
Computational Systems Biology
Deep Learning in the Life Sciences

1

6.802   6.874   20.390   20.490   HST.506

Manolis Kellis

Lecture 2 
Optimizing Feedforward Networks

Slides credit: David Gifford, Geoff Hinton, and more



On tap today!

• What is Machine Learning
• Traditional Neural Networks
• How can we use gradients for optimization?
• How can we use gradients to train a deep neural 

network?
• What performance metrics should we use?
• How can we manage gradient optimization?
• How can we “regularize” a model to control 

parameter selection and thus model complexity?



What is Machine Learning
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What is Machine
Learning?[Shalev-Shwartz and Ben-David, 2014]:

“Learning is the process of converting experience into expertise or knowledge.”

[Mohri et al., 2012]:
“Machine learning can be broadly defined as computational methods using experience to
improve performance or to make accurate predictions.”

[Murphy, 2012]:
“The goal of machine learning is to develop methods that can automatically detect
patterns in data, and then to use the uncovered patterns to predict future data or other
outcomes of interest.”

[Hastie et al., 2001]:
“[...] state the learning task as follows: given the value of an input vector x , make a good
prediction of the output y , denoted by yˆ”
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What is Machine
Learning?

A computer program is said to learn from
experience E

with respect to some
class of tasks T

and
performance measure P,

if its performance at tasks in T, as measured by P, improves with experience E.
[Mitchell, 1997]



What is Machine
Learning?

A computer program is said to learn from
experience E

with respect to some
class of tasks T

and
performance measure P,

if its performance at tasks in T, as measured by P, improves with experience E.
[Mitchell, 1997]

Problem Set 1
• experience E: training set of images of handwritten digits with labels (training set)
• task T: classifying handwritten digits within new images (test set)
• performance measure P: percent of test set digits correctly classified in new images (test set)
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Linear Algebra and Machine Learning Notation

a, b, ci

a, b, c
A , B , C
A,B, C
A , B, C

scalar (slanted, lower-case)  
vector (bold, slanted, lower-case)
matrix (bold, slanted, upper-case)  
tensor (bold, upright, upper-case)
set (calligraphic, slanted, upper-case)

X input space or feature space  dataset
example matrix or tensor
i th example of dataset, one row of X
feature j  of example x (i )

X ,X

x ( i )

jx( i ) , xj

Y
y ( i )

ŷ ( i )

label space  
label of example I
predicted label of example i



Terminology
f

Input X ∈ X :
• features (in machine learning)
• predictors (in statistics)
• independent variables (in statistics)
• regressors (in regression models)
• input variables
• covariates
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Output y ∈ Y:
• labels (in machine learning)
• responses (in statistics)
• dependent variables (in statistics)
• regressand (in regression models)
• target variables

trainingTraining set S = { (i ) (i )  N
i=1(X , y )} ∈ {X ,Y} N , where N is number of training examples

An example is a collection of features (and an associated label) 
Training: use Straining to learn functional relationship f : X → Y



Terminology

f : X → Y
f (x ;θ) = ŷ

θ:

f :

• weights and biases (intercepts)
• coefficients β
• parameters

• model
• hypothesis h
• classifier
• predictor
• discriminative models: P(Y|X)
• generative models: P(X, Y)

Problem Set 1
x ∈ [0,1]784

ŷ ∈ [0,1]10

W ∈ R784×10

b ∈ R10
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softmaxf (x ;W , b) = φ (W rx + b)



Data in PS1

Problem Set 1

input space:
X  = {0, 1, . . . , 255}28×28

after rescaling:
X I  = [0, 1]28×28

after flattening:
X II  = [0, 1]784

Classification
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Data in PS1

Problem Set 
1input space:
X  = {0, 1, . . . , 255}28×28

after rescaling:
X I  = [0, 1]28×28

after flattening:
X II  = [0, 1]784

integer-encoded label space:
Yi  = {0, 1, . . . , 9}

one-hot-encoded label space:
Yh  = [0, 1]10
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Types of Machine Learning

Classification Regression Unsupervised learning

Y /= ∅ supervised or semi-supervised learning
Y = R
Y = RK ,K > 1
Y = { 0,1}
Y = { 1, ...,K }
Y = { 0,1} K ,K > 1

Regression
multivariate regression
binary classification
multi-class classification (integer encoding)
multi-label classification

Y = ∅
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unsupervised learning



Types of Machine Learning

Problem Set 1
• task: every X has an associated y =⇒ supervised learning
• subtask: Y = { 0, ...,9} =⇒ multi-class classification
• method: we use softmax regression (also known as multinomial logistic regression) as multi-class 

classification method
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Objective function
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Objective functions

An objective function J (Θ) is the function that you optimize when training machine learning models. 
It is usually in the form of (but not limited to) one or combinations of the following:

Loss / cost / error function L (ŷ , y ):  
Classification

• 0-1 loss
• cross-entropy loss

• hinge loss  
Regression

2• mean squared error (MSE, L norm)
1• mean absolute error (MAE, L norm)

