
6.874, 6.802, 20.390, 20.490, HST.506
Deep Learning in the Life Sciences

Lecture 3:
Convolutional Neural Networks

Prof. Manolis Kellis

http://mit6874.github.io

Slides credit: 6.S191, Dana Erlich, Param Vir Singh,
David Gifford, Alexander Amini, Ava Soleimany,

@TessFerrandez’s totally awesome Coursera Notes,
and many more outstanding online resources

Today: Convolutional Neural Networks (CNNs)
1. Scene understanding and object recognition for machines (and humans)

– Scene/object recognition challenge. Illusions reveal primitives, conflicting info
– Human neurons/circuits. Visual cortex layers==abstraction. General cognition

2. Classical machine vision foundations: features, scenes, filters, convolution
– Spatial structure primitives: edge detectors & other filters, feature recognition
– Convolution: basics, padding, stride, object recognition, architectures

3. CNN foundations: LeNet, de novo feature learning, parameter sharing
– Key ideas: learn features, hierarchy, re-use parameters, back-prop filter learning
– CNN formalization: representations(Conv+ReLU+Pool)*N layers + Fully-connected

4. Modern CNN architectures: millions of parameters, dozens of layers
– Feature invariance is hard: apply perturbations, learn for each variation
– ImageNet progression of best performers
– AlexNet: First top performer CNN, 60M parameters (from 60k in LeNet-5), ReLU
– VGGNet: simpler but deeper (819 layers), 140M parameters, ensembles
– GoogleNet: new primitive=inception module, 5M params, no FC, efficiency
– ResNet: 152 layers, vanishing gradients  fit residuals to enable learning

5. Countless applications: General architecture, enormous power
– Semantic segmentation, facial detection/recognition, self-driving, image

colorization, optimizing pictures/scenes, up-scaling, medicine, biology, genomics

Convolutional neural networks
inside our brains

Human Vision  many layers of abstraction  Deep learning

Goodfellow 2016

CNN inspiration in the 50s/60s: human/animal visual cortex

• Hubel/Wisel 1968 cat/monkey: (1) Receptive fields = local computation. (2) Simple cells =
edge/orientation detectors. (3) Complex cells = position invariance/pooling

• Layers: pixels, edges (bands given slant, contrast edges), shapes, primitives, scenes
• Hierarchical abstractions, simple building blocks, local computation, learning, invariance

Primitives: Neurons, action potentials, networks

• Chemical accumulation across
dendritic connections

• Pre-synaptic axon
 post-synaptic dendrite
 neuronal cell body

• Each neuron receives multiple
signals from its many dendrites

• When threshold crossed, it fires
• Its axon then sends outgoing

signal to downstream neurons

• Weak stimuli ignored
• Activation function

signal threshold crossed
• Non-linearity within

each neuronal level

• Neurons connected into circuits (neural networks): emergent properties, learning, memory
• Simple primitives arranged in simple, repetitive, and extremely large and deep networks
• 86 billion neurons, each connects to 10k neurons, 1 quadrillion (1012) connections
• Human brain surprisingly large and powerful given 3lb weight, tiny energy consumption

Abstraction layers: edges, bars, dir., shapes, objects, scenes

LGN: Small dots

V1: Orientation,
disparity, some color

V4: Color, basic shapes,
2D/3D, curvature

VTC: Complex features
and objects (VTC: ventral temporal cortex

• Deep: Abstraction layers visual cortex layers
• Complex concepts from simple parts, hierarchy

• Primitives of visual concepts encoded in
neuronal connection in early cortical layers

• Massive recent expanse of human brain has re-used a
relatively simple but general learning architecture

General “learning machine”, reused widely

• Hearing, taste, smell, sight, touch all re-
use similar learning architecture

Motor CortexVisual Cortex • Interchangeable
circuitry

• Auditory cortex
learns to ‘see’ if
sent visual signals

• Injury area tasks
shift to uninjured
areas

• Learning not fully-general, but well-adapted to our world
• Humans co-opted this circuitry to many new applications
• Modern tasks accessible to any homo sapiens (70k years!)
• ML still similar to animals: room for architecture novelty!

humanchimp

Hardware
expansion

Visual illusions send conflicting
signals at different filters/layers

• Visual illusions reveal brain primitives,
building blocks, computations, architecture

• Deep learning can exploit such conflicting
primitives to create strong experiences, or
for adversarial ‘confusions’ of ML systems

Key ingredients of a CNN

Many similarities with the brain
Property Human Visual System Property Deep Learning CNN Building Block

Locality Low-level neurons respond to
local patches (receptive field)

Local computation of convolutional filters
(not a fully-connected network)

Filters Specialized neurons carry out
low-level detection operation

Low-level filters carry out the same
operation throughout the network

Layers /
abstraction

Layers of neurons learn
increasingly abstract ‘concepts’

Layers of hidden units, abstract concepts
learned from simpler parts / building blocks

Threshold Neurons fire after cross activation
threshold  non-linearity

Activation functions introduce non-
linearities expand universe of functions

Pooling Higher-level neurons invariant to
exact position, sum/max of prev.

