
Computational Systems Biology
Deep Learning in the Life Sciences

1

6.802 6.874 20.390 20.490 HST.506

Manolis Kellis

Lecture 2
Optimizing Feedforward Networks

Slides credit: David Gifford, Geoff Hinton, and more

On tap today!

• What is Machine Learning
• Traditional Neural Networks
• How can we use gradients for optimization?
• How can we use gradients to train a deep neural

network?
• What performance metrics should we use?
• How can we manage gradient optimization?
• How can we “regularize” a model to control

parameter selection and thus model complexity?

What is Machine Learning

4 / 37

What is Machine
Learning?[Shalev-Shwartz and Ben-David, 2014]:

“Learning is the process of converting experience into expertise or knowledge.”

[Mohri et al., 2012]:
“Machine learning can be broadly defined as computational methods using experience to
improve performance or to make accurate predictions.”

[Murphy, 2012]:
“The goal of machine learning is to develop methods that can automatically detect
patterns in data, and then to use the uncovered patterns to predict future data or other
outcomes of interest.”

[Hastie et al., 2001]:
“[...] state the learning task as follows: given the value of an input vector x , make a good
prediction of the output y , denoted by yˆ”

5 / 37

What is Machine
Learning?

A computer program is said to learn from
experience E

with respect to some
class of tasks T

and
performance measure P,

if its performance at tasks in T, as measured by P, improves with experience E.
[Mitchell, 1997]

What is Machine
Learning?

A computer program is said to learn from
experience E

with respect to some
class of tasks T

and
performance measure P,

if its performance at tasks in T, as measured by P, improves with experience E.
[Mitchell, 1997]

Problem Set 1
• experience E: training set of images of handwritten digits with labels (training set)
• task T: classifying handwritten digits within new images (test set)
• performance measure P: percent of test set digits correctly classified in new images (test set)

5 / 37

8 / 37

Linear Algebra and Machine Learning Notation

a, b, ci

a, b, c
A , B , C
A,B, C
A , B, C

scalar (slanted, lower-case)
vector (bold, slanted, lower-case)
matrix (bold, slanted, upper-case)
tensor (bold, upright, upper-case)
set (calligraphic, slanted, upper-case)

X input space or feature space dataset
example matrix or tensor
i th example of dataset, one row of X
feature j of example x (i)

X ,X

x (i)

jx(i) , xj

Y
y (i)

ŷ (i)

label space
label of example I
predicted label of example i

Terminology
f

Input X ∈ X :
• features (in machine learning)
• predictors (in statistics)
• independent variables (in statistics)
• regressors (in regression models)
• input variables
• covariates

9 / 37

Output y ∈ Y:
• labels (in machine learning)
• responses (in statistics)
• dependent variables (in statistics)
• regressand (in regression models)
• target variables

trainingTraining set S = { (i) (i) N
i=1(X , y)} ∈ {X ,Y} N , where N is number of training examples

An example is a collection of features (and an associated label)
Training: use Straining to learn functional relationship f : X → Y

Terminology

f : X → Y
f (x ;θ) = ŷ

θ:

f :

• weights and biases (intercepts)
• coefficients β
• parameters

• model
• hypothesis h
• classifier
• predictor
• discriminative models: P(Y|X)
• generative models: P(X, Y)

Problem Set 1
x ∈ [0,1]784

ŷ ∈ [0,1]10

W ∈ R784×10

b ∈ R10

10/ 37

softmaxf (x ;W , b) = φ (W rx + b)

Data in PS1

Problem Set 1

input space:
X = {0, 1, . . . , 255}28×28

after rescaling:
X I = [0, 1]28×28

after flattening:
X II = [0, 1]784

Classification

11 / 37

Data in PS1

Problem Set
1input space:
X = {0, 1, . . . , 255}28×28

after rescaling:
X I = [0, 1]28×28

after flattening:
X II = [0, 1]784

integer-encoded label space:
Yi = {0, 1, . . . , 9}

one-hot-encoded label space:
Yh = [0, 1]10

12/ 37

Types of Machine Learning

Classification Regression Unsupervised learning

Y /= ∅ supervised or semi-supervised learning
Y = R
Y = RK ,K > 1
Y = { 0,1}
Y = { 1, ...,K }
Y = { 0,1} K ,K > 1

Regression
multivariate regression
binary classification
multi-class classification (integer encoding)
multi-label classification

Y = ∅

13 / 37

unsupervised learning

Types of Machine Learning

Problem Set 1
• task: every X has an associated y =⇒ supervised learning
• subtask: Y = { 0, ...,9} =⇒ multi-class classification
• method: we use softmax regression (also known as multinomial logistic regression) as multi-class

classification method

14 / 37

Objective function

15 / 37

Objective functions

An objective function J (Θ) is the function that you optimize when training machine learning models.
It is usually in the form of (but not limited to) one or combinations of the following:

Loss / cost / error function L (ŷ , y):
Classification

• 0-1 loss
• cross-entropy loss

• hinge loss
Regression

2• mean squared error (MSE, L norm)
1• mean absolute error (MAE, L norm)

• Huber loss (hybrid between L1 and L2 norm)
Probabilistic inference

• Kullback-Leibler divergence (KL divergence)

Likelihood function / posterior:
• negative log-likelihood (NLL) in maximum

likelihood estimation (MLE)
• posterior in maximum a posteriori estimation

(MAP)
Regularizers and constraints

Loss functions for classification

Binary cross-entropy loss (for binary classification):

17 / 37

Loss functions for classification

Problem Set 1
Categorical cross-entropy loss (for multi-class classification with K classes):