• Huber loss (hybrid between L1 and L2 norm)
Probabilistic inference

• Kullback-Leibler divergence (KL divergence)

Likelihood function / posterior:
• negative log-likelihood (NLL) in maximum

likelihood estimation (MLE)
• posterior in maximum a posteriori estimation

(MAP)
Regularizers and constraints





Loss functions for classification

Binary cross-entropy loss (for binary classification):
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Loss functions for classification

Problem Set 1
Categorical cross-entropy loss (for multi-class classification with K classes):
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note: yj
(i ) = 1 only if x (i ) belongs to class j and otherwise yj

(i ) = 0

Probabilistic interpretation:
LCCE = NLL, if likelihood is defined using the categorical distribution

if softmax is usedwhere



x W by

tf.matmul

+

tf.nn.softmax

loss function

tf.placeholder tf.placeholder tf.variable tf.variable

optimizer
Problem Set 1 Structure

[None, 10] [None, 784] [784,10] [10]



Loss functions for regression
Mean squared error:

Probabilistic interpretation:
LMSE = NLL, under the assumptation that the noise is normally distributed, with constant mean 
and  variance

Mean absolute error:
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Empirical risk minimization

Expected risk (loss) associated with hypothesis h(x ):

Minimize Rexp(h) to find optimal hypothesis h:

h = argmin Rexp(h)
h∈F

Problem:
• distribution p(x , y ) unknown
• F is too large (set of all functions from X to Y)
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Empirical risk minimization

Empirical risk associated with hypothesis h(x):

Minimize Remp(h) to find ĥ:

hˆ = argmin Remp(h)
h∈H

In practice:
• instead of p(x , y ), we use training set Straining

• instead of F, we use H ⊂ F, e.g., all polynomials of degree 5



Optimizing objective function
Gradient descent

• initialize model parameters
θ0,θ1, ...,θm

• repeat until converge, for all θi

t t− 1
i iθ ← θ −λ

∂
∂θ t−1 J (Θ),

i

where the objective function J (Θ) is  
evaluated over all training data

( i ) ( i ) N
i=1{ (X  ,y )} .

Problem Set 1
Stochastic Gradient Descent (SGD): in each step, randomly sample a mini-batch from the training 
data and update the parameters using gradients calculated from the mini-batch only.
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Training and Evaluation



Training, validation, test sets
Training set (Straining):

• set of examples used for learning

Validation set (Svalidation):

Test set (Stest):

• usually 60 - 80 % of the data

• set of examples used to tune the model hyperparameters
• usually 10 - 20 % of the data

• set of examples used only to assess the performance of fully-trained model
• after assessing test set performance, model must not be tuned further
• usually 10 - 30 % of the data

training set

training time

loss
validation set
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underfitting overfitting



Confusion matrix and derived metrics

Problem Set 1
Accuracy: proportion of true predictions - (TP + TN) / (TP + FP + TN + FN)
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Receiver Operating Characteristic (ROC)
Performance

Area Under the ROC Curve (AuROC)
AuROC is a common metric for comparing classification methods 
TPR = TP / (TP + FN)
FPR = FP / (FP + TN)
Problematic when we have an unbalanced dataset (example more positives than negatives)

25 / 37



Precision Recall Curve (PRC) Performance

Area Under the PRC (AuPRC)
Precision = PPV = TP / (TP + FP) = 1 - FDR 
Recall = TPR = TP / (TP + FN)
Useful when datasets are unbalanced
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ROC and PRC curves are complementary

Recall
FPR = FP / (FP + TN)
Precision = PPV = TP / (TP + FP) = 1 - FDR 
Recall = TPR = TP / (TP + FN)
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Regression Metric 1 - Pearson Correlation

Pearson correlation coefficient is r . r2 is the fraction of linearly explained variance
r = (x− x) · (y− y)

28 / 37

||x || ||y||



Regression Metric 2 - Spearman Rank Correlation

Pearson correlation of observation ranks
For ties assign fractional ranks by average rank in ascending order
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Correlation significance tests

t = r
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t is distributed as Student’s t-distribution with n −2 degrees of freedom under the null 
hypothesis
n is the number of observations✓

n− 2
1− r2

Alternatively we can permute values to observe the empirical distribution of null correlations



One sided vs. two sided test

Two sided tests are used when we are testing for a difference without regard to direction
Two sided tests allocate half the area to each direction
Thus they are more strict if you only wish to test in one direction
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Multiple hypothesis correction is important

33 / 37



Correlation is not causation

34 / 37



The Datasaurus Dozen - J. Matejka, G. Fitzmaurice
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Traditional Neural Networks



Deep learning  many layers of abstraction

oodfellow 2016



Convolutional filter



How the brain works inspired artificial “neural" networks

axon

body
dendritic tree

axon hillock

Biological neuron

z  b + xiwi
i

Activation 
function

Artificial perceptron

Neural Network (e.g. 4-layers ‘deep’)

Deep multi-layer neural networks can 
‘learn’ almost any function



Learning non-linear functions: non-linear “activation” units

Rectified linear unit (ReLU)

