Recitation 11
Structural biology



Surfaces



Molecular surface

Solvent molecule
(Probe) Solvent Accessible Surtace (SAS)

Solvent Excluded Surface (SES)

FIGURE 1 The solvent-accessible surface (SAS) is
traced out by the center of the probe representing a
solvent molecule. The solvent-excluded surface (SES) is
the topological boundary of the union of all possible
probes that do not overlap with the molecule.

REDUCED SURFACE: an Efficient Way to Compute Molecular Surfaces



Understanding surfaces by understanding curvature

https://upload.wikimedia.org/wikipedia/commons/4/4b/Gelenke_Zeichnung01.jpg



“Curvature is a second derivative”
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Curvature of a surface
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Figures generated from https://www.wolframalpha.com/



Curvature of a surface

- Letv =[xy]
- Taylor expansion: height = 0.5 vHv" + O(|v|?)
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- His symmetric, so it has 2 real eigenvalues with
orthogonal eigenvectors

Figures generated from https://www.wolframalpha.com/



Curvature of a surface

- With the appropriate rotation we can make the
Hessian diagonal
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- We still have height = 0.5 vHv' + O(|v|®)
- =0.5 (d2f/dx2)x2 + 0.5 (d?/dy?)y2 + O(|v|*)
- =052+ 0.5 k,y? + O(|v]°)

Figures generated from https://www.wolframalpha.com/



Curvature of a surface

- Height = 0.5 x,x* + 0.5 k,y* + O(|v[°)
- Choose a direction: (x,y) = (t cos(0) + t sin(0))
- Height” =k, cos?(0) + k, sin*(0)

- Curvature along the chosen direction

- Mean curvature:
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Figures generated from https://www.wolframalpha.com/
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Another notion of curvature

Mean curvature: (k, + «,)/2
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Gaussian curvature: K, * K

2

Figures generated from https://www.wolframalpha.com/



Gaussian curvature measures space deficit/excess

Figures generated from https://www.wolframalpha.com/



Protein structure



Amino acids are the Building Blocks of Proteins

Amino acids have a side chain that endows them with a diverse range of chemical and physical properties, which

give proteins their wide range of functions.
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Primary Structure Hierarchy

B-Sheet (3 strands) a-helix

https://upload.wikimedia.org/wikipedia/commons/5/5f/Protein_structure_%28full%29.png



Structure informs function

ATP Synthase Proteasome

https://upload.wikimedia.org/wikipedia/commons/0/00/Atp_synthase.PNG
https://upload.wikimedia.org/wikipedia/commons/5/54/Proteaosome_1fnt_side.png



Primary structure is easier to infer than higher order

structures

replication
(DNA -> DNA)
DNA Polymerase
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X-ray crystallography

https://upload.wikimedia.org/wikipedia/commons/6/68/Central_Dogma_of_Molecular_Biochemistry_with_Enzymes.jpg

https://upload.wikimedia.org/wikipedia/commons/7/73/X_ray_diffraction.png

Structure of Alcohol Oxidase from Pichia pastoris by Cryo-Electron Microscopy, Vonck et al. (2016)
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Cryo-Electron microscopy



Protein Structure Encodes Higher Order Structure

- It was discovered that Bovine Pancreatic
Ribonuclease denatured in urea renatures
under more optimal conditions

- Thermodynamic hypothesis: protein structure
is the solution to an optimization problem

encoded by the sequence

- This is not always true! Counterexamples exist in the
form of aggregation, chaperones, misfolding, etc.

The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain, Anfinsen et al. (1961)
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Fig. 1.—Changes, during the oxidation of reduced ribonuclease, in
SH %roups as followed by titration with p-chloromercuribenzoate (@)
and by reaction with joactive iodoacetate (Q), in optical rotation
(D), and in enzymatic activity as measured against nbonucleic acid
(a) and against uridylic-2',3"-cyclic phosphate ( A).



The thermodynamic hypothesis implies sequence based
structure prediction is possible

~
If the protein structure is the solution to an A %/fﬁﬁi)
optimization problem encoded by the o
sequence, then maybe we can find this
solution computationally.

Energy

— T

Molten globule

This is the goal of protein structure
prediction.

