
Recitation 7a
Dimensionality Reduction



Principal Component Analysis

X contains n samples (rows), each representing a datapoint with f features 
(columns)

U contains n orthonormal columns

VT contains f orthonormal rows



V can be viewed as a latent basis

Supposing n≥f, although a similar analysis can be done assuming the opposite



Variance along any axis is a linear combination of singular 
values due to orthogonality of U



Finding the SVD

Diagnoalize XXT and XTX!



Non-linear dimensionality reduction algorithms



Manifolds

- Idea: the embedded space resembles euclidean space locally
- Intuition: Distances between points are meaningful up until a certain extent

Small distances in ambient space are 
representative of distances on manifold

Large distance in ambient space may not 
be representative of distance on manifold



Charts and Atlases

- Globally, a manifold’s topology may not 
even be (one-to-one, continuously) 
mappable to euclidean space

- An approach often taken is to take small 
pieces that are mappable, and then glue 
together (identify) those pieces to get a 
representation of the manifold

- The resulting construct is known as an atlas

https://upload.wikimedia.org/wikipedia/commons/f/f0/Polar_stereographic_projections.jpg
https://upload.wikimedia.org/wikipedia/commons/0/06/Two_coordinate_charts_on_a_manifold.svg



Nerves

https://en.wikipedia.org/wiki/Nerve_of_a_covering#/media/File:Constructing_nerve.png



General strategy

- Step 1: Construct a set of locally faithful representations of the data
- “Chart”

- Step 2: Combine the representations into a globally coherent representation
- “Atlas”

- Step 3: Try to construct a lower dimensional dataset that is faithful to the 
global representation

- “Nerves”



t-SNE: t-distributed stochastic neighbor embedding

- Step 1: For each point, it generates a probability of jumping to a different point 
from there

- Step 2: Symmetrize the distances

- Step 3: Find a lower dimensional embedding that generates a similar 
distribution



Local structure

- We determine the probability of going from point a to point b to be 
proportional to the exponential of the negative square euclidean distance

- “On a random walk, you can get from one point to another if you’re close”
- The probabilities decay exponentially, so large distances have negligible effect on the overall 

distribution



Controlling heterogeneity

- Even if we assume that data is distributed uniformly on the embedded 
manifold, its embedding into the ambient space may induce non-uniformities



Solution: Modify sigma!

- We adjust sigma until the conditional distribution hits a fixed 
entropy/perplexity (hyperparameter)

- perplexity = 2entropy

- We find the correct sigma by binary search
- Try the halfway point between the current upper bound and lower bound
- Adjust the bounds
- If bounds don’t exist, explode/decay exponentially



Why do we want to fix perplexity?

- Suppose you have a bag with n items, and you draw an item
- Suppose all items are equally likely to be drawn

- Entropy is log(n)
- The number of items is 2^entropy = n

- Suppose one item is drawn with overwhelming probability
- Entropy is close to 0
- One can argue that the number of items is 2^entropy = 1, since once item is drawn with 

overwhelming probability
- Therefore, 2^entropy is like “the number of items you can draw from”

- Therefore, fixing perplexity is like fixing the number of neighbours you have!



Symmetrizing the distances



Finding a good lower dimensional embedding

Optimize with gradient descent



Why use a t-distribution instead of a Gaussian?

- Points can crowd together in high dimensional space without collapsing
- To avoid collapse in a lower dimensional space, we allow more measure in 

the tails of the distribution
- Famously, the distribution in question has tails so heavy the expected values are undefined



Parametric t-SNE

Instead of calculating the embedding directly, train a function f() that embeds into 
the lower dimensional space



Parametric t-SNE

We have an output, a target, and a cost function, so we can train this just like any 
other ML model we’ve trained so far.

We can even perform updates in batch if we expect f() to generalize



UMAP: Uniform Manifold Approximation and Projection

- An alternative to t-SNE with strong theoretical foundations and fast runtime
- Theoretical assumptions:

- Data is uniformly distributed on the underlying manifold
- The manifold is connected
- The reduced representation should reproduce the connective structure of the underlying 

manifold



UMAP - local structure

- For each point, find the k nearest neighbours and compute a weight for each 
of them

- The weight is local to the point and represents the probability that the 
neighbours are connected “from the point’s perspective”

- The edge the weight is on is directed from the origin to the neighbour

https://arxiv.org/pdf/1802.03426.pdf



UMAP - global structure

- Two different local structures may disagree on whether an edge exists
- To get the global probability that an undirected edge exists, we calculate the 

probability that either directed edge exists

https://arxiv.org/pdf/1802.03426.pdf



UMAP - reduced representation

- Each edge then exerts a pulling force between the vertices it’s between
- O(kn) updates

- Each pair of vertices has a repulsive force between them
- O(n^2) updates, but can use sampling to reduce the runtime

https://arxiv.org/pdf/1802.03426.pdf



t-SNE vs UMAP

https://pair-code.github.io/understanding-umap/



t-SNE vs UMAP

https://www.nature.com/articles/nbt.4314
https://www.biorxiv.org/content/10.1101/2019.12.19.877522v1



NMF: Nonnegative Matrix Factorization

We want to find an approximation of X as the product of entrywise positive 
matrices

Each latent basis will have an additive contribution to the sample

https://academic.oup.com/bioinformatics/article/32/1/1/1743821



https://www.nature.com/articles/44565



https://www.nature.com/articles/44565