Sigmoid unit

Maps to [0,1], saturation

Easy to optimize, generalizes well

Softplus unit

No saturation, smooth transition



Each hidden layer has an 
activation function at its output

13 Jan
2016



13 Jan
2016

Sigmoid

tanh tanh(x)

ReLU max(0,x)

Popular activation functions at node 
outputs

Leaky ReLU

max(0.1x, x)



Gradient-based learning: use derivative to update weights

where
• Gradient descent: ∂E/∂w = partial derivative of error E wrt w
• ϵ = learning rate (e.g. <0.1), needed to not overshoot the optimal solution
• λ = weight decay, penalizes large weights to prevent overfitting
• η = momentum, based on magnitude+sign of previous update (∆wt−1); 

when direction of update is consistent  faster convergence

Using only a subset of samples at a time: 
• Stochastic gradient descent (SGD): speed up computation

• Randomly sample subset of samples
• Update the weights using only that subset

• On-line learning: Update gradient using only 1 training data point each time

Learning rate Weight decay momentum

Gradient Previous change



Back-propagation of error across multiple layers

[Rumelhart and Hintont, 1986, LeCun et al., 2015]



(Goodfellow 2016)

The steepest gradient is not 
necessarily toward the optimum point

Figure 4.6



Example gradient management methods

• Stochastic gradient descent (update on each 
training value)

• Mini-batch gradient descent (average gradient 
over a mini-batch)

• Momentum methods 
• Adam - exponentially decaying average of 

past gradients and parameter specific 
learning rates

• Adadelta - parameters specific learning 
rates with fixed memory window







Gradient learning



Gradient based optimization needs a 
loss function to minimize



Stochastic gradient descent updates parameters 
to reduce loss

Learning rate



(Goodfellow 2016)

What loss function should we use to pick w?

Figure 5.1

y’ = wTx  find w to best approximate y



Minimizing mean-square error maximizes 
Gaussian likelihood

𝑓𝑓(𝑥𝑥|𝜃𝜃) =
1
2𝜋𝜋𝜎𝜎2

𝑒𝑒−
(𝑥𝑥−𝜇𝜇)2
2𝜎𝜎2

log𝑓𝑓(𝑥𝑥|𝜃𝜃) = 𝐶𝐶1 −
(𝑥𝑥 − 𝜇𝜇)2

𝐶𝐶2

arg𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃
𝑓𝑓(𝑥𝑥|𝜃𝜃) = arg𝑚𝑚𝑚𝑚𝑚𝑚

𝜃𝜃
(𝑥𝑥 − 𝜇𝜇)2



Gradient Descent for linear regression



Linear regression can be solved by 
gradient descent

# tf Graph Input
X = tf.placeholder("float")
Y = tf.placeholder("float")

# Set model weights
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")

# Construct a linear model
pred = tf.add(tf.mul(X, W), b)

# Mean squared error
cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)

# Gradient descent
optimizer =
tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)



Cost is minimized after 1000 epochs

Epoch: 0050 cost= 0.195095107 W= 0.441748 b= -0.580876
Epoch: 0100 cost= 0.181448311 W= 0.430319 b= -0.498661
Epoch: 0150 cost= 0.169377610 W= 0.419571 b= -0.421336
Epoch: 0200 cost= 0.158700854 W= 0.409461 b= -0.348611
Epoch: 0250 cost= 0.149257123 W= 0.399953 b= -0.28021
Epoch: 0300 cost= 0.140904188 W= 0.391011 b= -0.215878
Epoch: 0350 cost= 0.133515999 W= 0.3826 b= -0.155372
Epoch: 0400 cost= 0.126981199 W= 0.374689 b= -
0.0984639
Epoch: 0450 cost= 0.121201262 W= 0.367249 b= -
0.0449408
Epoch: 0500 cost= 0.116088994 W= 0.360252 b= 
0.00539905
Epoch: 0550 cost= 0.111567356 W= 0.35367 b= 0.052745
Epoch: 0600 cost= 0.107568085 W= 0.34748 b= 0.0972751
Epoch: 0650 cost= 0.104030922 W= 0.341659 b= 0.139157
Epoch: 0700 cost= 0.100902475 W= 0.336183 b= 0.178547
Epoch: 0750 cost= 0.098135538 W= 0.331033 b= 0.215595
Epoch: 0800 cost= 0.095688373 W= 0.32619 b= 0.25044
Epoch: 0850 cost= 0.093524046 W= 0.321634 b= 0.283212
Epoch: 0900 cost= 0.091609895 W= 0.317349 b= 0.314035
Epoch: 0950 cost= 0.089917004 W= 0.31332 b= 0.343025
Epoch: 1000 cost= 0.088419855 W= 0.30953 b= 0.370291
Optimization Finished!
Training cost= 0.0884199 W= 0.30953 b= 0.370291 



Example convex functions

• c(x) = Mx + b
• c(x) = ec1(x)

• c(x) = c1(x) + c2(x)
• c(x) = xp

• c(x) = |x|
• c(x) = x log x
• c(x) = max( c1(x),  c2(x) )



