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Bio review: central dogma defines flow of information within a cell
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Bio review: central dogma defines flow of information within a cell
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Bio review: central dogma defines flow of information within a cell
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Bio review: genes as the primary functional units of the genome

transcription start site (TSS)
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assembled/spliced together in
different combinations

Gene: All of the DNA bases necessary to produce a protein or set of
protein products and all of the DNA bases required for
transcriptional regulation of products' coding sequences.




Bio review: genes as the primary functional units of the genome
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Bio review: genes as the primary functional units of the genome
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Bio review: genes as the primary functional units of the genome
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Bio review: DNA is structured across many scales
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Bio review: DNA is structured across many scales
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Bio review: DNA is structured across many scales
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Bio review: chromatin can exist in different functional states

Transcriptional Activation
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Quantifying DNA: next-generation sequencing

Next-generation sequencing technologies enable us to quantify & localize nucleic acid
molecules to the genome.

—>the “raw data” of NGS of
technologies are short (=30bp)
sequence reads
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Quantifying DNA: next-generation sequencing

Next-generation sequencing technologies enable us to quantify & localize nucleic acid

molecules to the genome.

—>the “raw data” of NGS of
technologies are short (=30bp)
sequence reads

—>Reads correspond to:
 ChIP-Seq - fragments pulled
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accessible to enzymatic cutting
by DNase-/

« ATAC Seq - fragments
accessible to Tn5 Transposase
activity

Hi-C or chromatin capture -
fragments close to each other

1. Start with cell
or tissue samples

5. Ligate fmgmented
chromatin

2. Crosslink chromatin

>J

=) ‘NS =)
0

=4

6. Shear DNA &
pull down biotinylated DNA

3. Fragment chromatin

7. Paired-end Sequencing

‘ 4. Repair
and biotinylate ends

8. Bioinformatics




Quantifying DNA: next-generation sequencing

Next-generation sequencing technologies enable us to quantify & localize nucleic acid

molecules to the genome.

—>the “raw data” of NGS of
technologies are short (=30bp)
sequence reads

—>Reads correspond to:
 ChIP-Seq - fragments pulled
down with antibody against a
DNA binder

 DNAse-Seq — fragments
accessible to enzymatic cutting
by DNase-/

« ATAC Seq - fragments
accessible to Tn5 Transposase
activity
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Quantifying DNA: DNA sequences as input to CNNs

DNA Sequences can be represented and processed in an “image” context with CNNs.

CNN Model Features DNA Sequences

2D grid of pixel values with

, 1D array of one-hot encoded
1 (monochrome) or 3 (color) Input Representation

DNA sequences
channels

low-level: sequence motifs
low-level: edges, shapes

Kernel Representations high-level: motif combinations
high-level: objects, faces
& grammar
probabilities of different object predictions of bound/unbound,

Model Outputs
classes chromatin state




Quantifying DNA: DNA sequences as input to RNNs

DNA Sequences can be represented and processed in an “time series” context with RNNs.

Spoken Audio Time

. RNN Model Features DNA Sequences
Series
time, evaluating phonemes or _ base position, evaluating bases
Input Axis

words at each time step at each sequence-step
context (within a question, type of DNA region being read

beginning/end of a sentence), Hidden States (ORF, promoter, etc.);

vocal profile or accent memory of previous motifs




Quantifying DNA: position weight matrices+more

Table 1: Starting sequences.

Sequence

AAGAAT
ATCATA
AAGTAA
AACAAA
ATTAAA
AAGAAT
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Quantifying DNA: position weight matrices+more

Table 1: Starting sequences.

Table 2: Position Count Matrix.

#  Sequence

1 AAGAAT Position 1 2 3 4 5 6
9 ATCATA

3 AAGTAA A 6 4 0 5 5 4
L AACAAA C 00 2 0 0 0
= ATTAAM G 00 3 00 0
& AAGAAT T 002 1 1 1 2




Quantifying DNA: position weight matrices+more

Table 1: Starting sequences.

S Table 2: Position Count Matrix. Table 3: Position Probability Matrix.
equence

1 AAGAAT Position 1 2 3 4 5 6 Position 1 2 3 4 5 6

§ ﬁgﬁﬁ A 6 4 0 5 5 4 A 1.00 0.67 0.00 0.83 083 0.66

4 AACAAA C 0 0 2 0 0 O C 0.00 0.00 0.33 0.00 0.00 0.00

5 ATTAAA G 00 3 00 0 G 0.00 0.00 0.50 0.00 0.00 0.00

6 AACGAAT T 0 2 1 1 1 2 T 0.00 0.33 0.17 0.17 0.17 0.33

-

N =letterinset [A, T,C, G pppr(N) = On
C = counts 2.C



Quantifying DNA: position weight matrices+more

Table 1: Starting sequences.

