Recitaftion 5: RNA-seq, splicing,
additional machine learning topics

6.784: DEEP LEARNING IN THE LIFE SCIENCES




Deep convolutional neural network

Sigmoid activations P (TF = bound | X)

Typically followed by one or
more fully connected layers Maxpooling layer
pool width =2
. stride=1
Maxpooling layers take the max
over sets of conv layer outputs Conv Layer 2
Kernel width = 3
stride =1
Later conv layers operate on outputs num filters / num channels = 2
of previous conv layers total neurons = 6

Conv Layer 1
Convolutional layer Kernel width = 4

(same color = shared stride = 2*
weights) num filters / num channels =3

Total neurons = 15

*for genomics, a stride of 1 for conv layers is recommended ?021 -03-17 01:37:52




Multiple filters capture motif variants
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Inputs and Outputs
1. Inputs are DNA sequences with one-hot encoded nucleic acids (4
channels, [A, T, C, G]).

— shape (7, 1, 101, 4)

2. Labels are one-hot encoded markers of the classes [bound, unbound|.
— shape (7, 2)

3. Outputs are softmax probabilities for the classes [bound, unbound].
— shape (7, 2)



Class Name

For model layers (see model spec):

ConvLayer
MaxPoolLayer
FCLayer

DropoutLayer

layer 1
layer 2
layers 3 & 5
layer 4



DropoutLayer class definition

Formulae:
yi = x;d;,

where

e i€ {l,2,..., N}

d, € {0,1}

Pd, =0)=r

N number of elements in x
r: dropout rate



ConvLayer class definition

Formulae:
Vi = ¢ ((x * wy) + by),

where

e ke {l,2,...,K}

K is the number of kernels

* is the discrete convolutional operator
b, is the scalar bias for each kernel

@ is the activation function



MaxPoolLayer class definition

Formulae: ) _
Xi, j Xi, j+(s—1)
yi', j/ = max
| Xit(s—1), j Xit(s—1), j+(s—=1) |
where
. i M
e {1,2,....,] . 1}
= {1 2, ..., [}

i=1i (s — 1) + 1

j=jG-1+1

S: pooling size

M:: input length

N input width

* Xilism = Xj| 5y = 0 (i-e. zero padding)



Model Architecture, Sequential Network Layers
1. Convolutional layer with
— 32 kernels
— kernel length: 11
— convolution stride: 1
— ReLU activation
— padding: same, such that the (input shape) = (output shape)
2. Max-pooling layer with
— pooling size: 2
— pooling stride: 2
— padding: same
3. Fully connected layer with
— 64 neurons (outputs)
— ReLU activation
— Note: to perform the linear computation, you will need to flatten
the input into a 2D tensor if the input has tf.rank > 2.
4. Dropout layer with
— dropout rate: [1 —1073,0.8,0.5,0.2]
Note: (dropout rate) = 1 — (keep probability)
5. Fully connected layer with
— 2 neurons (outputs)
— softmax activation



Problem 5B: ROC Curve

You'll need to define the following function for computing the receiver operating characteristic (ROC) curve and
the area under the ROC curve. The two axes of the curve are FPR: x-axis and TPR: y-axis. Please see the
confusion matrix Wikipedia page (https://en.wikipedia.org/wiki/Confusion _matrix) for more information.
Remember that we're computing these statistics for a binary classifier (bound vs. unbound).

Useful formulas:
P : real number of positives in the data

N : real number of negatives in the data
TP : true positives

FP : false positives

TP
TPR : true positive rate = —

FP
FPR : false positive rate = N



(Wil = |wi| + [wa] 4 ... + |wn]

1-norm (also known as L1 norm)

1
Wil = (Jwi|* + [w2]* + ... + [wn]*)

2-norm (also known as L2 norm or Euclidean norm)

1
[wll, = (Jwi|” + [wal” +... + |wn[)7

p-norm



Nucleic Acids
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Nucleic Acids

Nucleic acids (DNA and RNA) are composed . s

of “units” called nucleotides L, L,
* Nucleotides are the “building blocks” of nucleic \C_C/ \Ca_z'c/
acids (DNA and RNA) OH M OH OH