Max/Avg pooling layers: positional invarnce
reduced # parameters, speed up compute

Multimodal Different neurons extract
different features of image

Multiple filters applied simultaneously, each
captures different aspects of original image

Saturation Neurons ‘tired’ after activation,
signal quiets down

Limiting weight of individual hidden units,
dropout learning, regularization

Reinforcem
ent

Useful connections strengthened
over time

Back-propagation, adjusting weights across
the hierarchy

Feed-fward
edges

Neurons with long connections
from lower levels to higher ones

Residual networks (ResNets) feed lower-
level signal, avoid vanishing gradients

Key idea: Representation learning

‘Modern’ Deep learning:
Hierarchical Representation Learning

Feature extraction

‘Classical’ Fully-connected
Neural Networks

Classification

In deep learning, the two tasks are coupled:
• the classification task “drives” the feature extraction
• Extremely powerful and general paradigm

 Be creative! The field is still at its infancy!
 New application domains (e.g. beyond images) can have

structure that current architectures do not capture/exploit
 Genomics/biology/neuroscience can help

drive development of new architectures

Today: use these primitives to ‘learn’ complex scenes

CNNs = Translating pixels to concepts
What the computer "sees"

Le
vi

n
Im

ag
e

Pr
oc

es
sin

g
&

 C
om

pu
te

r V
isi

on

An image is just a matrix of numbers [0,255]. i.e., 1080x1080x3 for an RGB image.
Question: is this Lincoln? Washington? Jefferson? Obama?

How can the computer answer this question?

What you see

Input Image Input Image + values Pixel intensity values
(“pix-el”=picture-element)

What you both see

Can I just do classification on the 1,166400-long image vector directly?

No. Instead: exploit image spatial structure. Learn patches. Build them up

Convolutions:
Spatial structure, local

computation, shared parameters

Key idea: re-use parameters
Convolution shares parameters

Example 3x3 convolution on a 5x5 image

Feature Extraction with Convolution

1) Apply a set of weights – a filter – to extract local features

2) Use multiple filters to extract different features

3) Spatially share parameters of each filter

Feature Extraction with Convolution

- Filter of size 4x4 : 16 different weights
- Apply this same filter to 4x4 patches in input
- Shift by 2 pixels for next patch

This “patchy” operation isconvolution

1) Apply a set of weights – a filter – to extract local features

2) Use multiple filters to extract different features

3) Spatially share parameters of each filter

Convolutional Layers: Local Connectivity

For a neuron in hidden layer:
• Take inputs from patch
• Compute weighted sum
• Apply bias

4x4 filter:
matrix of
weights wij for neuron (p,q) in hidden layer

1) applying a window of weights
2) computing linear combinations
3) activating with non-linear function

tf.keras.layers.Conv2D

“Representations”
Filters extract Features

Convolution fundamentals

Convolution operation is element wise
multiply and add

Filter / Kernel

Producing Feature Maps

Original Sharpen Edge Detect “Strong” Edge
Detect

A simple pattern: Edges
How can we detect edges with a kernel?

Input

-1 -1

Filter
Output

(Goodfellow 2016)

Simple Kernels / Filters

Representation Learning:
Learning convolutional filters:
extracting common ‘features’

High Level Feature Detection

Let’s identify key features in each image category

Wheels,License Plate,
Headlights

Door,Windows,StepsNose, Eyes,Mouth

Key idea:
learn hierarchy of features

directly from the data
(rather than hand-engineering them)

Low level features Mid level features High level features

Lee+ ICML 2009

Eyes, ears,noseEdges, dark spots Facial structure

Representation Learning in Deep CNNs

Mid level featuresLow level features High level features

Edges, dark spots

Conv Layer 1

Lee+ ICML 2009

Eyes, ears,nose

Conv Layer 2

Facial structure

Conv Layer 3

Detection:
Non-Linearities

Introducing Non-Linearity

Rectified Linear Unit
(ReLU)

- Apply after every convolution operation
(i.e., after convolutional layers)

- ReLU: pixel-by-pixel operation that replaces
all negative values by zero.

- Non-linear operation

tf.keras.layers.ReLU

Karn Intuitive CNNs

The REctified Linear Unit (RELU) is a common
non-linear detector stage after convolution

x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
x= tf.nn.relu(x)

f(x) = max(0, x)
When will we backpropagate through this?