Deep neural networks are 
typically non-convex functions



Log convex functions

• They are not convex but their log is convex
• Example - sigmoid
• They can be optimized by convex solvers



We may not always find the best 
solution for non-convex functions



(Goodfellow 2016)

Approximate Optimization

Figure 4.3



Backpropagation



Backpropagation computes gradients via the 
chain rule



Example of backpropagation of errors 

Fei-Fei Li & Andrej Karpathy & Justin Johnson



Another example:

Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 -
13 Jan 2016

Another example:

Fei-Fei Li & Andrej Karpathy & Justin Johnson



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 -
13 Jan 2016

Another example:

Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 -
13 Jan 2016

Another example:

Fei-Fei Li & Andrej Karpathy & Justin Johnson



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 -
13 Jan 2016

Another example:

Fei-Fei Li & Andrej Karpathy & Justin Johnson



Another example:

Fei-Fei Li & Andrej Karpathy & Justin Johnson



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 -
13 Jan 2016

Another example:

Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 -
13 Jan 2016

Another example:

(-1) * (-0.20) = 0.20

Fei-Fei Li & Andrej Karpathy & 
Justin Johnson

Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 -
13 Jan 2016

Another example:

Fei-Fei Li & Andrej Karpathy & Justin Johnson
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“local gradient”

f

gradients

Fei-Fei Li & Andrej Karpathy & Justin Johnson



Another example:

[local gradient] x [its gradient]  
[1] x [0.2] = 0.2
[1] x [0.2] = 0.2  (both inputs!)

Fei-Fei Li & Andrej Karpathy & Justin Johnson



Another example:

Fei-Fei Li & Andrej Karpathy & Justin Johnson



Another example:

[local gradient] x [its gradient]  
x0: [2] x [0.2] = 0.4
w0: [-1] x [0.2] = -0.2

Fei-Fei Li & Andrej Karpathy & Justin Johnson



Controlling model complexity



Training set: observations of wealth and 
religiousness features with #blue or #red labels



Test set:  How well can we do?



K-Nearest Neighbors (KNN) defines 
neighborhoods



K-Nearest Neighbors (KNN) k=1 classification 
results



K-Nearest Neighbors (KNN) k=3 classification 
results



K-Nearest Neighbors (KNN) k=29 classification 
results



A straight line can classify three points arbitrarily 
labeled



A straight line can not classify four points 
arbitrarily labeled



Model capacity



The capacity (Vapnik-Chervonenkis dimension) of 
a model describes how many points can be 

correctly predicted when they are produced by an 
adversary



The capacity of non-parametric models is
defined by the size of their training set

• k-nearest neighbor (KNN) regression computes its
output based upon the k “nearest” training
examples
• Often the best method, and certainly a baseline to
beat



The generalizability of a model describes its ability 
to perform well on previously unseen inputs



(Goodfellow 2016)

We need to control model complexity 
for good generalization

Figure 5.6



(Goodfellow 2016)
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Setting the number of layers and their sizes

more neurons = more capacity



We can regularize our parameters

http://cs231n.github.io/neural-networks-case-study/



(Goodfellow 2016)
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(you can play with this demo over at ConvNetJS: 
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Parameter regularization instead of controlling model complexity

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html


Gradient of loss with respect to logits

http://cs231n.github.io/neural-networks-case-study/

𝑧𝑧𝑖𝑖 = 𝑊𝑊𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏 𝑝𝑝𝑘𝑘𝑖𝑖 =
𝑒𝑒𝑧𝑧𝑘𝑘

𝑖𝑖

∑𝑗𝑗 𝑒𝑒
𝑧𝑧𝑗𝑗
𝑖𝑖

𝐿𝐿𝑖𝑖 = −log(𝑝𝑝𝑘𝑘𝑖𝑖 )where𝑘𝑘 = 𝑦𝑦𝑖𝑖

𝜕𝜕𝐿𝐿𝑖𝑖
𝜕𝜕𝑧𝑧𝑗𝑗

= 𝑝𝑝𝑗𝑗𝑖𝑖 − 𝟏𝟏(𝐲𝐲𝐢𝐢 = 𝐣𝐣)Update weights for j

𝑝𝑝𝑖𝑖 = [0.6,0.3,0.1]then gradient →
[0.6,−0.4,0.1]Correct Label



Overfitting and its remedies: validation set, early stopping 
rule

0 5 10 15 20 25 30 35 40

Learning Epoch
45

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

C
E

pe
rc

as
e

Cross−Entropy per case
Training CE
Validation CE Test 
CE

Leave out small “validation set”
• not used to train the model
• used to evaluate model at 

each epoch/iteration (VCE,
Validation cross-entropy)

• Stop when VCE increases, 
prevent overfitting

Training
set

Test
set

Validation
set



Avoid overfitting: Regularization, Dropout training

(a) Standard Neural
Net

(b) After applying
drop out.

