
Recitation 9
Graphs and GNNs

Slides adapted from lecture 15 presented by Manolis Kellis, Neil Band, and Maria Brbic



Graphs

- In the most basic setting, graphs are a pair (V,E)
- E ⊆ { {x,y} | x,y ∈ V }

- For directed graphs, E ⊆ { (x,y) | x,y ∈ V }

Graphical representation Adjacency matrix representation



Neighbourhoods

- A neighbour of a vertex v is any vertex 
that shares an edge with v

- The neighbourhood of v is the set of 
neighbours of v

- The k-hop neighbourhood of v is the 
set of vertices that can be reached from 
v by traversing k edges

- The graph distance between two 
vertices is the shortest path between 
them

k=1

k=2



Importance of a node (centrality)

- The degree of a vertex is the number of 
neighbours it has

- B has degree 4
- The betweenness centrality of a vertex 

measures how often you travel through it
- Assume that travel is always along shortest path
- B has a betweenness centrality of 5

- The closeness centrality of a vertex v 
measures how far the average vertex is from v

- B has a closeness centrality of 1



Random walks

- We generate a random walk by selecting an edge uniformly at random at 
each step and transitioning to the vertex on the other end

- The average occupancy time for each vertex can be used as a measure of its 
importance

- This is the idea behind PageRank

https://upload.wikimedia.org/wikipedia/en/8/8b/PageRanks-Example.jpg

note: The 
random walk 
represented 
here has a 
random restart 
allowing 
escape from 
A,B, and C.



Random walks

Graph Adjacency Matrix Random walk/transition matrix

Update distribution for one step Update distribution for k steps



Random walks

In general, we want to find the eigenvector of P corresponding to 𝜆=1



Graph Laplacian (motivation)

Suppose we have a function f:V→ℝ that maps vertices to numbers

Suppose we want to characterize the “variability” of the function

Alternatively: U is related to the potential energy in a 
system connected by springs (these springs are 
relaxed at length 0)



v f(v)

A 0

B 1

C 1

D 0

E 0

1

1

1

1

0



Rearranging 
the terms in 
the sum in the 
shape of a 
matrix:



Laplacian matrix of a graph

Laplacian matrix has non-negative eigenvalues
Smallest eigenvalue is always 0, and corresponds to the vector of all 1s

Negative adjacency matrix with the degrees 
of the vertices along the diagonal



The Laplacian captures edge crossings of graph partitions

v f(v)

A 0

B 1

C 1

D 0

E 0

v fn(v)

A -2/5

B 3/5

C 3/5

D -2/5

E -2/5

Normalizing doesn’t 
change U

Indicator function. 
Assume WLOG that the number 
of vertices that evaluate to 1 is at 
most the number of vertices that 

evaluate to 0

v 1(v)

A 1

B 1

C 1

D 1

E 1

fn⟂1



X is a random variable 
that denotes whether a 
randomly selected vertex 
belongs to the partition. X 
is true with probability p.

λ2 is the smallest 
non-zero 
eigenvector. 
Remember that fn 
has mean 0 so it 
has no component 
in the 1 direction.



Deep learning on graphs

How do you input a graph to a deep learning network? Representation?



Graph neural networks



Aggregation should respect symmetry of neighbours



Variations on aggregation



Heterogeneous aggregation



Relation to convolutional layers



Refresher on attention

Bag of embeddings Calculate query-key similarity 
relative to w for all embeddings e

(Q(w) · K(e))

w w w

Aggregate over all embeddings e to 
get the new embedding for w

𝚺 a(w,e) * V(e)

softmax 
over 
query-key 
similarities 
to get the 
attention 
weights 
a(w,e)

Q(),K(),V() are trainable



Relation to attention layers

- This is essentially a graph neural 
network over a fully connected 
network

- Remark: Attention layers don’t 
leverage sequence structure 
architecturally speaking. In fact, 
sequence structure has to be 
encoded and explicitly fed into the 
attention layer



Unsupervised learning

Learning node embeddings for downstream tasks



Graph generation



A problem (for fun)

Can a GNN identify interesting network structures?

https://upload.wikimedia.org/wikipedia/commons/3/3a/Chlorophyll_d_structure.svg



The 3-SAT problem

Given a formula in conjunctive normal form:

Figure out an assignment

Such that the formula evaluates to True

Conjecture: Any algorithm solving 3-SAT runs in ⍵(nk) for any k
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Structure to find: 6 vertices that don’t share any edges
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Can’t pick 
anything 
from this 
clause!

Any solution will always correspond to a solution of the original 3SAT. Otherwise...



Minor detail

- “6 vertices that don’t share an edge” is not really a “structure”
- You can always flip the graph:

- Remove all edges that exist
- Put an edge wherever an edge doesn’t exist

- Find “6 vertices that don’t share an edge” now becomes find “6 vertices that 
are all connected to each other”



Complexity bound on GNNs

- GNNs will not be able to identify interesting substructures 100% of the time in 
a reasonable amount of time

- unless P = NP
- Many interesting graph problems are locked behind this complexity barrier

- Can you color a graph with at most k colors?
- Is there a path in the graph that traverses all vertices?
- Is there a set of vertices with at least k edges pointing out?

- This is in theory. In practice, GNNs may be able to give very good solutions to 
many of these problems


