Chromatin architecture and gene regulation

Recitation 4

MIT - 6.802 / 6.874 / 20.390 / 20.490 / HST.506 - Spring 2021 Jackie Valeri

Jackie valen

Slides adapted from Corban Swain and previous course materials

A. Bio review

- I. Central dogma
- II. Genes as units
- B. Chromatin Architecture
- C. Quantifying DNA
 - I. Next-generation sequencing
 - II. DNA + models, math

Bio review: central dogma defines flow of information within a cell

Bio review: central dogma defines flow of information within a cell

- affector molecule binding
- cofactor binding
- intracelluar compartment movement

A. Bio review

- I. Central dogma
- II. Genes as units

B. Chromatin Architecture

C. Quantifying DNA I. Next-generation sequencing

II. DNA + models, math

Transcriptional Activation

Transcription Factor-DNA Binding at Promoter & Enhancer Pioneer Protein Binding Enhancer - Promoter colocalization Histon Acetylation (e.g. H4 Lysine)

Transcriptional Inactivation

Protein-DNA Binding at Repressor TF Degradation Histone deacetylation Histone Methylation HP1 Histone Binding

Bio review: chromatin can exist in different functional states

A. Bio review

- I. Central dogma
- II. Genes as units
- B. Chromatin Architecture

C. Quantifying DNA

- I. Next-generation sequencing
- II. DNA + models, math

→the "raw data" of NGS of technologies are short (≈30bp) sequence reads

- →the "raw data" of NGS of technologies are short (≈30bp) sequence reads
- \rightarrow Reads correspond to:
 - ChIP-Seq fragments pulled down with antibody against a DNA binder

- →the "raw data" of NGS of technologies are short (≈30bp) sequence reads
- \rightarrow Reads correspond to:
 - ChIP-Seq fragments pulled down with antibody against a DNA binder
 - DNAse-Seq fragments accessible to enzymatic cutting by DNase-I

- →the "raw data" of NGS of technologies are short (≈30bp) sequence reads
- \rightarrow Reads correspond to:
 - ChIP-Seq fragments pulled down with antibody against a DNA binder
 - DNAse-Seq fragments accessible to enzymatic cutting by DNase-I
 - ATAC Seq fragments accessible to Tn5 Transposase activity

- →the "raw data" of NGS of technologies are short (≈30bp) sequence reads
- \rightarrow Reads correspond to:
 - ChIP-Seq fragments pulled down with antibody against a DNA binder
 - DNAse-Seq fragments accessible to enzymatic cutting by DNase-I
 - ATAC Seq fragments accessible to Tn5 Transposase activity
 - Hi-C or chromatin capture fragments close to each other

→the "raw data" of NGS of technologies are short (≈30bp) sequence reads

 \rightarrow Reads correspond to:

- ChIP-Seq fragments pulled down with antibody against a DNA binder
- DNAse-Seq fragments accessible to enzymatic cutting by DNase-I
- ATAC Seq fragments accessible to Tn5 Transposase activity
- Hi-C or chromatin capture *fragments close to each other*

→lssues

- Reads can map to multiple places
- Amplification bias
- Repetitive elements in the genome could give erroneous results

Quantifying DNA: DNA sequences as input to CNNs

DNA Sequences can be represented and processed in an "image" context with CNNs.

Images	CNN Model Features	DNA Sequences
2D grid of pixel values with 1 (monochrome) or 3 (color) channels	Input Representation	1D array of one-hot encoded DNA sequences
low-level: edges, shapes high-level: objects, faces	Kernel Representations	low-level: sequence motifs high-level: motif combinations & grammar
probabilities of different object classes	Model Outputs	predictions of bound/unbound, chromatin state

Quantifying DNA: DNA sequences as input to RNNs

DNA Sequences can be represented and processed in an "time series" context with RNNs.

Spoken Audio Time Series	RNN Model Features	DNA Sequences
time, evaluating phonemes or words at each time step	Input Axis	base position, evaluating bases at each sequence-step
context (within a question, beginning/end of a sentence), vocal profile or accent	Hidden States	type of DNA region being read (ORF, promoter, etc.); memory of previous motifs

Table 1: Starting sequences.

- # Sequence
- 1 AAGAAT
- 2 ATCATA
- 3 AAGTAA
- 4 AACAAA
- 5 ATTAAA
- 6 AAGAAT

Table 1: Starting sequences.

 $rac{\#}{1}$ 2
3

 $\frac{4}{5}$

6

	Table 2. I	Dogit	ion	Con	int I	Mati	riv
Sequence		OSI	lon	COL	1110 1	viau	
AAGAAT	Position	1	2	3	4	5	6
$\begin{array}{c} \text{ATCATA} \\ \text{AAGTA} \end{array}$	A	6	4	0	5	5	4
AACAAA	C	0	0	2	0	0	0
ATTAAA	G	0	0 2	3	0	0	0
AAGAAT	T	0	Z	1	T	1	Z

Table 1: Starting sequences.

AAGAAT Position 1 2 3 4 5 6 ATCATA A 6 4 0 5 5 4 A 1.00 0.67 0.00 0.83 0.83 AAGTAA C 0 0 2 0 0 0 0 0 0 0 0 0 0.00 0.00 0.00 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.00 0.00 0.33 0.00 0.00 0.00 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.00 0.00 0.00 0.33 0.00
ATCATA A 6 4 0 5 5 4 A 1.00 0.67 0.00 0.83 0.83 AAGTAA C 0 0 2 0 0 C 0.00 0.00 0.33 0.00 0.00 AACAAA G 0 0 3 0 0 0 G 0.00 0.00 0.50 0.00 0.00 ATTAAA T 0 2 1 1 1 2 T 0.00 0.33 0.17 0.17 0.17
AACAAA C 0 0 2 0
T = 0.91119 T = 0.000.330.170.170.17
$\overrightarrow{AAGAAT} \qquad \overrightarrow{1} \qquad \overrightarrow{0} \qquad \overrightarrow{2} \qquad \overrightarrow{1} \qquad \overrightarrow{1} \qquad \overrightarrow{2} \qquad \overrightarrow{1} \qquad \overrightarrow{0} \qquad\overrightarrow{0} \qquad$

Table 1: Starting sequences.