18 / 37

note: yj
(i) = 1 only if x (i) belongs to class j and otherwise yj

(i) = 0

Probabilistic interpretation:
LCCE = NLL, if likelihood is defined using the categorical distribution

if softmax is usedwhere

x W by

tf.matmul

+

tf.nn.softmax

loss function

tf.placeholder tf.placeholder tf.variable tf.variable

optimizer
Problem Set 1 Structure

[None, 10] [None, 784] [784,10] [10]

Loss functions for regression
Mean squared error:

Probabilistic interpretation:
LMSE = NLL, under the assumptation that the noise is normally distributed, with constant mean
and variance

Mean absolute error:

19 / 37

20 / 37

Empirical risk minimization

Expected risk (loss) associated with hypothesis h(x):

Minimize Rexp(h) to find optimal hypothesis h:

h = argmin Rexp(h)
h∈F

Problem:
• distribution p(x , y) unknown
• F is too large (set of all functions from X to Y)

21 / 37

Empirical risk minimization

Empirical risk associated with hypothesis h(x):

Minimize Remp(h) to find ĥ:

hˆ = argmin Remp(h)
h∈H

In practice:
• instead of p(x , y), we use training set Straining

• instead of F, we use H ⊂ F, e.g., all polynomials of degree 5

Optimizing objective function
Gradient descent

• initialize model parameters
θ0,θ1, ...,θm

• repeat until converge, for all θi

t t− 1
i iθ ← θ −λ

∂
∂θ t−1 J (Θ),

i

where the objective function J (Θ) is
evaluated over all training data

(i) (i) N
i=1{ (X ,y)} .

Problem Set 1
Stochastic Gradient Descent (SGD): in each step, randomly sample a mini-batch from the training
data and update the parameters using gradients calculated from the mini-batch only.

22 / 37

Training and Evaluation

Training, validation, test sets
Training set (Straining):

• set of examples used for learning

Validation set (Svalidation):

Test set (Stest):

• usually 60 - 80 % of the data

• set of examples used to tune the model hyperparameters
• usually 10 - 20 % of the data

• set of examples used only to assess the performance of fully-trained model
• after assessing test set performance, model must not be tuned further
• usually 10 - 30 % of the data

training set

training time

loss
validation set

23/ 37

underfitting overfitting

Confusion matrix and derived metrics

Problem Set 1
Accuracy: proportion of true predictions - (TP + TN) / (TP + FP + TN + FN)

24 / 37

Receiver Operating Characteristic (ROC)
Performance

Area Under the ROC Curve (AuROC)
AuROC is a common metric for comparing classification methods
TPR = TP / (TP + FN)
FPR = FP / (FP + TN)
Problematic when we have an unbalanced dataset (example more positives than negatives)

25 / 37

Precision Recall Curve (PRC) Performance

Area Under the PRC (AuPRC)
Precision = PPV = TP / (TP + FP) = 1 - FDR
Recall = TPR = TP / (TP + FN)
Useful when datasets are unbalanced

26 / 37

ROC and PRC curves are complementary

Recall
FPR = FP / (FP + TN)
Precision = PPV = TP / (TP + FP) = 1 - FDR
Recall = TPR = TP / (TP + FN)

27 / 37

Regression Metric 1 - Pearson Correlation

Pearson correlation coefficient is r . r2 is the fraction of linearly explained variance
r = (x− x) · (y− y)

28 / 37

||x || ||y||

Regression Metric 2 - Spearman Rank Correlation

Pearson correlation of observation ranks
For ties assign fractional ranks by average rank in ascending order

29 / 37

Correlation significance tests

t = r

30 / 37

t is distributed as Student’s t-distribution with n −2 degrees of freedom under the null
hypothesis
n is the number of observations✓

n− 2
1− r2

Alternatively we can permute values to observe the empirical distribution of null correlations

One sided vs. two sided test

Two sided tests are used when we are testing for a difference without regard to direction
Two sided tests allocate half the area to each direction
Thus they are more strict if you only wish to test in one direction

31 / 37

Multiple hypothesis correction is important

33 / 37

Correlation is not causation

34 / 37

The Datasaurus Dozen - J. Matejka, G. Fitzmaurice

35 / 37

Traditional Neural Networks

Deep learning many layers of abstraction

oodfellow 2016

Convolutional filter

How the brain works inspired artificial “neural" networks

axon

body
dendritic tree

axon hillock

Biological neuron

z b + xiwi
i

Activation
function

Artificial perceptron

Neural Network (e.g. 4-layers ‘deep’)

Deep multi-layer neural networks can
‘learn’ almost any function

Learning non-linear functions: non-linear “activation” units

Rectified linear unit (ReLU)

Sigmoid unit

Maps to [0,1], saturation

Easy to optimize, generalizes well

Softplus unit

No saturation, smooth transition

Each hidden layer has an
activation function at its output

13 Jan
2016

13 Jan
2016

Sigmoid

tanh tanh(x)

ReLU max(0,x)

Popular activation functions at node
outputs

Leaky ReLU

max(0.1x, x)

Gradient-based learning: use derivative to update weights

where
• Gradient descent: ∂E/∂w = partial derivative of error E wrt w
• ϵ = learning rate (e.g. <0.1), needed to not overshoot the optimal solution
• λ = weight decay, penalizes large weights to prevent overfitting
• η = momentum, based on magnitude+sign of previous update (∆wt−1);

when direction of update is consistent faster convergence

Using only a subset of samples at a time:
• Stochastic gradient descent (SGD): speed up computation

• Randomly sample subset of samples
• Update the weights using only that subset

• On-line learning: Update gradient using only 1 training data point each time

Learning rate Weight decay momentum

Gradient Previous change

Back-propagation of error across multiple layers

[Rumelhart and Hintont, 1986, LeCun et al., 2015]

(Goodfellow 2016)

The steepest gradient is not
necessarily toward the optimum point

Figure 4.6

Example gradient management methods

• Stochastic gradient descent (update on each
training value)

• Mini-batch gradient descent (average gradient
over a mini-batch)

• Momentum methods
• Adam - exponentially decaying average of

past gradients and parameter specific
learning rates

• Adadelta - parameters specific learning
rates with fixed memory window

Gradient learning

Gradient based optimization needs a
loss function to minimize

Stochastic gradient descent updates parameters
to reduce loss

Learning rate

(Goodfellow 2016)

What loss function should we use to pick w?