Present
withprobability p

(a) At training
tim e

w
Always
presen
t

pw

(b) At test
tim e

In practice

Conceptually

[Srivastava et al., 2014]

• Regularization: recall linear 
(L1, lasso), quadratic (L2, 
ridge) or combination (elastic 
net) on parameters. 

• Dropout is achieves 
parameter minimization in 
deep learning, by randomly 
dropping hidden units for 
different input points with 
some probability p.

• Train sub-network by back-
propagation as usual.

• Equivalent to bagging 
(bootstrap aggregating) an 
exponential number of 
models, each of which is 
missing some nodes

• Provides powerful 
regularization method, 
avoids overfitting in practice



Autoencoder: dimensionality reduction with neural net

• Tricking a supervised learning algorithm to work in unsupervised fashion
• Feed input as output function to be learned. But! Constrain model complexity

• Pretraining with RBMs to learn representations for future supervised tasks. 
Use RBM output as “data” for training the next layer in stack

• After pretraining, "unroll” RBMs to create deep autoencoder
• Fine-tune using backpropagation

[Hinton et al, 2006]



4. Improving generalization



Recurrent Neural Networks (RNNs) + Generalization
Improving generalization

– More training data
– Tuning model capacity
 Architecture: # layers, # units
 Early stopping: (validation set)
 Weight-decay: L1/L2 regularization
 Noise: Add noise as a regularizer
– Bayesian prior on parameter distribution
– Why weight decay  Bayesian prior
– Variance of residual errors



Ways to reduce overfitting

• A large number of different methods have been developed.
– Weight-decay 
– Weight-sharing 
– Early stopping
– Model averaging
– Bayesian fitting of neural nets
– Dropout
– Generative pre-training

• Many of these methods will be described in lecture 7. 



Reminder: Overfitting

• The training data contains information about the regularities in the 
mapping from input to output. But it also contains sampling error.
– There will be accidental regularities just because of the particular 

training cases that were chosen.
• When we fit the model to the training set it cannot tell which 

regularities are real and which are caused by sampling error. 
– So it fits both kinds of regularity. If the model is very flexible it 

can model the sampling error really well. 
• If you fitted the model to another training set drawn from the same 

distribution over cases, it would make different predictions on the 
test data.  This is called “variance”.



Preventing overfitting

• Approach 1: Get more data!
– Almost always the best bet if 

data is cheap and you have 
enough compute power to train 
on more data.

• Approach 2: Use a model that has 
the right capacity:
– enough to fit the true regularities.
– not enough to also fit spurious 

regularities (if they are weaker).

• Approach 3: Average many different 
models.
– Use models with different forms.
– Or train the model on different 

subsets of the training data (this 
is called “bagging”).

• Approach 4: (Bayesian) Use a 
single neural network architecture, 
but average the predictions made 
by many different weight vectors. 



Get more data
Figure 5.4: The effect of the training dataset size on 
the train and test error, as well as on the optimal 
model capacity. We constructed a synthetic 
regression problem based on adding a moderate 
amount of noise to a degree-5 polynomial, 
generated a single test set, and then generated 
several different sizes of training set. For each size, 
we generated 40 different training sets in order to 
plot error bars showing 95 percent confidence 
intervals. (Top)The MSE on the training and test set 
for two different models: a quadratic model, and a 
model with degree chosen to minimize the test error. 
Both are fit in closed form. For the quadratic model, 
the training error increases as the size of the training 
set increases. This is because larger datasets are 
harder to fit. Simultaneously, the test error 
decreases, because fewer incorrect hypotheses are 
consistent with the training data. The quadratic 
model does not have enough capacity to solve the 
task, so its test error asymptotes to a high value. 
The test error at optimal capacity asymptotes to the 
Bayes error. The training error can fall below the 
Bayes error, due to the ability of the training 
algorithm to memorize specific instances of the 
training set. As the training size increases to infinity, 
the training error of any fixed-capacity model (here, 
the quadratic model) must rise to at least the Bayes 
error. As the training (Bottom) set size increases, the 
optimal capacity (shown here as the degree of the 
optimal polynomial regressor) increases. The 
optimal capacity plateaus after reaching sufficient 
complexity to solve the task.



4. Improving generalization: 
a. Controlling model capacity
 Architecture: # layers, # units
 Early stopping: (validation set)
Weight-decay: L1/L2 regularization
 Noise: Add noise



Some ways to limit the capacity of a neural net

• The capacity can be controlled in many ways:
– Architecture: Limit the number of hidden layers and the number 

of  units per layer.
– Early stopping: Start with small weights and stop the learning 

before it overfits.
– Weight-decay: Penalize large weights using penalties or 

constraints on their squared values (L2 penalty) or absolute 
values (L1 penalty).

– Noise: Add noise to the weights or the activities.
• Typically, a combination of several of these methods is used.