Once it “dies” what happens to it?

Pooling layers:
Positional invariance

Why Pooling

Pooling

Max Pooling, average pooling

1) Reduced
dimensionality

2) Spatial invariance

tf.keras.layers.Max
Pool2D(
pool_size=(2,2),
strides=2)

Pooling reduces dimensionality by giving up
spatial location

• max pooling reports the maximum output
within a defined neighborhood
• Padding can be SAME or VALID

x = tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME')

Output Input Pooling Batch H W Input channel
Neighborhood

[batch, height, width, channels]

Classification:
fully-connected layers

Fully Connected Neural Network

Fully Connected:
• Each neuron in

hidden layer
connected to all
neurons in input
layer

• No spatial information
• Many, many

parameters

Input:
• 2D image
• Vector of pixel

values

Key idea: Use spatial structure in input to inform architecture
of the network

Fully Connected Neural Network

Edge cases (literally):
Practical issues of convolutions

Padding

(Goodfellow 2016)

Zero Padding Controls Output Size

• Full convolution: zero pad input so output is produced whenever an output value
contains at least one input value (expands output)

• Valid-only convolution: output only when
entire kernel contained in input (shrinks output)

• Same convolution: zero pad input so output
is same size as input dimensions

x = tf.nn.conv2d(x, W, strides=[1,strides,strides,1],padding='SAME')

• TF convolution operator takes stride and zero fill option as parameters
• Stride is distance between kernel applications in each dimension
• Padding can be SAME or VALID

Edge cases (literally):
Practical issues of convolutions

Stride

Dilated Convolution

Real-world Feature Invariance:
Data augmentation

Detect
features
to
classify

Li/Johnson/Yeung C231n

Feature invariance to perturbation is hard

X or X?

Image is represented as matrix of pixel values… and computers are literal!
We want to be able to classify an X as an X even if it’s shifted, shrunk, rotated, deformed.

Rohrer How do CNNs work?

How can computers recognize objects?

Challenge:
• Objects can be anywhere in the scene, in any orientation, rotation, color hue, etc.
• How can we overcome this challenge?
Answer:
• Learn a ton of features (millions) from the bottom up
• Learn the convolutional filters, rather than pre-computing them

CNNs: Putting all their
ingredients together

Many similarities with the brain
Property Human Visual System Property Deep Learning CNN Building Block

Locality Low-level neurons respond to
local patches (receptive field)

Local computation of convolutional filters
(not a fully-connected network)

Filters Specialized neurons carry out
low-level detection operation

Low-level filters carry out the same
operation throughout the network

Layers /
abstraction

Layers of neurons learn
increasingly abstract ‘concepts’

Layers of hidden units, abstract concepts
learned from simpler parts / building blocks

Threshold Neurons fire after cross activation
threshold  non-linearity

Activation functions introduce non-
linearities expand universe of functions

Pooling Higher-level neurons invariant to
exact position, sum/max of prev.

Max/Avg pooling layers: positional invarnce
reduced # parameters, speed up compute

Multimodal Different neurons extract
different features of image

Multiple filters applied simultaneously, each
captures different aspects of original image

Saturation Neurons ‘tired’ after activation,
signal quiets down

Limiting weight of individual hidden units,
dropout learning, regularization

Reinforcem
ent

Useful connections strengthened
over time

Back-propagation, adjusting weights across
the hierarchy

Feed-fward
edges

Neurons with long connections
from lower levels to higher ones

Residual networks (ResNets) feed lower-
level signal, avoid vanishing gradients

Building blocks of deep convolutional networks

Putting it all together
import tensorflow as tf

def generate_model():

model = tf.keras.Sequential([

first convolutional layer

tf.keras.layers.Conv2D(32, filter_size=3, activation='relu’),

tf.keras.layers.MaxPool2D(pool_size=2, strides=2),

second convolutional layer

tf.keras.layers.Conv2D(64, filter_size=3, activation='relu’),

tf.keras.layers.MaxPool2D(pool_size=2, strides=2),

fully connected classifier

tf.keras.layers.Flatten(),

tf.keras.layers.Dense(1024, activation='relu’),

tf.keras.layers.Dense(10, activation=‘softmax’)

10 outputs

])

return model

LeNet-5

• Gradient Based Learning Applied To Document Recognition -
Y. Lecun, L. Bottou, Y. Bengio, P. Haffner; 1998

• Helped establish how we use CNNs today
• Replaced manual feature extraction

[LeCun et al., 1998]

LeNet-5

⋮ ⋮
�𝑦𝑦

32×32×1 28×28×6 14×14×6 10×10×16

5×5×16
120 84

5 × 5
s = 1

f = 2
s = 2

avg pool

5 × 5
s = 1

avg pool

f = 2
s = 2

. . .