Figure 5.1

y’ = wTx find w to best approximate y

Minimizing mean-square error maximizes
Gaussian likelihood

𝑓𝑓(𝑥𝑥|𝜃𝜃) =
1
2𝜋𝜋𝜎𝜎2

𝑒𝑒−
(𝑥𝑥−𝜇𝜇)2
2𝜎𝜎2

log𝑓𝑓(𝑥𝑥|𝜃𝜃) = 𝐶𝐶1 −
(𝑥𝑥 − 𝜇𝜇)2

𝐶𝐶2

arg𝑚𝑚𝑚𝑚𝑥𝑥
𝜃𝜃
𝑓𝑓(𝑥𝑥|𝜃𝜃) = arg𝑚𝑚𝑚𝑚𝑚𝑚

𝜃𝜃
(𝑥𝑥 − 𝜇𝜇)2

Gradient Descent for linear regression

Linear regression can be solved by
gradient descent

tf Graph Input
X = tf.placeholder("float")
Y = tf.placeholder("float")

Set model weights
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")

Construct a linear model
pred = tf.add(tf.mul(X, W), b)

Mean squared error
cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)

Gradient descent
optimizer =
tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

Cost is minimized after 1000 epochs

Epoch: 0050 cost= 0.195095107 W= 0.441748 b= -0.580876
Epoch: 0100 cost= 0.181448311 W= 0.430319 b= -0.498661
Epoch: 0150 cost= 0.169377610 W= 0.419571 b= -0.421336
Epoch: 0200 cost= 0.158700854 W= 0.409461 b= -0.348611
Epoch: 0250 cost= 0.149257123 W= 0.399953 b= -0.28021
Epoch: 0300 cost= 0.140904188 W= 0.391011 b= -0.215878
Epoch: 0350 cost= 0.133515999 W= 0.3826 b= -0.155372
Epoch: 0400 cost= 0.126981199 W= 0.374689 b= -
0.0984639
Epoch: 0450 cost= 0.121201262 W= 0.367249 b= -
0.0449408
Epoch: 0500 cost= 0.116088994 W= 0.360252 b=
0.00539905
Epoch: 0550 cost= 0.111567356 W= 0.35367 b= 0.052745
Epoch: 0600 cost= 0.107568085 W= 0.34748 b= 0.0972751
Epoch: 0650 cost= 0.104030922 W= 0.341659 b= 0.139157
Epoch: 0700 cost= 0.100902475 W= 0.336183 b= 0.178547
Epoch: 0750 cost= 0.098135538 W= 0.331033 b= 0.215595
Epoch: 0800 cost= 0.095688373 W= 0.32619 b= 0.25044
Epoch: 0850 cost= 0.093524046 W= 0.321634 b= 0.283212
Epoch: 0900 cost= 0.091609895 W= 0.317349 b= 0.314035
Epoch: 0950 cost= 0.089917004 W= 0.31332 b= 0.343025
Epoch: 1000 cost= 0.088419855 W= 0.30953 b= 0.370291
Optimization Finished!
Training cost= 0.0884199 W= 0.30953 b= 0.370291

Example convex functions

• c(x) = Mx + b
• c(x) = ec1(x)

• c(x) = c1(x) + c2(x)
• c(x) = xp

• c(x) = |x|
• c(x) = x log x
• c(x) = max(c1(x), c2(x))

Deep neural networks are
typically non-convex functions

Log convex functions

• They are not convex but their log is convex
• Example - sigmoid
• They can be optimized by convex solvers

We may not always find the best
solution for non-convex functions

(Goodfellow 2016)

Approximate Optimization

Figure 4.3

Backpropagation

Backpropagation computes gradients via the
chain rule

Example of backpropagation of errors

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Another example:

Fei-Fei Li & Andrej Karpathy & Justin Johnson

13 Jan
2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 -
13 Jan 2016

Another example:

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 -
13 Jan 2016

Another example:

Fei-Fei Li & Andrej Karpathy & Justin Johnson

13 Jan
2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 -
13 Jan 2016

Another example:

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 -
13 Jan 2016

Another example:

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Another example:

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 -
13 Jan 2016

Another example:

Fei-Fei Li & Andrej Karpathy & Justin Johnson

13 Jan
2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 -
13 Jan 2016

Another example:

(-1) * (-0.20) = 0.20

Fei-Fei Li & Andrej Karpathy &
Justin Johnson

Fei-Fei Li & Andrej Karpathy & Justin Johnson

13 Jan
2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 -
13 Jan 2016

Another example:

Fei-Fei Li & Andrej Karpathy & Justin Johnson

13 Jan
2016

“local gradient”

f

gradients

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Another example:

[local gradient] x [its gradient]
[1] x [0.2] = 0.2
[1] x [0.2] = 0.2 (both inputs!)

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Another example:

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Another example:

[local gradient] x [its gradient]
x0: [2] x [0.2] = 0.4
w0: [-1] x [0.2] = -0.2

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Controlling model complexity

Training set: observations of wealth and
religiousness features with #blue or #red labels

Test set: How well can we do?

