






















Nucleic Acids

RNA
(Ribonucleic Acid)
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(Deoxyribonucleic Acid)



Nucleic Acids
• Nucleic acids (DNA and RNA) are composed 

of “units” called nucleotides
• Nucleotides are the “building blocks” of nucleic 

acids (DNA and RNA)
• 5 different nucleotides (differentiate them based 

on their nitrogenous base: A, G, C, T, U)   

• Nucleotide “building blocks” have 3 parts: 
• Phosphate 
• Sugar: ribose in RNA, deoxyribose in DNA
• Base: Adenine (A), Guanine (G), Cytosine (C), 

and Thymidine (T) (DNA) or Uracil (U) (RNA)
• Different nucleotides are defined by their base (A, 

G, C, T, U) 

• Function: Nucleic acids (DNA and RNA) carry 
information about making proteins
• Information is coded by the nucleotide bases A, 

C, G, and T (DNA) or U (RNA)
• The order or sequence of the nucleotides 

provides information 



RNA: breaking down the structure 

• Nucleotides with different bases (A, G, C, U) 
link together via sugar/phosphate regions to 
form a RNA strand

Sugar-phosphate 
backbone

Bases

Single strand



Three important parts of a gene

Transcription 
start site

Coding Region

Exon Intron Exon Intron Exon

Transcription 
stop site

Promoter

Regulatory Sequences

Regulatory Sequences: Don’t worry about this (for now)

(1) Promoter: Can affect rate and frequency at which protein is made and can also turn gene “on” and “off”

(2) Coding region: Contains actual information (sequence) to make the protein and is made up of exons and
introns (introns are removed from RNA via “splicing” but are present in the DNA)

Exon: contain information coding for a protein 
Intron: does not contain protein information  

(3) Transcription start/stop sites: Where transcription starts and ends respectively



Protein production step 1: transcription (DNA to RNA)
Transcription goal: convert genetic 

information in DNA to RNA (mRNA form)
Gene

• DNA in gene coding for protein is “transcribed”  
• Transcription: protein coding region of a gene is 

copied into mRNA 
• mRNA sequence = same as one of DNA strands

• DNA contains introns and exons thus, pre-mRNA also 
contains introns and exons



Protein production step 1: transcription (DNA to RNA)
Transcription goal: convert genetic 

information in DNA to RNA (mRNA form)
Gene

• DNA in gene coding for protein is “transcribed”  
• Transcription: protein coding region of a gene is 

copied into mRNA 
• mRNA sequence = same as one of DNA strands

• DNA contains introns and exons thus, pre-mRNA also 
contains introns and exons

• Pre-mRNA processing
• Introns get cut out and exons are joined together
• Term for this is “splicing” 
• Other modifications also made 

• Mature mRNA is ready for the next step: 
• Translation (RNAà protein)
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RNA-seq Protocol

45Martin and Wang Nat. Rev. Genet. (2011)



Why RNA-seq, not Microarray?

• No need to know the genome sequence or 
predict genes

• No need to design microarray probes
• Digital representation
• Higher detection range
• New genes
• Alternative splicing
• Mutations and gene fusion
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Experimental Design
• Assessing biological variation requires 

biological replicates (no need for technical 
replicates)

• 3 preferred, 2 OK, 1 only for exploratory 
assays (not good for publications)

• Batch effects still exist, try to be consistent or 
process all samples at the same time

• Better technology never eliminate the needs 
for good experimental design

48



Batch effect
• Striking finding in 2014: “Human heart is 

more similar with human brain than mouse 
brain”?
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Lin et al, PNAS 2014



• 1st batch: human tissues
• 2nd batch: human tissues
• 3rd batch: mouse tissues
• 4th batch: mouse tissues
• 5th batch: human/mouse 

tissues
• After batch removal, 

tissues cluster
50
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RNA-seq Abundance
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mRNAs to RNA-seq fragments
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Kij = count of fragments
aligned to gene i, sample j

is proportional to:

• expression of RNA
• length of gene
• sequencing depth
• lib. prep. factors (PCR) 
• in silico factors (alignment)
• ...

colors:	different	genes	

mRNA	transcript	

SE	reads	or	PE	fragments	



Expression Index
• RPKM (Reads per kilobase of transcript per million reads of library)

– Total reads / 1M, divide by gene length in KB
– Corrects for coverage, gene length
– TopHat / Cufflinks
– FPKM (Fragments), PE libraries, ~RPKM/2