. . .

Reminder:
Output size = (N+2P-F)/stride + 1

10

conv conv

FC FC

[LeCun et al., 1998]This slide is taken from Andrew Ng

LeNet-5

• Only 60K parameters
• As we go deeper in the network: 𝑁𝑁𝐻𝐻 ↓, 𝑁𝑁𝑊𝑊↓, 𝑁𝑁𝐶𝐶 ↑
• General structure:

conv->pool->conv->pool->FC->FC->output

• Different filters look at different channels
• Sigmoid and Tanh nonlinearity

[LeCun et al., 1998]

Backpropagation of convolution

Slide taken from Forward And Backpropagation in Convolutional Neural Network. - Medium

CNNs for Classification

1. Convolution: Apply filters to generate feature maps.

2. Non-linearity: Often ReLU.

3. Pooling: Downsampling operation on each feature map.

Train model with image data.
Learn weights of filters in convolutional layers.

tf.keras.layers.Conv2
D

tf.keras.activations.
*

tf.keras.layers.MaxPool2
D

Example – Six convolutional layers

CNNs: Spatial Arrangement of Output
Volume

depth

width

height

Layer Dimensions:
ℎ w d

where h and w are spatial
dimensions d (depth) = number of

filters

Stride:
Filter step size

Receptive Field:
Locations in input image

that a node is path
connected to

tf.keras.layers.Conv2D(filters=d, kernel_size=(h,w), strides=s)

91
CNNs for Classification: Feature Learning

1. Learn features in input image through convolution
2. Introduce non-linearity through activation function (real-world data is

non-linear!)
3. Reduce dimensionality and preserve spatial invariance with pooling

CNNs for Classification: Class Probabilities

- CONV and POOL layers output high-level features of input
- Fully connected layer uses these features for classifying input image
- Express output as probability of image belonging to a particular class

The art of CNN training

Foundations of CNN training

• Needs lots of data for training

Normalization matters

Vanishing / exploding gradients

Mini-batch gradient descent

Optimizing training

Hyperparameter Tuning

Train / Dev / Test sets

Importance of train/dev sets

Metrics for performance

Bias vs. Variance

Bayes Optimal Error; Suprassing Human Performance

Error Analysis

Regularization

Regularization

Extended Learning

Transfer learning

Multi-task learning

End-to-End Learning

CNN applications

Detection, localization, landmarks

Face Recognition

Style transfer

Automatic Colorization of Black and White Images

Optimizing Images

Post Processing Feature Optimization
(Illumination)

Post Processing Feature Optimization
(Color Curves and Details)

Post Processing Feature Optimization
(Color Tone: Warmness)

Up-scaling low-resolution images

Next-generation models
explode # of parameters

Residual Networks

Network-in-Network: 1x1 convolution

Inception networks

ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) winners

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

AlexNet

• ImageNet Classification with Deep Convolutional
Neural Networks - Alex Krizhevsky, Ilya Sutskever,
Geoffrey E. Hinton; 2012

• Facilitated by GPUs, highly optimized convolution
implementation and large datasets (ImageNet)

• One of the largest CNNs to date
• Has 60 Million parameter compared to 60k

parameter of LeNet-5

[Krizhevsky et al., 2012]

ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) winners

• The annual “Olympics” of computer vision.

• Teams from across the world compete to see who has the
best computer vision model for tasks such as classification,
localization, detection, and more.

• 2012 marked the first year where a CNN was used to
achieve a top 5 test error rate of 15.3%.

• The next best entry achieved an error of 26.2%.

ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) winners

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

AlexNet

[Krizhevsky et al., 2012]

Architecture
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8

• Input: 227x227x3 images (224x224 before
padding)

• First layer: 96 11x11 filters applied at stride 4

• Output volume size?
(N-F)/s+1 = (227-11)/4+1 = 55 ->

[55x55x96]

• Number of parameters in this layer?
(11*11*3)*96 = 35K

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

AlexNet

[Krizhevsky et al., 2012]

AlexNet

[Krizhevsky et al., 2012]

• Input: 227x227x3 images (224x224 before
padding)

• After CONV1: 55x55x96
• Second layer: 3x3 filters applied at stride 2

• Output volume size?
(N-F)/s+1 = (55-3)/2+1 = 27 -> [27x27x96]

• Number of parameters in this layer?
0!

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

Architecture
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8

AlexNet

. . .

