Recitation 7a

Dimensionality Reduction



Principal Component Analysis

X contains n samples (rows), each representing a datapoint with f features
(columns)

U contains n orthonormal columns

VT contains f orthonormal rows



V can be viewed as a latent basis
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Supposing n=f, although a similar analysis can be done assuming the opposite



Variance along any axis is a linear combination of singular
values due to orthogonality of U
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Finding the SVD

X =Uxv?
XX~ =puya*
XTx =vy2y?

Diagnoalize XX" and X'X!



Non-linear dimensionality reduction algorithms
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Manifolds

- ldea: the embedded space resembles euclidean space locally
- Intuition: Distances between points are meaningful up until a certain extent

Small distances in ambient space are Large distance in ambient space may not
representative of distances on manifold be representative of distance on manifold



Charts and Atlases

- Globally, a manifold’s topology may not
even be (one-to-one, continuously)
mappable to euclidean space

- An approach often taken is to take small
pieces that are mappable, and then glue
together (identify) those pieces to get a

representation of the manifold
- The resulting construct is known as an atlas

https://upload.wikimedia.org/wikipedia/commons/f/f0/Polar_stereographic_projections.jpg
https://upload.wikimedia.org/wikipedia/commons/0/06/Two_coordinate_charts_on_a_manifold.svg




Nerves

https://en.wikipedia.org/wiki/Nerve_of a_covering#/media/File:Constructing_nerve.png



General strategy

- Step 1: Construct a set of locally faithful representations of the data
“Chart”

- Step 2: Combine the representations into a globally coherent representation
“Atlas’

- Step 3: Try to construct a lower dimensional dataset that is faithful to the

global representation
“‘Nerves”



t-SNE: t-distributed stochastic neighbor embedding
- Step 1: For each point, it generates a probability of jumping to a different point
from there

- Step 2: Symmetrize the distances

- Step 3: Find a lower dimensional embedding that generates a similar
distribution



Local structure

- We determine the probability of going from point a to point b to be

proportional to the exponential of the negative square euclidean distance
- “On a random walk, you can get from one point to another if you're close”
- The probabilities decay exponentially, so large distances have negligible effect on the overall
distribution

exp(=||x; — x;||°/267)

Zk;éi exp(—|[x; — x| |2/20',-2)

P = p(xj|x;) =



Controlling heterogeneity

- Even if we assume that data is distributed uniformly on the embedded
manifold, its embedding into the ambient space may induce non-uniformities

st ¥ 5t
’5'«*3 ‘:9?-'
WA 15
3 s
LY PSS 3P oo
U A%




Solution: Modify sigma!

- We adjust sigma until the conditional distribution hits a fixed
entropy/perplexity (hyperparameter)
perplexity = 2entropy
- We find the correct sigma by binary search
Try the halfway point between the current upper bound and lower bound

Adjust the bounds
If bounds don'’t exist, explode/decay exponentially

exp(—||x; — xj||2/20,-2)

P = p(xj|x;) =
Zk;éi exp(—|[x; — x| |2/20',-2)



Why do we want to fix perplexity?

- Suppose you have a bag with n items, and you draw an item

- Suppose all items are equally likely to be drawn
- Entropy is log(n)
- The number of items is 2*entropy = n
- Suppose one item is drawn with overwhelming probability

- Entropy is close to 0
- One can argue that the number of items is 2*entropy = 1, since once item is drawn with
overwhelming probability

- Therefore, 2*entropy is like “the number of items you can draw from”
- Therefore, fixing perplexity is like fixing the number of neighbours you have!

H(F;)=~— Z Px;|x; 10g2 Px|x;
J



Symmetrizing the distances

psymmetric Px;|x; T Px;|x;




Finding a good lower dimensional embedding

(1 + |y, — ;|1
2t (L+ [ye = yil1*)!

ij —

C = KL(P||0) = Z ZP 100 Qu

Optimize with gradient descent



Why use a t-distribution instead of a Gaussian?