Sequence

AAGAAT

ATCATA

AAGTAA

AACAAA

ATTAAA

AAGAAT

#

1

 $\frac{2}{3}$

4

5

6

Table 2: I	Posit	tion	Cou	int l	Mat	rix
Position	1	2	3	4	5	(
A	6	4	0	5	5	4
С	0	0	2	0	0	(
G	0	0	3	0	0	(
Т	0	2	1	1	1	

Table 3: Position Probability Matrix.

Position	1	2	3	4	5	6
A	1.00	0.67	0.00	0.83	0.83	0.66
С	0.00	0.00	0.33	0.00	0.00	0.00
G	0.00	0.00	0.50	0.00	0.00	0.00
Т	0.00	0.33	0.17	0.17	0.17	0.33

Table 4: Position Probability Matrix with a pseudocount of 1.

Position	1	2	3	4	5	6	
A	0.892	0.610	0.036	0.750	0.750	0.610	
С	0.036	0.035	0.320	0.035	0.035	0.035	•
G	0.036	0.035	0.464	0.035	0.035	0.035	
Т	0.036	0.320	0.180	0.180	0.180	0.320	

$$PPMp(N) = \frac{C_N + \frac{p}{n}}{\sum C + p}$$

```
p = pseudocount (usually 1)
n = # of letters
```

Position	1	2	3	4	5	6
A	2	1.425	-Inf	1.737	1.737	1.415
С	-Inf	-Inf	0.415	-Inf	-Inf	-Inf
G	-Inf	-Inf	1.000	-Inf	-Inf	-Inf
Т	-Inf	0.415	-0.585	-0.585	-0.595	0.415

Table 5: Position Weight Matrix.

Table 6: Position Weight Matrix with a pseudocount of 1.

Position	1	2	3	4	5	6
A	1.840	1.280	-2.807	1.585	1.585	1.280
С	-2.807	-2.807	0.363	-2.807	-2.807	-2.807
G	-2.807	-2.807	0.893	-2.807	-2.807	-2.807
Т	-2.807	0.363	-0.485	-0.485	-0.485	0.363

$$S(N) = \log_2\left(\frac{PPM(C_N)}{B_N}\right)$$

B = background frequencymatrix --> assume $B_N = 0.25$

Position	1	2	3	4	5	6
A	2	1.425	-Inf	1.737	1.737	1.415
С	-Inf	-Inf	0.415	-Inf	-Inf	-Inf
G	-Inf	-Inf	1.000	-Inf	-Inf	-Inf
Т	-Inf	0.415	-0.585	-0.585	-0.595	0.415

Table 5: Position Weight Matrix.

Table 6: Position Weight Matrix with a pseudocount of 1.

Position	1	2	3	4	5	6
A	1.840	1.280	-2.807	1.585	1.585	1.280
С	-2.807	-2.807	0.363	-2.807	-2.807	-2.807
G	-2.807	-2.807	0.893	-2.807	-2.807	-2.807
Т	-2.807	0.363	-0.485	-0.485	-0.485	0.363

Table 7: Information Content Matrix.

Position	1	2	3	4	5	6
A	2.000	0.721	0.000	1.125	1.125	0.721
С	0.000	0.000	0.180	0.000	0.000	0.000
G	0.000	0.000	0.270	0.000	0.000	0.000
Т	0.000	0.361	0.090	0.225	0.225	0.361

Ask: are some positions more important than others?

Quantify the total amount of information at each position – AKA the level of conservation

https://bioconductor.org/packages/release/bioc/vignettes/universalmotif/inst/doc/IntroductionToSequenceMotifs.pdf

Table 3: Position Probability Matrix.

Position	1	2	3	4	5	6
A	1.00	0.67	0.00	0.83	0.83	0.66
С	0.00	0.00	0.33	0.00	0.00	0.00
G	0.00	0.00	0.50	0.00	0.00	0.00
Т	0.00	0.33	0.17	0.17	0.17	0.33

Table 7: Information Content Matrix.

Position	1	2	3	4	5	6
A	2.000	0.721	0.000	1.125	1.125	0.721
С	0.000	0.000	0.180	0.000	0.000	0.000
G	0.000	0.000	0.270	0.000	0.000	0.000
Т	0.000	0.361	0.090	0.225	0.225	0.361

Figure 1: Sequence logo of a Position Probability Matrix

Figure 2: Sequence logo of an Information Content Matrix

Transcription factors DNA methylation Gene expression & splicing

Quantifying DNA: hypergeometric distribution

The hypergeometric distribution allows us to calculate probabilities of enrichment.

$$P_{null} = \frac{\binom{M}{x}\binom{T-M}{B-x}}{\binom{T}{B}} = \frac{\binom{30}{20}\binom{100-30}{25-20}}{\binom{100}{25}} = 1.5 \times 10^{-9}$$
$$p = P_{null}(x \ge 20) = 2.0 \times 10^{-9}$$

$$P_{null} = \frac{\binom{80}{20}\binom{100-80}{25-20}}{\binom{100}{25}} = 0.22$$
$$p = P_{null}(x \ge 20) = 0.62$$