227×227 ×3 55×55 × 96 27×27 ×96 27×27 ×256

13×13
×256

13×13 ×384 13×13 ×384 13×13 ×256 6×6 ×256

11 × 11
s = 4
P = 0

3 × 3
s = 2

max pool

5 × 5
S = 1
P = 2

3 × 3
s = 2

max pool

3 × 3
S = 1
P = 1

3 × 3
s = 1
P = 1

3 × 3
S = 1
P = 1

3 × 3
s = 2

max pool

conv conv

conv conv conv
. . .

[Krizhevsky et al., 2012]

. . .

This slide is taken from Andrew Ng

AlexNet

. . .

4096 4096

Softmax
1000

⋮ ⋮

[Krizhevsky et al., 2012]

FC FC

This slide is taken from Andrew Ng

AlexNet

[Krizhevsky et al., 2012]

Details/Retrospectives:
• first use of ReLU
• used Norm layers (not common anymore)
• heavy data augmentation
• dropout 0.5
• batch size 128
• 7 CNN ensemble

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

AlexNet

[Krizhevsky et al., 2012]

• Trained on GTX 580 GPU with only 3 GB of memory.

• Network spread across 2 GPUs, half the neurons (feature
maps) on each GPU.

• CONV1, CONV2, CONV4, CONV5:
Connections only with feature maps on same GPU.

• CONV3, FC6, FC7, FC8:
Connections with all feature maps in preceding layer,
communication across GPUs.

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

AlexNet

AlexNet was the coming out party for CNNs in the computer
vision community. This was the first time a model performed
so well on a historically difficult ImageNet dataset. This
paper illustrated the benefits of CNNs and backed them up
with record breaking performance in the competition.

[Krizhevsky et al., 2012]

ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) winners

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) winners

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

VGGNet

• Very Deep Convolutional Networks For Large Scale
Image Recognition - Karen Simonyan and Andrew
Zisserman; 2015

• The runner-up at the ILSVRC 2014 competition
• Significantly deeper than AlexNet
• 140 million parameters

[Simonyan and Zisserman, 2014]

VGGNet
• Smaller filters

Only 3x3 CONV filters, stride 1, pad 1
and 2x2 MAX POOL , stride 2

• Deeper network
AlexNet: 8 layers
VGGNet: 16 - 19 layers

• ZFNet: 11.7% top 5 error in ILSVRC’13
• VGGNet: 7.3% top 5 error in ILSVRC’14

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [Simonyan and Zisserman, 2014]

Input
3x3 conv, 64
3x3 conv, 64
Pool 1/2
3x3 conv, 128
3x3 conv, 128
Pool 1/2
3x3 conv, 256
3x3 conv, 256
Pool 1/2
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool 1/2
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool 1/2
FC 4096
FC 4096
FC 1000
Softmax

VGGNet

[Simonyan and Zisserman, 2014]

• Why use smaller filters? (3x3 conv)
Stack of three 3x3 conv (stride 1) layers has the same effective
receptive field as one 7x7 conv layer.

• What is the effective receptive field of three 3x3 conv (stride
1) layers?

7x7
But deeper, more non-linearities
And fewer parameters: 3 * (32C2) vs. 72C2 for C channels per layer

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

VGGNet

[Simonyan and Zisserman, 2014]

VGG16:
TOTAL memory: 24M * 4 bytes ~= 96MB / image
TOTAL params: 138M parameters

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

Input
3x3 conv, 64
3x3 conv, 64
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
FC 4096
FC 4096
FC 1000
Softmax

[Simonyan and Zisserman, 2014]Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

Input memory: 224*224*3=150K params: 0
3x3 conv, 64 memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
3x3 conv, 64 memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
Pool memory: 112*112*64=800K params: 0
3x3 conv, 128 memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728

3x3 conv, 128 memory: 112*112*128=1.6M params: (3*3*128)*128 =
147,456
Pool memory: 56*56*128=400K params: 0
3x3 conv, 256 memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
3x3 conv, 256 memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
3x3 conv, 256 memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
Pool memory: 28*28*256=200K params: 0
3x3 conv, 512 memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
3x3 conv, 512 memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
3x3 conv, 512 memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
Pool memory: 14*14*512=100K params: 0
3x3 conv, 512 memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
3x3 conv, 512 memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
3x3 conv, 512 memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
Pool memory: 7*7*512=25K params: 0
FC 4096 memory: 4096 params: 7*7*512*4096 = 102,760,448
FC 4096 memory: 4096 params: 4096*4096 = 16,777,216
FC 1000 memory: 1000 params: 4096*1000 = 4,096,000

VGGNet

[Simonyan and Zisserman, 2014]

Details/Retrospectives :
• ILSVRC’14 2nd in classification, 1st in localization
• Similar training procedure as AlexNet
• No Local Response Normalisation (LRN)
• Use VGG16 or VGG19 (VGG19 only slightly better, more

memory)
• Use ensembles for best results
• FC7 features generalize well to other tasks
• Trained on 4 Nvidia Titan Black GPUs for two to three weeks.