Effect of model capacity on generalization



Tuning model capacity: Overfitting, underfitting

Figure 5.2: We fit three models to this example training set. The training data was generated 
synthetically, by randomly sampling x values and choosing y deterministically by evaluating a 
quadratic function. (Left)A linear function fit to the data suffers from underfitting—it cannot capture 
the curvature that is present in the data. (Center)A quadratic function fit to the data generalizes well 
to unseen points. It does not suffer from a significant amount of overfitting or underfitting. (Right)A 
polynomial of degree 9 fit to the data suffers from overfitting. Here we used the Moore-Penrose 
pseudoinverse to solve the underdetermined normal equations. The solution passes through all of 
the training points exactly, but we have not been lucky enough for it to extract the correct structure. 
It now has a deep valley in between two training points that does not appear in the true underlying 
function. It also increases sharply on the left side of the data, while the true function decreases in 
this area.



4a. Architecture hyperparams
(# layers, # units)



How to choose meta parameters that control capacity 
(like the number of hidden units or the size of the weight penalty)

• The wrong method is to try lots of 
alternatives and see which gives the 
best performance on the test set.
– This is easy to do, but it gives a 

false impression of how well the 
method works.

– The settings that work best on 
the test set are unlikely to work 
as well on a new test set drawn 
from the same distribution.

• An extreme example: 
Suppose the test set has 
random answers that do not 
depend on the input. 
– The best architecture will 

do better than chance on 
the test set.

– But it cannot be expected 
to do better than chance 
on a new test set. 



Cross-validation: A better way to choose meta parameters

• Divide the total dataset into three subsets:
– Training data is used for learning the parameters of the model.
– Validation data is not used for learning but is used for deciding 

what settings of the meta parameters work best.
– Test data is used to get a final, unbiased estimate of how well the 

network works. We expect this estimate to be worse than on the 
validation data.

• We could divide the total dataset into one final test set and N other 
subsets and train on all but one of those subsets to get N different 
estimates of the validation error rate. 
– This is called N-fold cross-validation.
– The N estimates are not independent.



4b. Early stopping
(training/validation/testing)



Preventing overfitting by early stopping

• If we have lots of data and a big model, its very expensive to keep 
re-training it with different sized penalties on the weights or different 
architectures.

• It is much cheaper to start with very small weights and let them grow 
until the performance on the validation set starts getting worse.
– But it can be hard to decide when performance is getting worse.

• The capacity of the model is limited because the weights have not 
had time to grow big.
– Smaller weights give the network less capacity. Why?



Why early stopping works

• When the weights are very 
small, every hidden unit is in its 
linear range.
– So even with a large layer of 

hidden units it’s a linear 
model.

– It has no more capacity than 
a linear net in which the 
inputs are directly connected 
to the outputs!

• As the weights grow, the hidden 
units start using their non-linear 
ranges so the capacity grows.

outputs

inputs



4c. Weight regularization
(L1, L2, Elastic Net)



Effect of weight decay

Figure 5.5. We fit a high-degree polynomial regression model to our example training set from figure 5.2. The 
true function is quadratic, but here we use only models with degree 9. We vary the amount of weight decay to 
prevent these high-degree models from overfitting. (Left)With very large λ, we can force the model to learn a 
function with no slope at all. This underfits because it can only represent a constant function. (Center)With a 
medium value of λ, the learning algorithm recovers a curve with the right general shape. Even though the 
model is capable of representing functions with much more complicated shape, weight decay has encouraged 
it to use a simpler function described by smaller coefficients. (Right)With weight decay approaching zero (i.e., 
using the Moore-Penrose pseudoinverse to solve the underdetermined problem with minimal regularization), 
the degree-9 polynomial overfits significantly, as we saw in figure 5.2 



Limiting the size of the weights

• The standard L2 weight
penalty involves adding an 
extra term to the cost function 
that penalizes the squared 
weights.
– This keeps the weights 

small unless they have big 
error derivatives. 

w  



The effect of L2 weight cost

• It prevents the network from using weights 
that it does not need.
– This can often improve generalization a 

lot because it helps to stop the network 
from fitting the sampling error. 

– It makes a smoother model in which the 
output changes more slowly as the input 
changes. 

• If the network has two very similar inputs it 
prefers to put half the weight on each rather 
than all the weight on one.

w/2 w/2

w 0



Other kinds of weight penalty

• Sometimes it works better to penalize 
the absolute values of the weights.
– This can make many weights 

exactly equal to zero which helps 
interpretation a lot.

• Sometimes it works better to use a 
weight penalty that has negligible 
effect on large weights.
– This allows a few large weights.

0

0



Weight penalties vs weight constraints

• We usually penalize the 
squared value of each 
weight separately.

• Instead, we can put a 
constraint on the maximum 
squared length of the 
incoming weight vector of 
each unit.
– If an update violates this 

constraint, we scale 
down the vector of 
incoming weights to the 
allowed length.

• Weight constraints have several 
advantages over weight penalties.
– Its easier to set a sensible value.
– They prevent hidden units getting 

stuck near zero.
– They prevent weights exploding.

• When a unit hits it’s limit, the effective 
weight penalty on all of it’s weights is 
determined by the big gradients. 
– This is more effective than a fixed 

penalty at pushing irrelevant 
weights towards zero.