- 5 different nucleotides (differentiate them based SRSRIESSS Ribose
on their nitrogenous base: A, G, C, T, U) <
Nucleotide “building blocks” have 3 parts: /L Hy

* Phosphate o Nitrogenous base
» Sugar: ribose in RNA, deoxyribose in DNA O =P=0~———CH,
+ Base: Adenine (A), Guanine (G), Cytosine (C), &
and Thymidine (T) (DNA) or Uracil (U) (RNA) Phosphate
» Different nucleotides are defined by their base (A,

G,C, TV
Sugnr

Function: Nucleic acids (DNA and RNA) carry
information about making proteins L Adenine | Guanine | [ Thymine | Uracil ]

* Information is coded by the nucleotide bases A

C, G, and T (DNA) or U (RNA) | | {:Sj {jj Q Q Q

» The order or sequence of the nucleotides
provides information



RNA: breaking down the structure

Single strand

+——— Bases

v

Sugar-phosphate

* Nucleotides with different bases (A, G, C, U) backbone

link together via sugar/phosphate regions to
form a RNA strand

RNA



Three important parts of a gene

Regulatory Sequences

Promoter Coding Region

- Exon Intron Exon Intron Exon

Transcription Transcription
start site stop site

Regulatory Sequences: Don’t worry about this (for now)
Can affect rate and frequency at which protein is made and can also turn gene “on” and “off”
(2) Coding region: Contains actual information (sequence) to make the protein and is made up of exons and
introns (introns are removed from RNA via “splicing” but are present in the DNA)
Exon: contain information coding for a protein

Intron: does not contain protein information

Where transcription starts and ends respectively



Protein production step 1: transcription (DNA to RNA)

Transcription goal: convert genetic
information in DNA to RNA (mRNA form)

DNA in gene coding for protein is “transcribed”
+ Transcription: protein coding region of a gene is
copied into mRNA
«  mRNA sequence = same as one of DNA strands

DNA contains introns and exons thus, pre-mRNA also
contains introns and exons

P

Gene

/AN (N ONONONONONONONONONONON /)N 1)\ 7,

=

Transcription

Processing

-

mRNA

g

.

|

Protein

Translation —Q: Cvtoy




Protein production step 1: transcription (DNA to RNA)
nformation i DA to AINA (mFINA form) ? 5 e Q

/AN (N ONONONONONONONONONONON /)N 1)\ 7,

DNA 1

Transcription

—pre-mRNA — — —
l Nucleus
Processing e Cmmmn? Somm—
+ Pre-mRNA processing l
* Introns get cut out and exons are joined together i mRNA C

+ Term for this is “splicing”
» Other modifications also made

v Protein
* Mature mRNA is ready for the next step: \\ T g )~ cmﬁ

« Translation (RNA-> protein)




Transcription: a closer look

RNA Polymerase: enzyme that synthesizes mRNA molecule using the DNA strand as a template

Transcription factor: protein that binds to specific DNA sequence and controls rate of
transcription — in general they function to regulate genes (turn them on/off)

Three big steps:
(1) Initiation:
* RNA polymerase + 1 or more transcription factors
bind to promoter region
* RNA polymerase separates 2 strands of the DNA
helix (“transcription bubble”)

(2) Elongation

* RNA polymerase begins transcription at start site

* RNA polymerase adds RNA nucleotides to mRNA
strand (copied off of DNA strand)

(3) Termination
* RNA polymerase releases from template DNA
+ Complete pre-mRNA molecule dissociates

RNA polymerase + transcription factors bind here

v
mﬁ/‘“ho‘ﬁ Wres Traviscvibed xegion

ONA

Prownoter l
ANA
polymexose
ONA

" Single-stvanded remplate

|

Pre-mRNA molecule




RNA Splicing as an element of the regulatory mechanisms that affect the mRNA molecule, the second

key molecule of the central dogma.