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

VGGNet

VGG Net reinforced the notion that convolutional neural
networks have to have a deep network of layers in order for
this hierarchical representation of visual data to work.
Keep it deep.
Keep it simple.

[Simonyan and Zisserman, 2014]

ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) winners

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

GoogleNet

• Going Deeper with Convolutions - Christian Szegedy et
al.; 2015

• ILSVRC 2014 competition winner
• Also significantly deeper than AlexNet
• x12 less parameters than AlexNet
• Focused on computational efficiency

[Szegedy et al., 2014]

GoogleNet
• 22 layers

• Efficient “Inception” module - strayed from
the general approach of simply stacking conv
and pooling layers on top of each other in a
sequential structure

• No FC layers

• Only 5 million parameters!

• ILSVRC’14 classification winner (6.7% top 5
error)

[Szegedy et al., 2014]

GoogleNet

“Inception module”: design a good local network topology (network within
a network) and then stack these modules on top of each other

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [Szegedy et al., 2014]

Filter
concatenation

Previous layer

1x1
convolution

3x3
convolution

5x5
convolution

1x1
convolution

1x1
convolution

1x1
convolution

3x3 max
pooling

GoogleNet
Details/Retrospectives :
• Deeper networks, with computational efficiency
• 22 layers
• Efficient “Inception” module
• No FC layers
• 12x less params than AlexNet
• ILSVRC’14 classification winner (6.7% top 5 error)

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [Szegedy et al., 2014]

GoogleNet

Introduced the idea that CNN layers didn’t always have to be
stacked up sequentially. Coming up with the Inception
module, the authors showed that a creative structuring of
layers can lead to improved performance and
computationally efficiency.

[Szegedy et al., 2014]

ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) winners

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

ResNet

• Deep Residual Learning for Image Recognition -
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun;
2015

• Extremely deep network – 152 layers
• Deeper neural networks are more difficult to train.
• Deep networks suffer from vanishing and

exploding gradients.
• Present a residual learning framework to ease the

training of networks that are substantially deeper
than those used previously.

[He et al., 2015]

ResNet

• ILSVRC’15 classification winner (3.57% top 5
error, humans generally hover around a 5-
10% error rate)
Swept all classification and detection
competitions in ILSVRC’15 and COCO’15!

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [He et al., 2015]

ResNet

• What happens when we continue stacking deeper layers on a
convolutional neural network?

• 56-layer model performs worse on both training and test error
-> The deeper model performs worse (not caused by overfitting)!

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [He et al., 2015]

ResNet

• Hypothesis: The problem is an optimization problem. Very
deep networks are harder to optimize.

• Solution: Use network layers to fit residual mapping instead
of directly trying to fit a desired underlying mapping.

• We will use skip connections allowing us to take the activation
from one layer and feed it into another layer, much deeper
into the network.

• Use layers to fit residual F(x) = H(x) – x
instead of H(x) directly

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [He et al., 2015]

ResNet
Residual Block
Input x goes through conv-relu-conv series and gives us F(x).
That result is then added to the original input x. Let’s call that
H(x) = F(x) + x.
In traditional CNNs, H(x) would just be equal to F(x). So, instead
of just computing that transformation (straight from x to F(x)),
we’re computing the term that we have to add, F(x), to the
input, x.

[He et al., 2015]

ResNet

Short cut/ skip connection

𝑎𝑎[𝑙𝑙] 𝑎𝑎[𝑙𝑙+2]

𝐳𝐳[𝐥𝐥+𝟏𝟏] = 𝐖𝐖[𝐥𝐥+𝟏𝟏] 𝐚𝐚[𝐥𝐥] + 𝐛𝐛[𝐥𝐥+𝟏𝟏]

𝐚𝐚[𝐥𝐥+𝟏𝟏] = 𝐠𝐠(𝐳𝐳[𝐥𝐥+𝟏𝟏])

𝐳𝐳[𝐥𝐥+𝟐𝟐] = 𝐖𝐖[𝐥𝐥+𝟐𝟐]𝐚𝐚[𝐥𝐥+𝟏𝟏] + 𝐛𝐛[𝐥𝐥+𝟐𝟐]

𝐚𝐚[𝐥𝐥+𝟐𝟐] = 𝐠𝐠(𝐳𝐳[𝐥𝐥+𝟐𝟐])

𝑎𝑎[𝑙𝑙+1]

a[l]

a[l+1]
𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 a[l+2]