Native state

https://upload.wikimedia.org/wikipedia/commons/9/91/Folding_funnel_schematic.svg



3D Protein Structure is Parameterized by Amino Acid
Torsion Angles

- An amino acid has two degrees of freedom arising from its ¢ and vy angles
Y
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£
- The states of the angles parametrize the structure of the protein

- If we discretize each angle to be in one of three states due to torsional strain,
we have a massive combinatorial space of possible conformations

https://upload.wikimedia.org/wikipedia/commons/0/01/Glycine-neutral-Ipttt-conformer-3D-bs-17.png



Ramachandran plots
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https://upload.wikimedia.org/wikipedia/commons/9/90/Ramachandran_plot_general_100K.jpg



Representation of a protein structure as a point cloud in
3D space
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The alpha carbon (Ca) is often used - :--.: : - Ty = 'E-
as the “center” of the amino acid — '_'_'= - : S

https://upload.wikimedia.org/wikipedia/commons/0/01/Glycine-neutral-Ipttt-conformer-3D-bs-17.png
https://www.rcsb.org/3d-view/4hhb/1



Alternative representations/simplifications of protein
structure

CCCCCCHHHHHH!

Secondary structure

Lattice walk

Contact map

https://upload.wikimedia.org/wikipedia/commons/8/8d/Protein_Contact_Map%2C_2-Color%2C_2QIP-A.png



Structure assessment



Critical Assessment of protein Structure Prediction (CASP)

- Since 1994, every two years a contest is held to see who can best predict
protein structures from peptide sequences
- Targets structures are held from publication until results are in



Aligning two point clouds

We want to factor out rigid motion when comparing a pair of point clouds

A popular approach is to minimize the root mean square distance (RMSD)

1 n
RMSD(P,Q) = J - > (Ilpi — al13)

" i=1



Root mean squared distance is a computable but flawed
metric

- Given a pair of structures, minimize the sum of the squared distances

between Ca
Kabsch algorithm

- Taking the square root gives the RMSD
- Small imperfections (outliers) can ruin a pretty good alignment since
distances are squared



Finding the optimal rigid transformation

- Define data matrices P and Q

-plu: Ply Piz —ql.’l,' 1y QIz-
o — : Q =

| Pnxz Pny Pnz | nz  Gny dnz |

- Translate each point cloud so that they are centered at the origin
- Want to find optimal rotation R such that RMSD between PR and Q is
minimized



Finding the optimal rigid transformation

R is a rotation so it cannot affect
the singular values that upper
bound eigenvalues
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Problems with RMSD

A large error in a small part of a prediction can tank a structure’s RMSD due to
squaring

1

1
RMSD(P,Q) = \j - > (lpi — all3)

" i=1

The Global Distance Test (GDT) instead measures the fraction of points that can
be matched up between two point clouds up to a given distance threshold.



RMSD: 0.67 RMSD: 0.35
GDT: ~0.5 GDT: ~0




Physical modelling



Simplified models of protein folding

CCCCCCCCCHHHHCCCCCCCC
CCCCCCCCHHHHHHCCCCCCC
CCCCCCHHHHHHHHHCCCCCC

Ising models allow us to derive the average
helicity of a canonical ensemble and model
its behaviour (e.g. helix propagation)

Lattice based folding models allow us to
understand the combinatorial complexity
of protein folding (protein folding is
NP-hard)



Molecular Dynamics Simulations

- Simulate the folding of the protein by simulating the physics directly
- Very computationally expensive
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Statistical Potentials

- Given a triplet (amino acid 1, amino acid
2, distance between them), we can look at

how common that configuration occurs °

- This gives us an indication of how stable the
configuration is (potential energy)

- Initially these potentials are interpreted to
be physical energy values

- Later shown that they are more reflective
of evolutionary history than physical
energy

10

Interaction score

https://upload.wikimedia.org/wikipedia/commons/2/2b/ICBVCB.svg
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Rosetta
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Evolution of structure prediction
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Single Sequence
[ ]
Holy Grail?

Sequence Information

Slide from Mohammed AlQuraishi



AlphaFold
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Breaking down the AlphaFold pipeline

Raw sequence data is converted into a feature tensor

CNNs produces distance predictions for each pair of ¢_-atoms
Distance predictions are used to derive distance based potentials
The ¢ and y angles are derived by optimization using the potentials
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Improved protein structure prediction using potentials from deep learning



Step 1: Feature engineering

- Scalar (1 feature): Number of
similar proteins

« Number of HHblits alignments (scalar).

- Vector ( 139 featu reS): Seq uence, «Sequence-length features: 1-hot amino acid type (21 features);
. ‘o profiles: PSI-BLAST (21 features), HHblits profile (22 features),

al Ign ment’ pOSItIOn non-gapped profile (21 features), HHblits bias, HMM profile (30

- Matrix (486 featu reS)' Coevolution features), Potts model bias (22 features); deletion probability (1fea-

ture); residue index (integer index of residue number, consecutive
except for multi-segment domains, encoded as 5 least-significant
bits and a scalar).

