Recitation 6

Single cells and their latent representations



Why single cells

Cellular heterogeneity Differentiation trajectories ~ Within-cell-type differences
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Cellular responses can vary substantially between “identical” cells. Overcome low input



Whole-sample analysis can lead to misleading views

: Rare events can be lost ...
The average may not represent the population



Common pipeline

1. Do something to make cells distinguishable
2. Amplify RNA and sequence



Cells in wells (SMART-seq)

- Use fluorescence-activated cell FACS sorter
sorting to get cells into individual
wells

- Lyse cells, and carry out
individual sequencing reactions o

for each well m_o
@ O

- Analyze 50-500 cells
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Droplets (Drop-seq)

- Isolate single cells into droplets that contain beads

- Bead is coated with barcoded primers

- Cell is lysed, RNA hybridizes to the barcoded primers

- Droplets are pooled and amplification+sequencing is
done on the whole population

- Widely used, adoption by 10x Genomics

Macosko et al., 2015
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Combinatorial indexing (SPLiT-seq)
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What can we do with this data?
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Shalek et al., 2014



Samples in high dimensional spaces tend to live on lower
dimensional surfaces




Data in high dimensional spaces tend to live on lower
dimensional surfaces

Radford et al., 2016



Averaging points in latent space




Interpolating in latent space
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Algebra in latent space

Radford et al., 2016



Algebra in latent space

Radford et al., 2016



Algebra in latent space

Radford et al., 2016



scGen: Apply this idea to scRNA data!

gene
expression
space

unperturbed
e cells

A LA ? perturbed
cells

Lotfallahi et al., 2019

encode E a
% decode

y? Ao 4
latent / ‘ f TS fs.
space . "3 1 “ .

e o
A

estimate perturbation
effect 8

apply 8



Perturbations can generalize to unseen data

- The highlighted cells was held out
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Correcting for artifacts with variational inference

- Many interesting downstream analyses like differential expression analysis is
hindered by the presence of things like noise, artifacts, batch effects, etc
- We can use variational inference to correct for these



Graphical models factorize distributions

P(a,b,c,d) = P (d|c)P (c|a)P,(bla)P_(a)

- Variables can be visible or hidden

- lllustrates conditional independence

Given a, b and c¢ are independent
P(b,c,dla=1) = P _(b|1)P (c|1)P (d|c)P_(1)/P_(1)




scVI removes nuisance factors by factoring them out

Variational posterior Generative model
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Refresher on VAE loss functions

X = elements of sample space
z = elements of latent space
lower case = deterministic variables

upper case = random variables

We want a generative model p that maximizes p(x) for our samples



Refresher on VAE loss functions
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Step 1: Express p(x) as an expectation

log ( p(:ﬁl:f)) =i ()g( [ p(z|z)p(z)dz
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Multiply by 1
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expectation



Step 2: Jensen’s inequality

109(Ezmq(z]a) Z(Z %)

For a concave function f:
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Step 3: Break up the logarithms
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Intuition

Want to maximize:

Ez~q(ziz)llog(p(2]|2))] — Drr(e(Z|z)||p(Z))

EZNq(Z|:1 ) [l()(] (]) IZ) )] \r/]\i/;?t the probability of reconstructing the original input x to be

Want to “minimize” the distance between the posterior and the
DI\ L ((1 ZI )Hp( prior of the latent distribution.
Penalize encodings that drift very far.



Does the latent prior need to be unimodal Gaussian?

o Is the cell state annotation
u_represents additional variability

Model the latent variable (z_) with as a mixture
and treat ¢ and u_ as mixture assignments

Xu et al., 2021
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Information constraints on AEVB

e We restrain the search space for the variational distribution: in
particular, we wish to enforce statements of the form q(u) 1L g(v).

e Problem: any measure of mutual information is intractable from the
current graphical model and its variational approximation.

e Solution: we compute on each mini-batch a non-parametric measure
of dependence from kernel embedding of joint distributions :

~\HSIC(g(u,v)),

where HSIC is the empirical estimate of the Hilbert-Schmidt norm of the
cross-covariance operator Cq(,,,) that embeds the joint.

We call this modification HSIC Constrained VAEs (HCV).

Lopez et al., Neural Information Processing Systems, (2018)
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po(x,2)
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PCA - principal component analysis

Idea: we want to capture the axis where the
most variability comes from

Other dimensions are “unimportant”

https://commons.wikimedia.org/wiki/File:GaussianScatterPCA.svg
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Formulation

Consider a data matrix where each row represents a data point

A | B | ¢ |
0.540307 0.982935 0.207446
0.909067 0.604359 0.222572
0.16418 0.77816 0.365322
0.472492 0.628933 0.21934
0.846494 0.409669 0.773012
0.709335 0.159229 0.647459
0.283833 0.887923 0.976526
0.383819 0.938593 0.435607
0.648829 0.302313 0.959101

O 00 N o U1 b WN =

Since we want to capture variance, the first thing we do is to shift each column
such that all features have zero mean



Formulation

Let X be the resulting data matrix

We want to find a direction (unit vector) w in the inputs space such that the
following expression is maximized

||X'w||2

Xw is a vector where each entry is the projection of a sample on w

The square sum is then proportional to the variance



Singular value decomposition

Every matrix X has a singular value decomposition (SVD):

X =UXV

Where U and V are orthonormal matrices, and X is a diagonal matrix

Viewing X as a linear operator, you can think of U and V as rotations and X as scaling
Bl 4
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https://commons.wikimedia.org/wiki/File:Singular-Value-Decomposition.svg



Singular value decomposition

U and V come from the fact that XX is symmetric and therefore has an orthogonal
set of eigenvectors. X are equal because X"X and XX' share eigenvalues.

XX =Uxrv*

X'X =v'2?v



We can maximize Xw by picking the largest diagonal entry
in X

Since U and V are orthonormal:

lw| = |w,| and |w,| = |w,| Xw=UXVw
=U Z’U..v'l
Therefore the only scaling occurs when we
multiply by £ = Uwy
— W3

We can maximize this by selecting w such that
w, is a “one-hot” vector for the largest
eigenvalue coordinate in ¥



Another view of PCA: networks without non-linearities