𝐚𝐚[𝐥𝐥+𝟐𝟐] = 𝐠𝐠 𝐳𝐳 𝐥𝐥+𝟐𝟐 + 𝐚𝐚 𝐥𝐥 = 𝐠𝐠(𝐖𝐖[𝐥𝐥+𝟐𝟐]𝐚𝐚[𝐥𝐥+𝟏𝟏] + 𝐛𝐛[𝐥𝐥+𝟐𝟐] + 𝐚𝐚 𝐥𝐥)

[He et al., 2015]

ResNet

Full ResNet architecture:
• Stack residual blocks
• Every residual block has two 3x3 conv layers
• Periodically, double # of filters and

downsample spatially using stride 2 (in each
dimension)

• Additional conv layer at the beginning
• No FC layers at the end (only FC 1000 to

output classes)

[He et al., 2015]Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

ResNet

• Total depths of 34, 50, 101, or 152 layers for
ImageNet

• For deeper networks (ResNet-50+), use
“bottleneck” layer to improve efficiency
(similar to GoogLeNet)

[He et al., 2015]Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

ResNet

Experimental Results:
• Able to train very deep networks without degrading
• Deeper networks now achieve lower training errors as

expected

[He et al., 2015]Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

ResNet

The best CNN architecture that we currently have and is a
great innovation for the idea of residual learning.
Even better than human performance!

[He et al., 2015]

Accuracy comparison

The best CNN architecture that we currently have and is a
great innovation for the idea of residual learning.

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

Forward pass time and power
consumption

The best CNN architecture that we currently have and is a
great innovation for the idea of residual learning.

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) winners

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.

Countless applications

An Architecture for Many Applications

Detection
Semantic segmentation
End-to-end robotic control

Semantic Segmentation: Fully Convolutional Networks

FCN: Fully Convolutional Network.
Network designed with all convolutional layers,with downsampling and

upsampling operations

tf.keras.layers.Conv2DTranspose

Long+ CVPR 2015

Facial Detection & Recognition

Self-Driving Cars

Amini+ ICRA 2019.

Self-Driving Cars: Navigation from Visual Perception

Raw
Perception

I
(ex.camera)

Coarse
Maps

M
(ex.GPS)

Possible Control Commands

Amini+ ICRA 2019

End-to-End Framework for Autonomous Navigation

Entire model trained end-to-end
without any human labelling or annotations

Amini+ ICRA 2019

Medicine, Biology, Healthcare

Gulshan+ JAMA 2016.

Breast Cancer Screening

6.
Breast cancer case
missed by radiologist
but detected byAI

AI
MD
Readers

AI
MD
Readers

CNN-based system outperformed expert
radiologists at detecting breast
cancer from mammograms

Semantic Segmentation: Biomedical Image Analysis

Brain Tumors
Dong+ MIUA
2017.

Malaria Infection
Soleimany+ arXiv
2019.

Dong+ MIUA 2017; Soleimany+ arXiv 2019

Origi
nal

Ground
Truth

Segmenta
tion

Uncertai
nty

DeepBind

[Alipanahi et al., 2015]

Predicting disease mutations

[Alipanahi et al., 2015]

Today: Convolutional Neural Networks (CNNs)
1. Scene understanding and object recognition for machines (and humans)

– Scene/object recognition challenge. Illusions reveal primitives, conflicting info
– Human neurons/circuits. Visual cortex layers==abstraction. General cognition

2. Classical machine vision foundations: features, scenes, filters, convolution
– Spatial structure primitives: edge detectors & other filters, feature recognition
– Convolution: basics, padding, stride, object recognition, architectures

3. CNN foundations: LeNet, de novo feature learning, parameter sharing
– Key ideas: learn features, hierarchy, re-use parameters, back-prop filter learning
– CNN formalization: representations(Conv+ReLU+Pool)*N layers + Fully-connected

4. Modern CNN architectures: millions of parameters, dozens of layers
– Feature invariance is hard: apply perturbations, learn for each variation
– ImageNet progression of best performers
– AlexNet: First top performer CNN, 60M parameters (from 60k in LeNet-5), ReLU
– VGGNet: simpler but deeper (819 layers), 140M parameters, ensembles
– GoogleNet: new primitive=inception module, 5M params, no FC, efficiency
– ResNet: 152 layers, vanishing gradients  fit residuals to enable learning

5. Countless applications: General architecture, enormous power
– Semantic segmentation, facial detection/recognition, self-driving, image

colorization, optimizing pictures/scenes, up-scaling, medicine, biology, genomics