4d. Adding noise
(as a regularizer)



L2 weight-decay via noisy inputs

• Suppose we add Gaussian noise to the 
inputs.
– The variance of the noise is amplified by 

the squared weight before going into the 
next layer. 

• In a simple net with a linear output unit 
directly connected to the inputs, the 
amplified noise gets added to the output.

• This makes an additive contribution to the 
squared error.
– So minimizing the squared error tends to 

minimize the squared weights when the 
inputs are noisy.

i

j

Gaussian noise



So       is equivalent to an L2 penalty

output on 
one case



Noisy weights in more complex nets

• Adding Gaussian noise to the weights of a 
multilayer non-linear neural net is not exactly 
equivalent to using an L2 weight penalty.
– It may work better, especially in recurrent 

networks.
– Alex Graves’ recurrent net that recognizes 

handwriting, works significantly better if 
noise is added to the weights. 



Using noise in the activities as a regularizer

• Suppose we use backpropagation to 
train a multilayer neural net 
composed of logistic units.
– What happens if we make the 

units binary and stochastic on the 
forward pass, but do the 
backward pass as if we had done 
the forward pass “properly”?

• It does worse on the training set and 
trains considerably slower.
– But it does significantly better on 

the test set! (unpublished result).

0.5
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4e. Prior distribution on params
(Bayesian fitting)



The Bayesian framework

• The Bayesian framework assumes that we always have a prior 
distribution for everything.
– The prior may be very vague.
– When we see some data, we combine our prior distribution 

with a likelihood term to get a posterior distribution.
– The likelihood term takes into account how probable the 

observed data is given the parameters of the model. 
• It favors parameter settings that make the data likely. 
• It fights the prior
• With enough data the likelihood terms always wins.



A coin tossing example

• Suppose we know nothing about coins except that each 
tossing event produces a head with some unknown 
probability p and a tail with probability 1-p. 
– Our model of a coin has one parameter, p.

• Suppose we observe 100 tosses and there are 53 heads.  
What is p?

• The frequentist answer (also called maximum likelihood): 
Pick the value of p that makes the observation of 53 heads 
and 47 tails most probable.
– This value is p=0.53



A coin tossing example: the math

probability of 
a particular 
sequence 
containing 53 
heads and 47 
tails.



Some problems with picking the parameters 
that are most likely to generate the data

• What if we only 
tossed the coin once 
and we got 1 head?
– Is p=1 a sensible 

answer?
– Surely p=0.5 is a 

much better 
answer.

• Is it reasonable to give a single 
answer?
– If we don’t have much data, 

we are unsure about p.
– Our computations of 

probabilities will work much 
better if we take this 
uncertainty into account.



Using a distribution over parameter values

• Start with a prior distribution 
over p. In this case we used a 
uniform distribution.

• Multiply the prior probability of 
each parameter value by the 
probability of observing a head 
given that value.

• Then scale up all of the 
probability densities so that 
their integral comes to 1. This 
gives the posterior distribution.
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Lets do it again: Suppose we get a tail

• Start with a prior 
distribution over p.

• Multiply the prior 
probability of each 
parameter value by the 
probability of observing a 
tail given that value.

• Then renormalize to get 
the posterior distribution. 
Look how sensible it is!
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Lets do it another 98 times

• After 53 heads and 47 
tails we get a very 
sensible posterior 
distribution that has its 
peak at 0.53 (assuming a 
uniform prior).
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Bayes Theorem

prior probability of 
weight vector W

posterior probability of 
weight vector W given 
training data D

probability of observed 
data given W

joint probability conditional 
probability



4c+4e. Why weight decay is 
Bayesian regularization



Supervised Maximum Likelihood Learning

• Finding a weight vector that 
minimizes the squared 
residuals is equivalent to 
finding a weight vector that 
maximizes the log probability 
density of the correct answer.

• We assume the answer is 
generated by adding 
Gaussian noise to the output 
of the neural network.

t
correct 
answer

y
model’s 
estimate of 
most probable 
value



Supervised Maximum Likelihood Learning

output of the net

Gaussian 
distribution 
centered at the 
net’s output

probability 
density of the 
target value 
given the net’s 
output plus 
Gaussian noise

Cost 

Minimizing squared 
error is the same as 
maximizing log prob
under a Gaussian.



MAP: Maximum a Posteriori

• The proper Bayesian approach 
is to find the full posterior 
distribution over all possible 
weight vectors. 
– If we have more than a 

handful of weights this is 
hopelessly difficult for a 
non-linear net.

– Bayesians have all sort of 
clever tricks for 
approximating this 
horrendous distribution.

• Suppose we just try to find the 
most probable weight vector.
– We can find an optimum by 

starting with a random weight 
vector and then adjusting it in 
the direction that improves  p( 
W | D ).

– But it’s only a local optimum.
• It is easier to work in the log 

domain. If we want to minimize a 
cost we use negative log probs



Why we maximize sums of log probabilities

• We want to maximize the product of the probabilities of the 
producing the target values on all the different  training cases.
– Assume the output errors on different cases, c, are independent.