DNA Regulation

DNA Accessibility

DNA structure,

marks on the Backbone

histone presence & modifications
sequence integrity

damage and repair

post-processing

~
Transcriptional Regulation
RNA polymerase Il binding
transcroption factor binding
r N\ enhancer binding
mRNA Regulation full transcriptional transit along sequence )
export from nucleus
degredation
preRNA splicing
alternative splicing
mMRNA Secondary Structure ~
RNA interference Translational Regulation
\ J machinery
ribosome binding
Protein Regulation tRNA avalibility
ribosomal halting

phosphorylation
degredation tags

export and release into ECM or onto cell
surface

miltimerization

affector molecule binding

cofactor binding

intracelluar compartment movement

Gene Splicing Overview |

Information, Genotype

eDNA 3 5
TIGJA|G]Tlc|c]AJA|G
Transcription 5 .
5 3
Translation ! Il I I | Codons

Protein @ @ @ @ Amino acids
Function, Phenotype

3/17



Splicing: removing introns from pre-mRNA

Splicing: removing introns from a pre-mRNA
transcript to form a mature mRNA transcript

Exons contain the actual protein coding
information

Exons are made up of codons which can then
be read by the ribosome

Introns do not contain coding information

Spliceosome: the machinery that actually
removes the introns (can recognize
characteristic “splice sites” between introns
and exons)

gene (DNA)

promoter

RNA

=

& ﬂ\\%l
S

Spliceosome ___ 4
components

4
mRNA
5
Exon 1

exon exon

IO sty N0 o,

‘ transcription

; splicing

MANA —

Spliceosome: large
molecular “machine”
comprised of proteins
and small nuclear RNAs




Gene Splicing Overview |l

For splicing to occur (1) a number of protein components known as the “splicosome” must bind to the
mRNA and (2) the prePRNA must adopt a specific secondary structure which brings the 3’ end of the
first exon in proximity to the 5’ end of the following exon.

— — —
hnRNA S e >
Donor site Branch site Acceptor site
exon exon
Ribonucleoproteins
(snRNPs)

ct

exon exon

Spliceosome|

/F\D Mature RNA ‘RNA lariat

(only exons)

4/17



Gene Splicing Overview |V

Furthermore, these regulatory elements make it possible for a single preRNA transcript to yeild many
different mRNA products and therefore different protein products.

Exon 1 Exon 2 Exon 3 Exon 4 Exon

!

DNA N
N 3 — — ——s
yp

1 2 3 4 5

RNA 5 ——] — — —

Alterative splicing
3 1 5
mRNAS _ _ L |

J Translation J Translation J Translation

W &

Protein 1 Protein 2 Protein 3

Dysregulation of these alternative splicing outcomes is contributor protein dysfunction and trascriptiome
instability, contributing to pathologies including cancer and drug addiction.

6/17



Other Modifications

Spliced RNA

7-methyl OO0 Exonl Exon2 Exon3  /AAAAAAA Poly-A tail

Guanosine cap 5' cap \ / Poly-A tail

5" untranslated 3" untranslated
region region

These end modifications:
* Increase mRNA stability (prevent degradation by enzymes)
+ Assist with mRNA transport out of nucleus
» Promote translation (MRNA - ribosome)




IMGT labels: DONOR-SPLICE
Colored letters in that figure
correspond to splicing N GT
frame 1
5' exon

A
A ac GT AGT

C G

intron

ACCEPTOR-SPLICE
N,ﬁ‘r NN

3' exon

G
(Py)1eXCAG G
T

Splicing sites



INPUT: \G/
re-mRNA -
Eucleotide Spl IC9A|

sequence I
dilated
Con\l/gl?tion * Input: 10K nucleotides
dilated
convolution « Labels: 3-way classification, based on
C?‘— GENCODE annotations & RNA-seq
i « Architecture: 32-layer convolutional
G neural network, 700K parameters

0.85 e Trained on half of chromosomes, withheld
OUTPUT: : :
Drsdictad 000l 0.15 other half for testing, excluding paralogs
score "\.OOQO. ¢

Jaganathan et al, Cell 2019




Gene Expression

What does it mean to “express” a gene?
« Expression just means that whatever that gene
codes for is being made (the gene product is

% transcription translation folding
e e |
being produced) protein

i id chai
. DNA Sequence 9 mRNA 9 prote|n RNA amino acid chain

Why is gene expression important?
« The genes that a cell expresses dictate what ,,
proteins that cell will make 1) ,H'i‘f{
« The proteins a given cell makes determine the w
cell’s identity and functionality
» (i.e. whether it's a muscle cell, a neuron, Muscle cell Neuronal cell Intestinal cell
a liver cell, an intestinal cell, etc.)