Deep Learning for Computer Vision: Summary

Foundations

• Why computer vision?
• Representing images

• Convolutions for feature
extraction

CNNs

• CNN architecture
• Application to

classification

• ImageNet

Applications

• Segmentation,image
captioning,control

• Security,medicine,
robotics

	6.874, 6.802, 20.390, 20.490, HST.506�Deep Learning in the Life Sciences
	Today: Convolutional Neural Networks (CNNs)
	Convolutional neural networks� inside our brains
	Human Vision  many layers of abstraction  Deep learning
	CNN inspiration in the 50s/60s: human/animal visual cortex
	Primitives: Neurons, action potentials, networks
	Abstraction layers: edges, bars, dir., shapes, objects, scenes
	General “learning machine”, reused widely
	Visual illusions send conflicting signals at different filters/layers
	Key ingredients of a CNN
	Many similarities with the brain
	Slide Number 12
	Today: use these primitives to ‘learn’ complex scenes
	CNNs = Translating pixels to concepts
	Convolutions: �Spatial structure, local computation, shared parameters
	Key idea: re-use parameters�Convolution shares parameters�Example 3x3 convolution on a 5x5 image
	Feature Extraction with Convolution
	Feature Extraction with Convolution
	Convolutional Layers: Local Connectivity
	“Representations”�Filters extract Features
	Convolution fundamentals
	Convolution operation is element wise multiply and add�
	Producing Feature Maps
	Slide Number 24
	Slide Number 25
	Representation Learning: Learning convolutional filters:�extracting common ‘features’
	High Level Feature Detection
	Key idea: �learn hierarchy of features �directly from the data�(rather than hand-engineering them)
	Representation Learning in Deep CNNs
	Detection: �Non-Linearities
	Introducing Non-Linearity
	Slide Number 32
	Pooling layers:�Positional invariance
	Why Pooling
	Pooling
	Slide Number 36
	Classification: �fully-connected layers
	Fully Connected Neural Network
	Fully Connected Neural Network
	Edge cases (literally):�Practical issues of convolutions
	Padding
	Zero Padding Controls Output Size
	Edge cases (literally):�Practical issues of convolutions
	Stride
	Slide Number 45
	Real-world Feature Invariance: Data augmentation
	Feature invariance to perturbation is hard
	X or X?
	Slide Number 49
	How can computers recognize objects?
	CNNs: Putting all their ingredients together
	Many similarities with the brain
	Building blocks of deep convolutional networks
	Putting it all together
	LeNet-5
	LeNet-5
	LeNet-5
	Backpropagation of convolution
	CNNs for Classification
	Slide Number 60
	CNNs: Spatial Arrangement of Output Volume
	CNNs for Classification: Feature Learning
	CNNs for Classification: Class Probabilities
	The art of CNN training
	Foundations of CNN training
	Normalization matters
	Vanishing / exploding gradients
	Mini-batch gradient descent
	Optimizing training
	Hyperparameter Tuning
	Train / Dev / Test sets
	Importance of train/dev sets
	Metrics for performance
	Bias vs. Variance
	Bayes Optimal Error; Suprassing Human Performance
	Error Analysis
	Regularization
	Regularization
	Extended Learning
	Transfer learning
	Multi-task learning
	End-to-End Learning
	CNN applications
	Detection, localization, landmarks
	Face Recognition
	Style transfer
	Automatic Colorization of Black and White Images�
	Optimizing Images
	Up-scaling low-resolution images
	Next-generation models�explode # of parameters
	Slide Number 91
	Residual Networks
	Network-in-Network: 1x1 convolution
	Inception networks
	ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
	AlexNet
	ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
	ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
	AlexNet
	AlexNet
	AlexNet
	AlexNet
	AlexNet
	AlexNet
	AlexNet
	AlexNet
	ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
	ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
	VGGNet
	VGGNet
	VGGNet
	VGGNet
	Slide Number 113
	VGGNet
	VGGNet
	ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
	GoogleNet
	GoogleNet
	GoogleNet
	GoogleNet
	GoogleNet
	ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
	ResNet
	ResNet
	ResNet
	ResNet
	ResNet
	ResNet
	ResNet
	ResNet
	ResNet
	ResNet
	Accuracy comparison
	Forward pass time and power consumption
	ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
	Countless applications
	An Architecture for Many Applications
	Semantic Segmentation: Fully Convolutional Networks
	Facial Detection & Recognition
	Self-Driving Cars
	Self-Driving Cars: Navigation from Visual Perception
	End-to-End Framework for Autonomous Navigation
	Medicine, Biology, Healthcare
	Breast Cancer Screening
	Semantic Segmentation: Biomedical Image Analysis
	DeepBind
	Predicting disease mutations
	Today: Convolutional Neural Networks (CNNs)
	Deep Learning for Computer Vision: Summary