K-Nearest Neighbors (KNN) defines
neighborhoods

K-Nearest Neighbors (KNN) k=1 classification
results

K-Nearest Neighbors (KNN) k=3 classification
results

K-Nearest Neighbors (KNN) k=29 classification
results

A straight line can classify three points arbitrarily
labeled

A straight line can not classify four points
arbitrarily labeled

Model capacity

The capacity (Vapnik-Chervonenkis dimension) of
a model describes how many points can be

correctly predicted when they are produced by an
adversary

The capacity of non-parametric models is
defined by the size of their training set

• k-nearest neighbor (KNN) regression computes its
output based upon the k “nearest” training
examples
• Often the best method, and certainly a baseline to
beat

The generalizability of a model describes its ability
to perform well on previously unseen inputs

(Goodfellow 2016)

We need to control model complexity
for good generalization

Figure 5.6

(Goodfellow 2016)

13 Jan
2016

Setting the number of layers and their sizes

more neurons = more capacity

We can regularize our parameters

http://cs231n.github.io/neural-networks-case-study/

(Goodfellow 2016)

13 Jan
2016

(you can play with this demo over at ConvNetJS:
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Parameter regularization instead of controlling model complexity

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Gradient of loss with respect to logits

http://cs231n.github.io/neural-networks-case-study/

𝑧𝑧𝑖𝑖 = 𝑊𝑊𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏 𝑝𝑝𝑘𝑘𝑖𝑖 =
𝑒𝑒𝑧𝑧𝑘𝑘

𝑖𝑖

∑𝑗𝑗 𝑒𝑒
𝑧𝑧𝑗𝑗
𝑖𝑖

𝐿𝐿𝑖𝑖 = −log(𝑝𝑝𝑘𝑘𝑖𝑖)where𝑘𝑘 = 𝑦𝑦𝑖𝑖

𝜕𝜕𝐿𝐿𝑖𝑖
𝜕𝜕𝑧𝑧𝑗𝑗

= 𝑝𝑝𝑗𝑗𝑖𝑖 − 𝟏𝟏(𝐲𝐲𝐢𝐢 = 𝐣𝐣)Update weights for j

𝑝𝑝𝑖𝑖 = [0.6,0.3,0.1]then gradient →
[0.6,−0.4,0.1]Correct Label

Overfitting and its remedies: validation set, early stopping
rule

0 5 10 15 20 25 30 35 40

Learning Epoch
45

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

C
E

pe
rc

as
e

Cross−Entropy per case
Training CE
Validation CE Test
CE

Leave out small “validation set”
• not used to train the model
• used to evaluate model at

each epoch/iteration (VCE,
Validation cross-entropy)

• Stop when VCE increases,
prevent overfitting

Training
set

Test
set

Validation
set

Avoid overfitting: Regularization, Dropout training

(a) Standard Neural
Net

(b) After applying
drop out.

Present
withprobability p

(a) At training
tim e

w
Always
presen
t

pw

(b) At test
tim e

In practice

Conceptually

[Srivastava et al., 2014]

• Regularization: recall linear
(L1, lasso), quadratic (L2,
ridge) or combination (elastic
net) on parameters.

• Dropout is achieves
parameter minimization in
deep learning, by randomly
dropping hidden units for
different input points with
some probability p.

• Train sub-network by back-
propagation as usual.

• Equivalent to bagging
(bootstrap aggregating) an
exponential number of
models, each of which is
missing some nodes

• Provides powerful
regularization method,
avoids overfitting in practice

Autoencoder: dimensionality reduction with neural net

• Tricking a supervised learning algorithm to work in unsupervised fashion
• Feed input as output function to be learned. But! Constrain model complexity

• Pretraining with RBMs to learn representations for future supervised tasks.
Use RBM output as “data” for training the next layer in stack

• After pretraining, "unroll” RBMs to create deep autoencoder
• Fine-tune using backpropagation

[Hinton et al, 2006]

4. Improving generalization

Recurrent Neural Networks (RNNs) + Generalization
Improving generalization

– More training data
– Tuning model capacity
 Architecture: # layers, # units
 Early stopping: (validation set)
 Weight-decay: L1/L2 regularization
 Noise: Add noise as a regularizer
– Bayesian prior on parameter distribution
– Why weight decay Bayesian prior
– Variance of residual errors

Ways to reduce overfitting

• A large number of different methods have been developed.
– Weight-decay
– Weight-sharing
– Early stopping
– Model averaging
– Bayesian fitting of neural nets
– Dropout
– Generative pre-training

• Many of these methods will be described in lecture 7.

Reminder: Overfitting

• The training data contains information about the regularities in the
mapping from input to output. But it also contains sampling error.
– There will be accidental regularities just because of the particular

training cases that were chosen.
• When we fit the model to the training set it cannot tell which

regularities are real and which are caused by sampling error.
– So it fits both kinds of regularity. If the model is very flexible it

can model the sampling error really well.
• If you fitted the model to another training set drawn from the same

distribution over cases, it would make different predictions on the
test data. This is called “variance”.

Preventing overfitting

• Approach 1: Get more data!
– Almost always the best bet if

data is cheap and you have
enough compute power to train
on more data.

• Approach 2: Use a model that has
the right capacity:
– enough to fit the true regularities.
– not enough to also fit spurious

regularities (if they are weaker).

• Approach 3: Average many different
models.
– Use models with different forms.
– Or train the model on different

subsets of the training data (this
is called “bagging”).

• Approach 4: (Bayesian) Use a
single neural network architecture,
but average the predictions made
by many different weight vectors.