RNA-seq Protocol

a Data generation
1) mRNA or total RNA

Strand-specific RNA-seq?

(5) Ligate sequence adaptors
S s
SIS | iy apiy
S
SE=cco SRS SESees

Remove rRNA? l PCR amplification?

Select mMRNA? ®) Select a range of sizes
ey R
o SSses

S e

l

4) Reverse transcribe ) Sequence cDNA ends
into cDNA
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Why RNA-seq, not Microarray?

No need to know the genome sequence or
predict genes

No need to design microarray probes
Digital representation

Higher detection range

New genes

Alternative splicing

Mutations and gene fusion
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Experimental Design

Assessing biological variation requires

biological replicates (no need for technical
replicates)

3 preferred, 2 OK, 1 only for exploratory
assays (not good for publications)

Batch effects still exist, try to be consistent or
process all samples at the same time

Better technology never eliminate the needs
for good experimental design



Batch effect

« Striking finding in 2014: "Human heart is
more similar with human brain than mouse
brain”?

Legend: All

ﬂ Human Mouse
-

Q /

\  brain (2,5) Heart Brain
lung (3,5) o O A

heart/muscle (7,5)

liver (2,5) Human
spleen (2,5) .
adrenal (3,3) Braln
adipose (3,3)

kidney (2,5)

pancreas (1,1)

stomach (1,2)

small bowel (2,5)

sigmoid (4,3)

testis (2,3)

ovary (3,3)

mammary gland (1,2)

L

-

-
-

o
o
o
o
o
o
o
o
o
o
o
o
&)
o

=

49 Lin et al, PNAS 2014



Batch Effect

:E! Yoav Gilad

We reanalyzed the data from pnas.org
/content/111/48 ... and found the following:

1st batch: human tissues
« 2" batch: human tissues
« 3rd batch: mouse tissues
« 4% batch: mouse tissues

e 5t batch: human/mouse
tissues

« After batch removal,

sues cluster

ovary
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RNA-seq Abundance
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MRNAs to RNA-seq fragments

colors: different genes

SE reads or PE fragments

MRNA transcript

Kj = count of fragments
aligned to gene i, sample |

IS proportional to:

» expression of RNA
 length of gene

« sequencing depth

* lib. prep. factors (PCR)

* in silico factors (alignment)
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Expression Index

« RPKM (Reads per kilobase of transcript per million reads of library)
— Total reads / 1M, divide by gene length in KB
— Corrects for coverage, gene length
— TopHat / Cufflinks
— FPKM (Fragments), PE libraries, ~RPKM/2

 TPM (transcripts per million) RSEM (Li et al, Bioinfo 2011)

— Divide read count by gene length in KB (RPK) FIRST, divide
by scaling factor (sum of RKP across all genes / 1M)

— Proportion of reads mapped to a gene in each sample is
comparable

e CPM (count per million) do not normalize gene length



RPKM

.. the sums of each
column are very
different.

TPM

RPKM vs TPM

Gene Name | Repl RPKM | Rep2 RPKM | Rep3 RPKM
A (2kb) 1.43 1.33 1.42
B (4kb) 1.43 1.39 1.42
| C(1kb) 1.43 1.78 1.42
D (10kb) 0 0 0.009
< Total: 4.29 4.5 4.25 .
Gene Name | Repl TPM Rep2 TPM Rep3 TPM
A (2kb) 3.33 2.96 3.326
' B (4kb) 3.33 3.09 3.326
r C (1kb) I 3.95 3.326
D (10kb) 0 0 0.02 |
Total: 10 10 10
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Differential RNA-seq with DESeq



Sequencing Read Distribution

* The number of patients arriving in an
emergency room between 10 and 11 pm

« # Reads mapped to a gene of 3KB in length

A=A

= e s N IS B L (k events in interval) = X

— A average events per interval
— K # events in an interval
— Var =mean = A

71
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Sequencing Read Distribution

* |n reality, sequencing data is over-dispersed
— (Mean < Variance)

* Negative binomial
— NB(r, p)
— # of success before the
first r failure, if Pb(succ)

IS p

Mean

B NegBin(7, 0.3)
m NegBin(1, 0.2)
0O NegBin(10, 0.6)