%S Table 2: Position Count Matrix. Table 3: Position Probability Matrix.
equence

1 AAGAAT Position 1 2 3 4 5 6 Position 1 2 3 4 5 6

g ﬁi%%&; A 6 4 0 5 5 4 A 1.00 0.67 0.00 0.83 0.83 0.66

4  AACAAA C O 0 2 0 0 O C 0.00 0.00 0.33 0.00 0.00 0.00

5 ATTAAA G O 0 3 0 0 O G 0.00 0.00 0.50 0.00 0.00 0.00

6 AAGAAT T 0 2 1 1 1 2 T 0.00 0.33 0.17 0.17 0.17 0.33

Table 4: Position Probability Matrix with a pseudocount of 1.

Cy+E
ki PPMp(N) = "
Position 1 2 3 4 5 6 p( ) EC s
A 0.892 0.610 0.036 0.750 0.750 0.610
C 0.036 0.035 0.320 0.035 0.035 0.035 p = pseudocount (usually 1)
G 0.036 0.035 0.464 0.035 0.035 0.035 n = # of letters
T 0.036 0.320 0.180 0.180 0.180 0.320




Quantifying DNA: position weight matrices+more

Table 5: Position Weight Matrix.

Position 1

2 3

4 5 6

2

1.425 -Inf
-Inf -Inf 0.415
-Inf -Inf 1.000
-Inf 0.415 -0.585

1.737  1.737 1.415
-Inf -Inf -Inf
-Inf -Inf -Inf
-0.585 -0.595 0.415

(HOOIP

(V) = o,

PPM(Cy)

By

)

B = background frequency
matrix --> assume By = 0.25

Table 6: Position Weight Matrix with a pseudocount of 1.

Position 1 2 3 4 5 6

A 1.840 1.280 -2.807 1.585 1.585 1.280

C -2.807 -2.807 0.363 -2.807 -2.807 -2.807
G -2.807 -2.807 0.893 -2.807 -2.807 -2.807
T -2.807 0.363 -0.485 -0.485 -0.485 0.363




Quantifying DNA: position weight matrices+more

Table 5: Position Weight Matrix.

Position 1 2 3 4 5 6

A 2 1.425 -Inf 1.737 1.737 1.415
C -Inf -Inf 0.415 -Inf -Inf -Inf
G -Inf -Inf 1.000 -Inf -Inf -Inf
T -Inf 0.415 -0.585 -0.585 -0.595 0.415

Table 7: Information Content Matrix.

Position 1 2 3 4 5 6

A 2.000 0.721 0.000 1.125 1.125 0.721
C 0.000 0.000 0.180 0.000 0.000 0.000
G 0.000 0.000 0.270 0.000 0.000 0.000
T 0.000 0.361 0.090 0.225 0.225 0.361

Table 6: Position Weight Matrix with a pseudocount of 1.

Position 1 2 3 4 5 6

A 1.840 1.280 -2.807 1.585 1.585 1.280
C -2.807 -2.807 0.363 -2.807 -2.807 -2.807
G -2.807 -2.807 0.893 -2.807 -2.807 -2.807
T -2.807 0.363 -0.485 -0.485 -0.485 0.363

/ Ask: are some positions more
important than others?

Quantify the total amount of
information at each position — AKA the
level of conservation

https://bioconductor.org/packages/release/bioc/vignettes/universalmotif/inst/doc/IntroductionToSequenceMotifs.pdf



https://bioconductor.org/packages/release/bioc/vignettes/universalmotif/inst/doc/IntroductionToSequenceMotifs.pdf

Quantifying DNA: position weight matrices+more

Table 3: Position Probability Matrix.

Position 1 2 3 4 5 6
A 1.00 0.67 0.00 0.83 0.83 0.66
C 0.00 0.00 0.33 0.00 0.00 0.00
G 0.00 0.00 050 0.00 0.00 0.00
T 0.00 033 0.17 0.17 017 0.33
Table 7: Information Content Matrix.
Position 1 2 3 4 51 6
A 2.000 0.721 0.000 1.125 1.125 0.721
C 0.000 0.000 0.180 0.000 0.000 0.000
G 0.000 0.000 0.270 0.000 0.000 0.000
T 0.000 0.361 0.090 0.225 0.225 0.361
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Figure 1: Sequence logo of a Position Probability Matrix
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Next week

Transcription factors
DNA methylation
Gene expression & splicing



Quantifying DNA: hypergeometric distribution

The hypergeometric distribution allows us to calculate probabilities of enrichment.

100

30 25 55

# with motif, M # with binder, B

total # sequences, T

o GG Go)(os—20) oo o) (as20)
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p = Ppy(x = 20) = 2.0x107° p =P (x=20) = 0.62