• TPM (transcripts per million) RSEM (Li et al, Bioinfo 2011)
– Divide read count by gene length in KB (RPK) FIRST, divide 

by scaling factor (sum of RKP across all genes / 1M)
– Proportion of reads mapped to a gene in each sample is 

comparable 

• CPM (count per million) do not normalize gene length
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Differential RNA-seq with DESeq
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Sequencing Read Distribution

• The number of patients arriving in an 
emergency room between 10 and 11 pm

• # Reads mapped to a gene of 3KB in length

• Poisson dist

– λ average events per interval
– K # events in an interval 
– Var = mean = λ 
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Sequencing Read Distribution

• In reality, sequencing data is over-dispersed 
– (Mean < Variance)

• Negative binomial
– NB(r, p)
– # of success before the
first r failure, if Pb(succ)
is p
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DESeq2: Modeling RNA-seq Read 
Over Dispersion

Kij ⇠ NB(sijqij ,↵i)

raw count for gene i, sample j
normalization factor

quantity of interest

one dispersion per gene

Var(Kij) = µij + ↵iµ
2
ij

Poisson	from	
sampling	fragments	

Extra	varia3on		
due	to	biological	variance	

Variance estimated by borrowing 
information from all the genes –
hierarchical models



DESeq2 Differential Expression

• Normalize raw counts in different libraries

• Stabilize / shrink variance by borrowing information 
from other genes 

• Differential expression: test whether gene i 
expression follows same NB()
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Dilated Convolution



ResNet

• Deep Residual Learning for Image Recognition -
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun; 
2015

• Extremely deep network – 152 layers
• Deeper neural networks are more difficult to train.
• Deep networks suffer from vanishing and 

exploding gradients.
• Present a residual learning framework to ease the 

training of networks that are substantially deeper 
than those used previously. 

[He et al., 2015]



ResNet
• ILSVRC’15 classification winner (3.57% top 5 

error, humans generally hover around a 5-
10% error rate)
Swept all classification and detection 
competitions in ILSVRC’15 and COCO’15!

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [He et al., 2015]



ResNet
• What happens when we continue stacking deeper layers on a 

convolutional neural network?

• 56-layer model performs worse on both training and test error
-> The deeper model performs worse (not caused by overfitting)!

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [He et al., 2015]



ResNet
• Hypothesis: The problem is an optimization problem. Very 

deep networks are harder to optimize.
• Solution: Use network layers to fit  residual mapping instead 

of directly trying to fit a desired underlying mapping.

• We will use skip connections allowing us to take the activation 
from one layer and feed it into another layer, much deeper 
into the network.

• Use layers to fit residual F(x) = H(x) – x
instead of H(x) directly

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [He et al., 2015]



ResNet
Residual Block
Input x goes through conv-relu-conv series and gives us F(x). 
That result is then added to the original input x. Let’s call that 
H(x) = F(x) + x. 
In traditional CNNs, H(x) would just be equal to F(x). So, instead 
of just computing that transformation (straight from x to F(x)), 
we’re computing the term that we have to add, F(x), to the 
input, x. 

[He et al., 2015]



ResNet

Short cut/ skip connection

ܽ[௟] ܽ[௟ାଶ]

[ା૚ܔ]ܢ [ା૚ܔ]܅= [ܔ]܉ + [ା૚ܔ]܊

[ା૚ܔ]܉ = ([ା૚ܔ]ܢ)܏

[ା૛ܔ]ܢ = [ା૚ܔ]܉[ା૛ܔ]܅ + [ା૛ܔ]܊

[ା૛ܔ]܉ = ([ା૛ܔ]ܢ)܏

ܽ[௟ାଵ]

a[୪]

a[୪ାଵ]
ܚ܉܍ܖܑۺ ܃ۺ܍܀ ܚ܉܍ܖܑۺ ܃ۺ܍܀ a[୪ାଶ]

[ା૛ܔ]܉ = ܏ ܢ ା૛ܔ + ܉ ܔ = [ା૚ܔ]܉[ା૛ܔ]܅)܏ + [ା૛ܔ]܊ + ܉ ܔ ) 

[He et al., 2015]



ResNet
Full ResNet architecture:
• Stack residual blocks
• Every residual block has two 3x3 conv layers
• Periodically, double # of filters and 

downsample spatially using stride 2 (in each 
dimension)

• Additional conv layer at the beginning
• No FC layers at the end (only FC 1000 to 

output classes)

[He et al., 2015]Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 



ResNet
Experimental Results:
• Able to train very deep networks without degrading
• Deeper networks now achieve lower training errors as 

expected

[He et al., 2015]Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 



ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) winners

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 
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