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Today: Convolutional Neural Networks (CNNs)
1. Scene understanding and object recognition for machines (and humans)

– Scene/object recognition challenge. Illusions reveal primitives, conflicting info
– Human neurons/circuits. Visual cortex layers==abstraction. General cognition

2. Classical machine vision foundations: features, scenes, filters, convolution
– Spatial structure primitives: edge detectors & other filters, feature recognition
– Convolution: basics, padding, stride, object recognition, architectures

3. CNN foundations: LeNet, de novo feature learning, parameter sharing
– Key ideas: learn features, hierarchy, re-use parameters, back-prop filter learning
– CNN formalization: representations(Conv+ReLU+Pool)*N layers + Fully-connected

4. Modern CNN architectures: millions of parameters, dozens of layers
– Feature invariance is hard: apply perturbations, learn for each variation
– ImageNet progression of best performers
– AlexNet: First top performer CNN, 60M parameters (from 60k in LeNet-5), ReLU
– VGGNet: simpler but deeper (819 layers), 140M parameters, ensembles
– GoogleNet: new primitive=inception module, 5M params, no FC, efficiency
– ResNet: 152 layers, vanishing gradients  fit residuals to enable learning

5. Countless applications: General architecture, enormous power
– Semantic segmentation, facial detection/recognition, self-driving, image 

colorization, optimizing pictures/scenes, up-scaling, medicine, biology, genomics



Convolutional neural networks
inside our brains



Human Vision  many layers of abstraction  Deep learning

Goodfellow 2016



CNN inspiration in the 50s/60s: human/animal visual cortex

• Hubel/Wisel 1968 cat/monkey: (1) Receptive fields = local computation. (2) Simple cells = 
edge/orientation detectors. (3) Complex cells = position invariance/pooling

• Layers: pixels, edges (bands given slant, contrast edges), shapes, primitives, scenes
• Hierarchical abstractions, simple building blocks, local computation, learning, invariance



Primitives: Neurons, action potentials, networks

• Chemical accumulation across 
dendritic connections

• Pre-synaptic axon 
 post-synaptic dendrite 
 neuronal cell body

• Each neuron receives multiple 
signals from its many dendrites

• When threshold crossed, it fires 
• Its axon then sends outgoing 

signal to downstream neurons

• Weak stimuli ignored
• Activation function

signal threshold crossed
• Non-linearity within 

each neuronal level

• Neurons connected into circuits (neural networks): emergent properties, learning, memory
• Simple primitives arranged in simple, repetitive, and extremely large and deep networks
• 86 billion neurons, each connects to 10k neurons, 1 quadrillion (1012) connections
• Human brain surprisingly large and powerful given 3lb weight, tiny energy consumption



Abstraction layers: edges, bars, dir., shapes, objects, scenes

LGN: Small dots

V1: Orientation, 
disparity, some color

V4: Color, basic shapes,
2D/3D, curvature

VTC: Complex features
and objects (VTC: ventral temporal cortex

• Deep: Abstraction layers visual cortex layers
• Complex concepts from simple parts, hierarchy

• Primitives of visual concepts encoded in 
neuronal connection in early cortical layers



• Massive recent expanse of human brain has re-used a 
relatively simple but general learning architecture

General “learning machine”, reused widely

• Hearing, taste, smell, sight, touch all re-
use similar learning architecture

Motor CortexVisual Cortex • Interchangeable
circuitry 

• Auditory cortex 
learns to ‘see’ if 
sent visual signals

• Injury area tasks 
shift to uninjured 
areas

• Learning not fully-general, but well-adapted to our world
• Humans co-opted this circuitry to many new applications
• Modern tasks accessible to any homo sapiens (70k years!)
• ML still similar to animals: room for architecture novelty!

humanchimp

Hardware
expansion



Visual illusions send conflicting 
signals at different filters/layers

• Visual illusions reveal brain primitives,  
building blocks, computations, architecture

• Deep learning can exploit such conflicting 
primitives to create strong experiences, or 
for adversarial ‘confusions’ of ML systems



Key ingredients of a CNN



Many similarities with the brain
Property Human Visual System Property Deep Learning CNN Building Block

Locality Low-level neurons respond to 
local patches (receptive field)

Local computation of convolutional filters 
(not a fully-connected network)

Filters Specialized neurons carry out 
low-level detection operation

Low-level filters carry out the same 
operation throughout the network

Layers / 
abstraction

Layers of neurons learn 
increasingly abstract ‘concepts’

Layers of hidden units, abstract concepts 
learned from simpler parts / building blocks

Threshold Neurons fire after cross activation 
threshold  non-linearity

Activation functions introduce non-
linearities expand universe of functions

Pooling Higher-level neurons invariant to 
exact position, sum/max of prev.