Get more data
Figure 5.4: The effect of the training dataset size on
the train and test error, as well as on the optimal
model capacity. We constructed a synthetic
regression problem based on adding a moderate
amount of noise to a degree-5 polynomial,
generated a single test set, and then generated
several different sizes of training set. For each size,
we generated 40 different training sets in order to
plot error bars showing 95 percent confidence
intervals. (Top)The MSE on the training and test set
for two different models: a quadratic model, and a
model with degree chosen to minimize the test error.
Both are fit in closed form. For the quadratic model,
the training error increases as the size of the training
set increases. This is because larger datasets are
harder to fit. Simultaneously, the test error
decreases, because fewer incorrect hypotheses are
consistent with the training data. The quadratic
model does not have enough capacity to solve the
task, so its test error asymptotes to a high value.
The test error at optimal capacity asymptotes to the
Bayes error. The training error can fall below the
Bayes error, due to the ability of the training
algorithm to memorize specific instances of the
training set. As the training size increases to infinity,
the training error of any fixed-capacity model (here,
the quadratic model) must rise to at least the Bayes
error. As the training (Bottom) set size increases, the
optimal capacity (shown here as the degree of the
optimal polynomial regressor) increases. The
optimal capacity plateaus after reaching sufficient
complexity to solve the task.

4. Improving generalization:
a. Controlling model capacity
 Architecture: # layers, # units
 Early stopping: (validation set)
Weight-decay: L1/L2 regularization
 Noise: Add noise

Some ways to limit the capacity of a neural net

• The capacity can be controlled in many ways:
– Architecture: Limit the number of hidden layers and the number

of units per layer.
– Early stopping: Start with small weights and stop the learning

before it overfits.
– Weight-decay: Penalize large weights using penalties or

constraints on their squared values (L2 penalty) or absolute
values (L1 penalty).

– Noise: Add noise to the weights or the activities.
• Typically, a combination of several of these methods is used.

Effect of model capacity on generalization

Tuning model capacity: Overfitting, underfitting

Figure 5.2: We fit three models to this example training set. The training data was generated
synthetically, by randomly sampling x values and choosing y deterministically by evaluating a
quadratic function. (Left)A linear function fit to the data suffers from underfitting—it cannot capture
the curvature that is present in the data. (Center)A quadratic function fit to the data generalizes well
to unseen points. It does not suffer from a significant amount of overfitting or underfitting. (Right)A
polynomial of degree 9 fit to the data suffers from overfitting. Here we used the Moore-Penrose
pseudoinverse to solve the underdetermined normal equations. The solution passes through all of
the training points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true underlying
function. It also increases sharply on the left side of the data, while the true function decreases in
this area.

4a. Architecture hyperparams
(# layers, # units)

How to choose meta parameters that control capacity
(like the number of hidden units or the size of the weight penalty)

• The wrong method is to try lots of
alternatives and see which gives the
best performance on the test set.
– This is easy to do, but it gives a

false impression of how well the
method works.

– The settings that work best on
the test set are unlikely to work
as well on a new test set drawn
from the same distribution.

• An extreme example:
Suppose the test set has
random answers that do not
depend on the input.
– The best architecture will

do better than chance on
the test set.

– But it cannot be expected
to do better than chance
on a new test set.

Cross-validation: A better way to choose meta parameters

• Divide the total dataset into three subsets:
– Training data is used for learning the parameters of the model.
– Validation data is not used for learning but is used for deciding

what settings of the meta parameters work best.
– Test data is used to get a final, unbiased estimate of how well the

network works. We expect this estimate to be worse than on the
validation data.

• We could divide the total dataset into one final test set and N other
subsets and train on all but one of those subsets to get N different
estimates of the validation error rate.
– This is called N-fold cross-validation.
– The N estimates are not independent.

4b. Early stopping
(training/validation/testing)

Preventing overfitting by early stopping

• If we have lots of data and a big model, its very expensive to keep
re-training it with different sized penalties on the weights or different
architectures.

• It is much cheaper to start with very small weights and let them grow
until the performance on the validation set starts getting worse.
– But it can be hard to decide when performance is getting worse.

• The capacity of the model is limited because the weights have not
had time to grow big.
– Smaller weights give the network less capacity. Why?

Why early stopping works

• When the weights are very
small, every hidden unit is in its
linear range.
– So even with a large layer of

hidden units it’s a linear
model.

– It has no more capacity than
a linear net in which the
inputs are directly connected
to the outputs!

• As the weights grow, the hidden
units start using their non-linear
ranges so the capacity grows.

outputs

inputs

4c. Weight regularization
(L1, L2, Elastic Net)

Effect of weight decay

Figure 5.5. We fit a high-degree polynomial regression model to our example training set from figure 5.2. The
true function is quadratic, but here we use only models with degree 9. We vary the amount of weight decay to
prevent these high-degree models from overfitting. (Left)With very large λ, we can force the model to learn a
function with no slope at all. This underfits because it can only represent a constant function. (Center)With a
medium value of λ, the learning algorithm recovers a curve with the right general shape. Even though the
model is capable of representing functions with much more complicated shape, weight decay has encouraged
it to use a simpler function described by smaller coefficients. (Right)With weight decay approaching zero (i.e.,
using the Moore-Penrose pseudoinverse to solve the underdetermined problem with minimal regularization),
the degree-9 polynomial overfits significantly, as we saw in figure 5.2

Limiting the size of the weights

• The standard L2 weight
penalty involves adding an
extra term to the cost function
that penalizes the squared
weights.
– This keeps the weights

small unless they have big
error derivatives.

w

The effect of L2 weight cost

• It prevents the network from using weights
that it does not need.
– This can often improve generalization a

lot because it helps to stop the network
from fitting the sampling error.

– It makes a smoother model in which the
output changes more slowly as the input
changes.

• If the network has two very similar inputs it
prefers to put half the weight on each rather
than all the weight on one.

w/2 w/2

w 0

Other kinds of weight penalty

• Sometimes it works better to penalize
the absolute values of the weights.
– This can make many weights

exactly equal to zero which helps
interpretation a lot.