- Points can crowd together in high dimensional space without collapsing
- To avoid collapse in a lower dimensional space, we allow more measure in

the tails of the distribution
Famously, the distribution in question has tails so heavy the expected values are undefined



Parametric t-SNE

Instead of calculating the embedding directly, train a function f() that embeds into
the lower dimensional space
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Parametric t-SNE

We have an output, a target, and a cost function, so we can train this just like any
other ML model we’ve trained so far.

We can even perform updates in batch if we expect f() to generalize

(L +|]f(x) = flxp]H)™!
Qij >
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C=KL(P||Q) = ZZ log



UMAP: Uniform Manifold Approximation and Projection

- An alternative to t-SNE with strong theoretical foundations and fast runtime

- Theoretical assumptions:
Data is uniformly distributed on the underlying manifold

The manifold is connected
The reduced representation should reproduce the connective structure of the underlying

manifold



UMAP - local structure

For each point, find the k nearest neighbours and compute a weight for each

of them
The weight is local to the point and represents the probability that the

neighbours are connected “from the point’s perspective”
The edge the weight is on is directed from the origin to the neighbour

pi = min{d(z;,z;;) | 1 < j < k,d(z;, xi;) > 0}
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https://arxiv.org/pdf/1802.03426.pdf



UMAP - global structure

- Two different local structures may disagree on whether an edge exists
- To get the global probability that an undirected edge exists, we calculate the
probability that either directed edge exists

B:A+AT—A0AT

https://arxiv.org/pdf/1802.03426.pdf



UMAP - reduced representation

- Each edge then exerts a pulling force between the vertices it's between
O(kn) updates

- Each pair of vertices has a repulsive force between them
O(n”2) updates, but can use sampling to reduce the runtime
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https://arxiv.org/pdf/1802.03426.pdf



t-SNE vs UM

https://pair-code.github.io/understanding-umap/

AP

UMAP t-SNE

Dimensionality reduction applied to the Fashion MNIST dataset. 28x28 images of clothing items in 10 categories are
encoded as 784-dimensional vectors and then projected to 3 using UMAP and t-SNE.



t-SNE vs UMAP

Abstract

Advances in single-cell technologies have enabled high-resolution dissection of tissue
composition. Several tools for dimensionality reduction are available to analyze the large
number of parameters generated in single-cell studies. Recently, a nonlinear
dimensionality-reduction technique, uniform manifold approximation and projection
(UMAP), was developed for the analysis of any type of high-dimensional data. Here we apply
it to biological data, using three well-characterized mass cytometry and single-cell RNA
sequencing datasets. Comparing the performance of UMAP with five other tools, we find
that UMAP provides the fastest run times, highest reproducibility and the most meaningful
organization of cell clusters. The work highlights the use of UMAP for improved
visualization and interpretation of single-cell data.

https://www.nature.com/articles/nbt.4314
https://www.biorxiv.org/content/10.1101/2019.12.19.877522v1

Abstract

One of the most ubiquitous analysis tools employed in single-cell transcriptomics and
cytometry is t-distributed stochastic neighbor embedding (t-SNE) [1], used to visualize
individual cells as points on a 2D scatter plot such that similar cells are positioned
close together. Recently, a related algorithm, called uniform manifold approximation
and projection (UMAP) [2] has attracted substantial attention in the single-cell
community. In Nature Biotechnology, Becht et al. [3] argued that UMAP is preferable to
t-SNE because it better preserves the global structure of the data and is more
consistent across runs. Here we show that this alleged superiority of UMAP can be
entirely attributed to different choices of initialization in the implementations used by
Becht et al.: t-SNE implementations by default used random initialization, while the
UMAP implementation used a technique called Laplacian eigenmaps [4] to initialize the
embedding. We show that UMAP with random initialization preserves global structure
as poorly as t-SNE with random initialization, while t-SNE with informative initialization
performs as well as UMAP with informative initialization. Hence, contrary to the claims
of Becht et al., their experiments do not demonstrate any advantage of the UMAP

algorithm per se, but rather warn against using random initialization.



NMF: Nonnegative Matrix Factorization

We want to find an approximation of X as the product of entrywise positive
matrices

Each latent basis will have an additive contribution to the sample

miny g || X — WH]||7
s.t.W >0,H > 0.

https://academic.oup.com/bioinformatics/article/32/1/1/1743821



https://www.nature.com/articles/44565
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