«Sequence-length-squared features: Potts model parameters
(484 features, fitted with 500 iterations of gradient descent using
Nesterov momentum 0.99, without sequence reweighting);
Frobenius norm (1feature); gap matrix (1feature).

Improved protein structure prediction using potentials from deep learning



All features are transformed into 2d tensors

i l

- Subsequent stacking yields a square tensor with 600+ channels

https://upload.wikimedia.org/wikipedia/commons/6/68/Messy_kitchen_sink.jpg



Step 2: Distance map prediction

- The output space consists of 64 discrete equally sized “distance classes”
- Given a 64x64 piece of the square tensor, the task is to output a 64x64x64
tensor that gives the distance distribution for each position

Improved protein structure prediction using potentials from deep learning



The deep learning component of AlphaFold

A convolutional residual network consisting of 220 residual blocks

Elu

Batch norm
Project up

Improved protein structure prediction using potentials from deep learning

Neural network hyperparameters

« 7 groups of 4 blocks with 256 channels, cycling through dilations
1,2,4,8.

«48 groups of 4 blocks with 128 channels, cycling through dilations
1,2,4,8.

« Optimization: synchronized stochastic gradient descent

«Batchsize: batch of 4 crops on each of 8 GPU workers.

+0.85 dropout keep probability.

*Nonlinearity: ELU.

Learningrate: 0.06.

« Auxiliary loss weights: secondary structure: 0.005; accessible sur-
facearea: 0.001. These auxiliary losses were cut by a factor 10 after
100 000 steps.

«Learning rate decayed by 50% at 150,000, 200,000, 250,000 and
350,000 steps.

« Training time: about 5 days for 600,000 steps.



Recap

HHDblits & MSA Deep
PSI-BLAST Features ResNet

@,y
Torsion
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Improved protein structure prediction using potentials from deep learning




Ramachandran plots
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https://upload.wikimedia.org/wikipedia/commons/9/90/Ramachandran_plot_general_100K.jpg



Step 3: Obtaining distance potentials

- Model outputs distribution over 64 discrete
equally sized “distance classes” between
2-22A

- Ramachandran plots are discretized to 10°
by 10° chunks

- To optimize, these must be made

differentiable
- Splines
Fitting “Gaussian distributions”

Improved protein structure prediction using potentials from deep learning
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https://www.degreesymbol.net/
https://www.degreesymbol.net/

Step 4: Optimize the ¢ and y angles

- So far the distance based potentials and torsion angle potentials have been
computed

- An additional van der Waals term from Rosetta is added to prevent physically
impossible structures

- Optimization is done by minimizing the sum of these three terms

- Initial state is drawn from Ramachandran plots

https://upload.wikimedia.org/wikipedia/commons/a/a3/Gradient_descent.qgif



Overview
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Improved protein structure prediction using potentials from deep learning
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What is AlphaFold2?

A folded protein can be thought of as a “spatial graph”, where residues are the nodes and edges
connect the residues in close proximity. This graph is important for understanding the physical
interactions within proteins, as well as their evolutionary history. For the latest version of
AlphaFold, used at CASP14, we created an attention-based neural network system, trained end-
to-end, that attempts to interpret the structure of this graph, while reasoning over the implicit
graph that it's building. It uses evolutionarily related sequences, multiple sequence alignment

(MSA), and a representation of amino acid residue pairs to refine this graph.

By iterating this process, the system develops strong predictions of the underlying physical
structure of the protein and is able to determine highly-accurate structures in a matter of days.
Additionally, AlphaFold can predict which parts of each predicted protein structure are reliable

using an internal confidence measure.

DeepMind blog
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A folded protein can be thought of as a “spatial graph”, where residues are the nodes and edges
connect the residues in close proximity. This graph is important for understanding the physical
interactions within proteins, as well as their evolutionary history. For the latest version of
AlphaFold, used at CASP14, we created an attention-based neural network system, trained end-
to-end, that attempts to interpret the structure of this graph, while reasoning over the implicit
graph that it's building. It uses evolutionarily related sequences, multiple sequence alignment
(MSA), and a representation of amino acid residue pairs to refine this graph.

?2?7?
By iterating this process, the system develops strong predictions of the underlying physical 7?2?22
structure of the protein and is able to determine highly-accurate structures in a matter of days.???
Additionally, AlphaFold can predict which parts of each predicted protein structure are reliable =~

using an internal confidence measure.

DeepMind blog



Schematic
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lterative attention based neural network system?
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