Based
- Which training instance influenced the decision most!?
- Still does not specifically highlight which features were important
- Influence functions for interpreting black-box methods. Fragility of NN model interpretation.
‘Sunflower': 59.2% conf. Influence: 0.09 Influence: 0.14 Influence: 0.42
K% b .p"_f',','f' s

Original

“Understanding Black-box Predictions via Influence Functions”, https://arxiv.org/pdf/1703.04730.pdf
“Interpretation of Neural Networks is Fragile”, https://arxiv.org/pdf/1710.10547.pdf 49
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Types of DNN Interpretability

WeightVisualization Surrogate Model

simple AM supple AM AM c}ensﬁy
. (init. to (init. to
(initialized
class class
to mean)
means) means)

Original
Activation
Maximization

Observation: Connecting to the data leads to sharper visualizations.

Data Generation

AM-gen
(init. to

means)

Example-based

Constrained
Activation
Maximization