• Sometimes it works better to use a
weight penalty that has negligible
effect on large weights.
– This allows a few large weights.

0

0

Weight penalties vs weight constraints

• We usually penalize the
squared value of each
weight separately.

• Instead, we can put a
constraint on the maximum
squared length of the
incoming weight vector of
each unit.
– If an update violates this

constraint, we scale
down the vector of
incoming weights to the
allowed length.

• Weight constraints have several
advantages over weight penalties.
– Its easier to set a sensible value.
– They prevent hidden units getting

stuck near zero.
– They prevent weights exploding.

• When a unit hits it’s limit, the effective
weight penalty on all of it’s weights is
determined by the big gradients.
– This is more effective than a fixed

penalty at pushing irrelevant
weights towards zero.

4d. Adding noise
(as a regularizer)

L2 weight-decay via noisy inputs

• Suppose we add Gaussian noise to the
inputs.
– The variance of the noise is amplified by

the squared weight before going into the
next layer.

• In a simple net with a linear output unit
directly connected to the inputs, the
amplified noise gets added to the output.

• This makes an additive contribution to the
squared error.
– So minimizing the squared error tends to

minimize the squared weights when the
inputs are noisy.

i

j

Gaussian noise

So is equivalent to an L2 penalty

output on
one case

Noisy weights in more complex nets

• Adding Gaussian noise to the weights of a
multilayer non-linear neural net is not exactly
equivalent to using an L2 weight penalty.
– It may work better, especially in recurrent

networks.
– Alex Graves’ recurrent net that recognizes

handwriting, works significantly better if
noise is added to the weights.

Using noise in the activities as a regularizer

• Suppose we use backpropagation to
train a multilayer neural net
composed of logistic units.
– What happens if we make the

units binary and stochastic on the
forward pass, but do the
backward pass as if we had done
the forward pass “properly”?

• It does worse on the training set and
trains considerably slower.
– But it does significantly better on

the test set! (unpublished result).

0.5

0
0

1

z

4e. Prior distribution on params
(Bayesian fitting)

The Bayesian framework

• The Bayesian framework assumes that we always have a prior
distribution for everything.
– The prior may be very vague.
– When we see some data, we combine our prior distribution

with a likelihood term to get a posterior distribution.
– The likelihood term takes into account how probable the

observed data is given the parameters of the model.
• It favors parameter settings that make the data likely.
• It fights the prior
• With enough data the likelihood terms always wins.

A coin tossing example

• Suppose we know nothing about coins except that each
tossing event produces a head with some unknown
probability p and a tail with probability 1-p.
– Our model of a coin has one parameter, p.

• Suppose we observe 100 tosses and there are 53 heads.
What is p?

• The frequentist answer (also called maximum likelihood):
Pick the value of p that makes the observation of 53 heads
and 47 tails most probable.
– This value is p=0.53

A coin tossing example: the math

probability of
a particular
sequence
containing 53
heads and 47
tails.

Some problems with picking the parameters
that are most likely to generate the data

• What if we only
tossed the coin once
and we got 1 head?
– Is p=1 a sensible

answer?
– Surely p=0.5 is a

much better
answer.

• Is it reasonable to give a single
answer?
– If we don’t have much data,

we are unsure about p.
– Our computations of

probabilities will work much
better if we take this
uncertainty into account.

Using a distribution over parameter values

• Start with a prior distribution
over p. In this case we used a
uniform distribution.

• Multiply the prior probability of
each parameter value by the
probability of observing a head
given that value.

• Then scale up all of the
probability densities so that
their integral comes to 1. This
gives the posterior distribution.

probability
density

p

area=1

area=1

0 1

1

1

2

probability
density

probability
density

Lets do it again: Suppose we get a tail

• Start with a prior
distribution over p.

• Multiply the prior
probability of each
parameter value by the
probability of observing a
tail given that value.

• Then renormalize to get
the posterior distribution.
Look how sensible it is!

probability
density

p

area=1

area=1

0 1

1

2

Lets do it another 98 times

• After 53 heads and 47
tails we get a very
sensible posterior
distribution that has its
peak at 0.53 (assuming a
uniform prior).

probability
density

p

area=1

0 1

1

2

Bayes Theorem

prior probability of
weight vector W

posterior probability of
weight vector W given
training data D

probability of observed
data given W

joint probability conditional
probability

4c+4e. Why weight decay is
Bayesian regularization

Supervised Maximum Likelihood Learning

• Finding a weight vector that
minimizes the squared
residuals is equivalent to
finding a weight vector that
maximizes the log probability
density of the correct answer.

• We assume the answer is
generated by adding
Gaussian noise to the output
of the neural network.

t
correct
answer

y
model’s
estimate of
most probable
value

Supervised Maximum Likelihood Learning

output of the net

Gaussian
distribution
centered at the
net’s output

probability
density of the
target value
given the net’s
output plus
Gaussian noise

Cost

Minimizing squared
error is the same as
maximizing log prob
under a Gaussian.

MAP: Maximum a Posteriori

• The proper Bayesian approach
is to find the full posterior
distribution over all possible
weight vectors.
– If we have more than a

handful of weights this is
hopelessly difficult for a
non-linear net.

– Bayesians have all sort of
clever tricks for
approximating this
horrendous distribution.

• Suppose we just try to find the
most probable weight vector.
– We can find an optimum by

starting with a random weight
vector and then adjusting it in
the direction that improves p(
W | D).

– But it’s only a local optimum.
• It is easier to work in the log

domain. If we want to minimize a
cost we use negative log probs

Why we maximize sums of log probabilities

• We want to maximize the product of the probabilities of the
producing the target values on all the different training cases.
– Assume the output errors on different cases, c, are independent.