• Because the log function is monotonic, it does not change where the 
maxima are. So we can maximize sums of log probabilities



MAP: Maximum a Posteriori

This is an integral over 
all possible weight 
vectors so it does not 
depend on W

log prob of 
W under 
the prior

log prob
of target 
values 
given W



The log probability of a weight under its prior

• Minimizing the squared weights is equivalent to maximizing the log 
probability of the weights under a zero-mean Gaussian prior. 

w 0

p(w)



The Bayesian interpretation of weight decay

assuming a Gaussian prior 
for the weights

assuming that the model 
makes a Gaussian prediction

constant

So the correct value of the weight decay 
parameter is the ratio of two variances. 
It’s not just an arbitrary hack.



4f. Variance of residual errors
(MacKay’s quick and dirty method)



Estimating the variance of the output noise

• After we have learned a model that minimizes the squared error, we 
can find the best value for the output noise.
– The best value is the one that maximizes the probability of 

producing exactly the correct answers after adding Gaussian 
noise to the output produced by the neural net.

– The best value is found by simply using the variance of the 
residual errors.



Estimating the variance of the Gaussian prior on the 
weights

• After learning a model with some initial choice of variance for the 
weight prior, we could do a dirty trick called “empirical Bayes”.
– Set the variance of the Gaussian prior to be whatever makes the 

weights that the model learned most likely.
• i.e. use the data itself to decide what your prior is!

– This is done by simply fitting a zero-mean Gaussian to the one-
dimensional distribution of the learned weight values.

• We could easily learn different variances for different sets of 
weights.

• We don’t need a validation set!



MacKay’s quick and dirty method of choosing the ratio of 
the noise variance to the weight prior variance.

• Start with guesses for both the noise variance and the weight prior 
variance.

• While not yet bored
– Do some learning using the ratio of the variances as the weight 

penalty coefficient.
– Reset the noise variance to be the variance of the residual errors.
– Reset the weight prior variance to be the variance of the  

distribution of the actual learned weights.
• Go back to the start of this loop.



Recurrent Neural Networks (RNNs) + Generalization
1. How do you read/listen/understand/write? Can machines do that? 

– Context matters: characters, words, letters, sounds, completion, multi-modal
– Predicting next word/image: from unsupervised learning to supervised learning

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs
– Primitives: hidden state, memory of previous experiences, limitations of HMMs
– RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse

3. Vanishing gradients, Long-Short-Term Memory (LSTM)
– Key idea: gated input/output/memory nodes, model choose to forget/remember
– Example: online character recognition with LSTM recurrent neural network

4. Improving generalization
– More training data
– Tuning model capacity
 Architecture: # layers, # units
 Early stopping: (validation set)
 Weight-decay: L1/L2 regularization
 Noise: Add noise as a regularizer
– Bayesian prior on parameter distribution
– Why weight decay  Bayesian prior
– Variance of residual errors
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ML foundations

• neural networks (NNs)
• convolutional neural networks 

(CNNs)
• recurrent neural networks (RNNs)
• residual neural networks
• (variational) autoencoders (VAEs)
• generative adversarial networks 

(GANs)
• regularization

• L1 regularization
• L2 regularization

• dropout
• early stopping

• model selection
• cross-validation (CV)
• Akaike information criterion (AIC)
• Bayesian information criterion (BIC)

• model interpretation methods
• sufficient input subsets (SIS)
• saliency maps

• model uncertainty
• identifying out of distribution inputs
• ensembles and calibrated 

uncertainty
• dimensionality reduction methods

• principal component analysis (PCA)
• t-SNE
• autoencoders
• non-negative matrix 

factorization  (NMF)

• hyperparameter optimization and 
AutoML



Additional slides



Symbolic differentiation can save 
work and improve accuracy



sigmoid function

sigmoid gate



sigmoid function

sigmoid gate

(0.73) * (1 - 0.73) = 0.2



Patterns in backward flow

add gate: gradient
distributor
max gate: gradient
router
mul gate: gradient…
“switcher”?



How do we handle gradients for nodes with multiple 
output connections?

13 Jan
2016



13 Jan
2016

Gradients add when there are multiple output connections

+



(Goodfellow 2016)

How do we backdrop through a RELU?

Figure 6.3



(Goodfellow 2016)

Only propagate gradient if input is non-zero

Figure 6.3



Evaluation metrics



https://en.wikipedia.org/wiki/Sensitivity_and_specificity



Example confusion matrix



A receiver operating characteristic (ROC) curve is 
made by changing the decision boundary





ROC and Precision-Recall curves are both useful



Training sets are best balanced



Substantially unbalanced training sets have 
undesirable properties

• For example, 1000 Class 1 examples, 100 Class 
2 examples

• Result can be overfit models that do not 
generalize well to new examples

• Performance metrics can deceive as they 
represent underlying class distribution



How to deal with unbalanced training data

• Aquire more data
• Use different performance metrics (confusion 

matrix, precision-recall curves)
• Resample the data to be more balanced
• Use synthetic examples
• Try different methods (e.g. decision trees)
• Use methods specialized to anomaly or change 

detection
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