Variance

|
|
|
T
78 10111213 141516 17




DESeqg2: Modeling RNA-seq Read

Over Dispersion

. . guantity of interest
raw count for gene i, sample j

\ normalization factor /' - dispersion per gene

Var(K;j) = pij + o,

Poisson from Extra variation
sampling fragments  due to biological variance

Variance estimated by borrowing
information from all the genes —
hierarchical models



DESeq2 Differential Expression

« Normalize raw counts in different libraries

Sample #1 Sample #2
635 reads 635 reads

« Stabilize / shrink variance by borrowing information
from other genes

 Differential expression: test whether gene i
expression follows same NB()

o — )Mz/(azu)

o2

74



Dilated Convolution

Output
Dilation = 8

Hidden Layer
Dilation = 4

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 1

Input



A ED

Deep Residual Learning for Image Recognition -
Kaiming He, Xiangyu Zhang, Shaoqging Ren, Jian Sun;
2015

Extremely deep network — 152 layers
Deeper neural networks are more difficult to train.

Deep networks suffer from vanishing and
exploding gradients.

Present a residual learning framework to ease the
training of networks that are substantially deeper
than those used previously.

[He et al., 2015]



—— ResNet

33 cony B4

e [LSVRC’15 classification winner (3.57% top 5
error, humans generally hover around a 5-
10% error rate)

Swept all classification and detection
competitions in ILSVRC’15 and COCO’15!

[He et al., 2015]

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.



ResNet

 What happens when we continue stacking deeper layers on a
convolutional neural network?

Test error

Training error
o
‘ 2

[terations lterations

* 56-layer model performs worse on both training and test error
-> The deeper model performs worse (not caused by overfitting)!

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [He et aI., 2015]



ResNet

* Hypothesis: The problem is an optimization problem. Very
deep networks are harder to optimize.

* Solution: Use network layers to fit residual mapping instead
of directly trying to fit a desired underlying mapping.

* We will use skip connections allowing us to take the activation
from one layer and feed it into another layer, much deeper
into the network.

* Use layers to fit residual F(x) = H(x) — x
instead of H(x) directly

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [He et aI., 2015]



ResNet

Residual Block

Input x goes through conv-relu-conv series and gives us F(x).
That result is then added to the original input x. Let’s call that
H(x) = F(x) + x.

In traditional CNNs, H(x) would just be equal to F(x). So, instead
of just computing that transformation (straight from x to F(x)),
we’re computing the term that we have to add, F(x), to the

input, X. H(x) | retu
T F(x) + x
X
T relu Fe) ]relu identity
f
X X
“Plain” layers Residual block

[He et al., 2015]



ql1+1]

a s —» qli+2

ResNet %
O
O

OO0
'

Short cut/ skip connection

alll 1» Linear —& ReLU— Linear —L ReLU— gll*+2]
q[1+1]

Z0+1] — wil+1] 5[l 4 pli+1] Z0+2] — Wwi+2]401+1] 4 pli+2]

allt1l = g(z[I+1) all+2] = g(z[1+2])

q[1+2] — g(z[1+2] n a[1]) = g(WI+21[1+1] 4 pl1+2] 4 4l

[He et al., 2015]



T3 CONY. A

Jx3 an\{ B4

ResNet

Full ResNet architecture:
e Stack residual blocks
* Every residual block has two 3x3 conv layers

e Periodically, double # of filters and
downsample spatially using stride 2 (in each
dimension)

* Additional conv layer at the beginning

* No FC layers at the end (only FC 1000 to
output classes)

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [He et aI., 2015]



ResNet

Experimental Results:
* Able to train very deep networks without degrading

* Deeper networks now achieve lower training errors as
expected

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [He et aI., 2015]



ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) winners

/ “Revolution of Depth”

28.2

152 layers |

3.57

ILSVRC'15
ResNet

R2 layers ’ 19 Iayers ’

' 6.7

l - I [ 8 layers ‘ 8 layers
LSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
oogleNet VGG AlexNet

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.



.
. . . . . , s
VAE with Gaussian prior, reparameterization tr1ckmﬂ'L

Input «-------------cmee s

Probabilistic Encoder

90(2[x)

Mean m

g

Std. dev

z=p+o® e
e ~N(0,I)

Ideally they are identical.  ------------

X~ x

Sampled
latent vector

An compressed low dimensional
representation of the input.