• Because the log function is monotonic, it does not change where the
maxima are. So we can maximize sums of log probabilities

MAP: Maximum a Posteriori

This is an integral over
all possible weight
vectors so it does not
depend on W

log prob of
W under
the prior

log prob
of target
values
given W

The log probability of a weight under its prior

• Minimizing the squared weights is equivalent to maximizing the log
probability of the weights under a zero-mean Gaussian prior.

w 0

p(w)

The Bayesian interpretation of weight decay

assuming a Gaussian prior
for the weights

assuming that the model
makes a Gaussian prediction

constant

So the correct value of the weight decay
parameter is the ratio of two variances.
It’s not just an arbitrary hack.

4f. Variance of residual errors
(MacKay’s quick and dirty method)

Estimating the variance of the output noise

• After we have learned a model that minimizes the squared error, we
can find the best value for the output noise.
– The best value is the one that maximizes the probability of

producing exactly the correct answers after adding Gaussian
noise to the output produced by the neural net.

– The best value is found by simply using the variance of the
residual errors.

Estimating the variance of the Gaussian prior on the
weights

• After learning a model with some initial choice of variance for the
weight prior, we could do a dirty trick called “empirical Bayes”.
– Set the variance of the Gaussian prior to be whatever makes the

weights that the model learned most likely.
• i.e. use the data itself to decide what your prior is!

– This is done by simply fitting a zero-mean Gaussian to the one-
dimensional distribution of the learned weight values.

• We could easily learn different variances for different sets of
weights.

• We don’t need a validation set!

MacKay’s quick and dirty method of choosing the ratio of
the noise variance to the weight prior variance.

• Start with guesses for both the noise variance and the weight prior
variance.

• While not yet bored
– Do some learning using the ratio of the variances as the weight

penalty coefficient.
– Reset the noise variance to be the variance of the residual errors.
– Reset the weight prior variance to be the variance of the

distribution of the actual learned weights.
• Go back to the start of this loop.

Recurrent Neural Networks (RNNs) + Generalization
1. How do you read/listen/understand/write? Can machines do that?

– Context matters: characters, words, letters, sounds, completion, multi-modal
– Predicting next word/image: from unsupervised learning to supervised learning

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs
– Primitives: hidden state, memory of previous experiences, limitations of HMMs
– RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse

3. Vanishing gradients, Long-Short-Term Memory (LSTM)
– Key idea: gated input/output/memory nodes, model choose to forget/remember
– Example: online character recognition with LSTM recurrent neural network

4. Improving generalization
– More training data
– Tuning model capacity
 Architecture: # layers, # units
 Early stopping: (validation set)
 Weight-decay: L1/L2 regularization
 Noise: Add noise as a regularizer
– Bayesian prior on parameter distribution
– Why weight decay Bayesian prior
– Variance of residual errors

36 /
37

ML foundations

• neural networks (NNs)
• convolutional neural networks

(CNNs)
• recurrent neural networks (RNNs)
• residual neural networks
• (variational) autoencoders (VAEs)
• generative adversarial networks

(GANs)
• regularization

• L1 regularization
• L2 regularization

• dropout
• early stopping

• model selection
• cross-validation (CV)
• Akaike information criterion (AIC)
• Bayesian information criterion (BIC)

• model interpretation methods
• sufficient input subsets (SIS)
• saliency maps

• model uncertainty
• identifying out of distribution inputs
• ensembles and calibrated

uncertainty
• dimensionality reduction methods

• principal component analysis (PCA)
• t-SNE
• autoencoders
• non-negative matrix

factorization (NMF)

• hyperparameter optimization and
AutoML

Additional slides

Symbolic differentiation can save
work and improve accuracy

sigmoid function

sigmoid gate

sigmoid function

sigmoid gate

(0.73) * (1 - 0.73) = 0.2

Patterns in backward flow

add gate: gradient
distributor
max gate: gradient
router
mul gate: gradient…
“switcher”?

How do we handle gradients for nodes with multiple
output connections?

13 Jan
2016

13 Jan
2016

Gradients add when there are multiple output connections

+

(Goodfellow 2016)

How do we backdrop through a RELU?

Figure 6.3

(Goodfellow 2016)

Only propagate gradient if input is non-zero

Figure 6.3

Evaluation metrics

https://en.wikipedia.org/wiki/Sensitivity_and_specificity

Example confusion matrix

A receiver operating characteristic (ROC) curve is
made by changing the decision boundary

ROC and Precision-Recall curves are both useful

Training sets are best balanced

Substantially unbalanced training sets have
undesirable properties

• For example, 1000 Class 1 examples, 100 Class
2 examples

• Result can be overfit models that do not
generalize well to new examples

• Performance metrics can deceive as they
represent underlying class distribution

How to deal with unbalanced training data

• Aquire more data
• Use different performance metrics (confusion

matrix, precision-recall curves)
• Resample the data to be more balanced
• Use synthetic examples
• Try different methods (e.g. decision trees)
• Use methods specialized to anomaly or change

detection

	Computational Systems BiologyDeep Learning in the Life Sciences
	On tap today!
	What is Machine Learning
	What is Machine Learning?
	What is Machine Learning?
	What is Machine Learning?
	Linear Algebra and Machine Learning Notation
	Terminology
	Terminology
	Data in PS1
	Data in PS1
	Types of Machine Learning
	Types of Machine Learning
	Objective function
	Objective functions
	Slide Number 16
	Loss functions for classification
	Loss functions for classification
	Slide Number 19
	Loss functions for regression
	Empirical risk minimization
	Empirical risk minimization
	Optimizing objective function
	Training and Evaluation
	Training, validation, test sets
	Confusion matrix and derived metrics
	Receiver Operating Characteristic (ROC) Performance
	Precision Recall Curve (PRC) Performance
	ROC and PRC curves are complementary
	Regression Metric 1 - Pearson Correlation
	Regression Metric 2 - Spearman Rank Correlation
	Correlation significance tests
	One sided vs. two sided test
	Slide Number 34
	Multiple hypothesis correction is important
	Slide Number 36
	Slide Number 37
	Traditional Neural Networks
	Deep learning many layers of abstraction
	Convolutional filter
	How the brain works inspired artificial “neural" networks
	Learning non-linear functions: non-linear “activation” units
	Each hidden layer has an activation function at its output
	Popular activation functions at node outputs
	Gradient-based learning: use derivative to update weights
	Slide Number 46
	The steepest gradient is not necessarily toward the optimum point
	Example gradient management methods
	Slide Number 49
	Slide Number 50
	Gradient learning
	Gradient based optimization needs a loss function to minimize
	Stochastic gradient descent updates parameters to reduce loss
	What loss function should we use to pick w?
	Minimizing mean-square error maximizes Gaussian likelihood
	Gradient Descent for linear regression
	Linear regression can be solved by gradient descent
	Cost is minimized after 1000 epochs
	Example convex functions
	Deep neural networks are typically non-convex functions
	Log convex functions
	We may not always find the best solution for non-convex functions
	Approximate Optimization
	Backpropagation
	Backpropagation computes gradients via the chain rule
	Example of backpropagation of errors
	Another example:
	Another example:
	Another example:
	Another example:
	Another example:
	Another example:
	Another example:
	Another example:
	Another example:
	Slide Number 76
	Another example:
	Another example:
	Another example:
	Controlling model complexity
	Training set: observations of wealth and religiousness features with #blue or #red labels
	Test set: How well can we do?
	K-Nearest Neighbors (KNN) defines neighborhoods
	K-Nearest Neighbors (KNN) k=1 classification results
	K-Nearest Neighbors (KNN) k=3 classification results
	K-Nearest Neighbors (KNN) k=29 classification results
	A straight line can classify three points arbitrarily labeled
	A straight line can not classify four points arbitrarily labeled
	Model capacity
	The capacity (Vapnik-Chervonenkis dimension) of a model describes how many points can be correctly predicted when they are produced by an adversary
	Slide Number 91
	The generalizability of a model describes its ability to perform well on previously unseen inputs
	We need to control model complexity for good generalization
	Setting the number of layers and their sizes
	We can regularize our parameters
	Parameter regularization instead of controlling model complexity
	Gradient of loss with respect to logits
	Overfitting and its remedies: validation set, early stopping rule
	Avoid overfitting: Regularization, Dropout training
	Autoencoder: dimensionality reduction with neural net
	4. Improving generalization
	Recurrent Neural Networks (RNNs) + Generalization
	Ways to reduce overfitting
	Reminder: Overfitting
	Preventing overfitting
	Get more data
	4. Improving generalization: �a. Controlling model capacity� Architecture: # layers, # units� Early stopping: (validation set)� Weight-decay: L1/L2 regularization� Noise: Add noise
	Some ways to limit the capacity of a neural net
	Effect of model capacity on generalization
	Tuning model capacity: Overfitting, underfitting
	4a. Architecture hyperparams�(# layers, # units)
	How to choose meta parameters that control capacity �(like the number of hidden units or the size of the weight penalty)
	Cross-validation: A better way to choose meta parameters
	4b. Early stopping�(training/validation/testing)
	Preventing overfitting by early stopping
	Why early stopping works
	4c. Weight regularization�(L1, L2, Elastic Net)
	Effect of weight decay
	Limiting the size of the weights
	The effect of L2 weight cost
	Other kinds of weight penalty
	Weight penalties vs weight constraints
	4d. Adding noise�(as a regularizer)
	L2 weight-decay via noisy inputs
	Slide Number 125
	Noisy weights in more complex nets
	Using noise in the activities as a regularizer
	4e. Prior distribution on params�(Bayesian fitting)
	The Bayesian framework
	A coin tossing example
	A coin tossing example: the math
	Some problems with picking the parameters that are most likely to generate the data
	Using a distribution over parameter values
	Lets do it again: Suppose we get a tail
	Lets do it another 98 times
	Bayes Theorem
	4c+4e. Why weight decay is �Bayesian regularization
	Supervised Maximum Likelihood Learning
	Supervised Maximum Likelihood Learning
	MAP: Maximum a Posteriori
	Why we maximize sums of log probabilities
	MAP: Maximum a Posteriori
	The log probability of a weight under its prior
	The Bayesian interpretation of weight decay
	4f. Variance of residual errors�(MacKay’s quick and dirty method)
	Estimating the variance of the output noise
	Estimating the variance of the Gaussian prior on the weights
	MacKay’s quick and dirty method of choosing the ratio of the noise variance to the weight prior variance.
	Recurrent Neural Networks (RNNs) + Generalization
	ML foundations
	Additional slides
	Symbolic differentiation can save work and improve accuracy
	sigmoid function
	sigmoid function
	Patterns in backward flow
	How do we handle gradients for nodes with multiple output connections?
	Gradients add when there are multiple output connections
	How do we backdrop through a RELU?
	Only propagate gradient if input is non-zero
	Evaluation metrics
	Slide Number 161
	Example confusion matrix
	A receiver operating characteristic (ROC) curve is made by changing the decision boundary
	Slide Number 164
	ROC and Precision-Recall curves are both useful
	Training sets are best balanced
	Substantially unbalanced training sets have undesirable properties
	How to deal with unbalanced training data