Probabilistic
Decoder

Po(x|z)

Reconstructed
input

https://liIianweng.github.io/IiI-Io=/

2021-03-19 02:06:45



DCA—Denoising Count Autoencoder

Autoencoder (AE) with Zero-inflated Negative
Binomial (ZINB) loss function

Negative binomial models the mean y and
dispersion 6 of RNA-seq count

Zero inflation with a point mass ™ models the
dropout events

ZINB provides great denoising performance,
which benefits downstream analysis,
including clustering, time course modeling,
differential expression, protein-RNA co-
expression and pseudo time analyses.

25528 )

ZINB(x; 71, 1, 0) = m6y(x) + (1 — m)NB(x; u, 6)

ZINB (x] ¢ ,0,7)

Output

4
\ Bogsgfck / a: Denoised output
—eo ¢ & -l |
® & € "
ﬂ
/ \.1 Dropouti

. . . . R
Encoder Decoder

Eraslan, Gokcen, et al. "Single-cell RNA-seq denoising using a deep count autoencoder." Nature communications 10.1 (2019): 1-14.

2021-03-19 02:08:22




Conditional VAE

Cells Cells
z compressed

code
” Encoder Cond. Dec. ) 2
§ it z |«
o o

a(zlz) p(z|z,c)

c

Enhanced data

Raw data

Goal:
To learn a representation informative on biological variations, while remain invariant to

confounding factors

Method:
Invariant Coding through VAE

Objective:
Maximize a log-likelihood conditioned on the confounding factors, while maxE; ) llog p(z|c)] — M (z,c).

minimize the mutual information between latent variable z and confounding

factor c.
Moyer,D. et al. NIPS, g8 rprrery
2021-03-19 02:09:50




Input Data SAILER Method

Read Depth ABatch Ir:dicato: A,
SCATAC-seq Batch o Read Depth ®
/ }'\ ®® { . :év fa Batch Embedding Read Depth 8
' Kmmf @O~ o = TTeT =3
| ) /CJ " O — [ToT-To] ~x~] @ O
Q } Cells O O o o)
\ C> C -
_’i’ooo{ J Read Depth ,O\ '®) Confounding Factor o S
= Batch H = QO O ! O O S
El ol S Q| 10 0) Of [O =
° <y i £ & @) ~ 3
a l " @ O - -|: = o
. - 'I-r-"" - : : v - S
u ’ < M ) I - @ ~ S
Cells & . O] O
/ O dE O O
Cell Type 8 8 © Ol O
’ Read Depth O O min I(z,c) ? g))
Batch M ~ O . .
= . = Ol Q) O
A Lj g O (z|z) (z|z, c)
) & -+ 3 > q\z p(z|z, 9
4 \‘J O Rl K] \) %y AR .‘\
@), - o S AN — 7 7HEN Bt 3 N
Cells Baie- i i maz | ]ogp(r ()

Cells

The overall design of the SAILER method. SAILER takes scATAC-seq data from multiple batches as input. Raw data is pushed
through the encoder network to obtain a latent representation. Confounding factors for each single cell are concatenated and
fed to the decoder along with the latent representation. Batch information is indicated by a one-hot embedding, and read depth
is subject to log transform and standard normalization. To learn a latent representation invariant to changes in confounding
factors, mutual information between the latent variables and confounding factors are minimized during training.

2021-03-19 02:11:35




Learning invariant representatio

Variational loss LVAE = Ex,cf\«q(x,c) [_]Ez~q¢(z|x) [logpg(x|z, C)] + DKL((M)(le) || ])(Z))]

Minimizing both variation
loss and mutual
information between
latent and conditional
variables

Lvag + M (z;c) q6(2z.%,¢) = q(x,c)qe(z|x)

Approximation of the loss ~ L(®,0) = Exqx) [DxL(94(2z|x) || p(z)) + ADxL(q4(2|x) || 94(2))]

function: —(1 4 NEx cngixc) [Eamgy i) [l0g po(x|z, c)]]

Diw(46(21%) || 26(2) ~ 3° 3 Dicw.(a5(21x) || g(2lx)

Moyer et al, NeurlPS, 2018
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