Max/Avg pooling layers: positional invarnce
reduced # parameters, speed up compute

Multimodal Different neurons extract 
different features of image

Multiple filters applied simultaneously, each 
captures different aspects of original image

Saturation Neurons ‘tired’ after activation, 
signal quiets down

Limiting weight of individual hidden units, 
dropout learning, regularization

Reinforcem
ent

Useful connections strengthened 
over time

Back-propagation, adjusting weights across 
the hierarchy

Feed-fward
edges

Neurons with long connections 
from lower levels to higher ones

Residual networks (ResNets) feed lower-
level signal, avoid vanishing gradients



Key idea: Representation learning

‘Modern’ Deep learning: 
Hierarchical Representation Learning

Feature extraction

‘Classical’ Fully-connected
Neural Networks

Classification

In deep learning, the two tasks are coupled: 
• the classification task “drives” the feature extraction
• Extremely powerful and general paradigm

 Be creative! The field is still at its infancy!
 New application domains (e.g. beyond images) can have 

structure that current architectures do not capture/exploit
 Genomics/biology/neuroscience can help 

drive development of new architectures



Today: use these primitives to ‘learn’ complex scenes



CNNs = Translating pixels to concepts
What the computer "sees"
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An image is just a matrix of numbers [0,255]. i.e., 1080x1080x3 for an RGB image. 
Question: is this Lincoln? Washington? Jefferson? Obama? 

How can the computer answer this question?

What you see

Input Image Input Image + values Pixel intensity values
(“pix-el”=picture-element)

What you both see

Can I just do classification on the 1,166400-long image vector directly? 

No. Instead: exploit image spatial structure. Learn patches. Build them up



Convolutions:
Spatial structure, local 

computation, shared parameters



Key idea: re-use parameters
Convolution shares parameters

Example 3x3 convolution on a 5x5 image



Feature Extraction with Convolution

1) Apply a set of weights – a filter – to extract local features

2) Use multiple filters to extract different features

3) Spatially share parameters of each filter



Feature Extraction with Convolution

- Filter of size 4x4 : 16 different weights
- Apply this same filter to 4x4 patches in input
- Shift by 2 pixels for next patch

This “patchy” operation isconvolution

1) Apply a set of weights – a filter – to extract local features

2) Use multiple filters to extract different features

3) Spatially share parameters of each filter



Convolutional Layers: Local Connectivity

For a neuron in hidden layer:
• Take inputs from patch
• Compute weighted sum
• Apply bias

4x4 filter:
matrix of 
weights wij for neuron (p,q) in hidden layer

1) applying a window of weights
2) computing linear combinations
3) activating with non-linear function

tf.keras.layers.Conv2D



“Representations”
Filters extract Features



Convolution fundamentals



Convolution operation is element wise 
multiply and add

Filter  / Kernel



Producing Feature Maps

Original Sharpen Edge Detect “Strong” Edge
Detect



A simple pattern:  Edges
How can we detect edges with a kernel?

Input

-1 -1

Filter
Output

(Goodfellow 2016)



Simple Kernels / Filters



Representation Learning: 
Learning convolutional filters:
extracting common ‘features’



High Level Feature Detection

Let’s identify key features in each image category

Wheels,License Plate,
Headlights

Door,Windows,StepsNose, Eyes,Mouth



Key idea: 
learn hierarchy of features 

directly from the data
(rather than hand-engineering them)

Low level features Mid level features High level features

Lee+ ICML 2009

Eyes, ears,noseEdges, dark spots Facial structure



Representation Learning in Deep CNNs

Mid level featuresLow level features High level features

Edges, dark spots

Conv Layer 1

Lee+ ICML 2009

Eyes, ears,nose

Conv Layer 2

Facial structure

Conv Layer 3



Detection: 
Non-Linearities



Introducing Non-Linearity

Rectified Linear Unit
(ReLU)

- Apply after every convolution operation 
(i.e., after convolutional layers)

- ReLU: pixel-by-pixel operation that replaces 
all negative values by zero. 

- Non-linear operation

tf.keras.layers.ReLU

Karn Intuitive CNNs



The REctified Linear Unit (RELU) is a common
non-linear detector stage after convolution

x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
x= tf.nn.relu(x)

f(x) = max(0, x)
When will we backpropagate through this?

Once it “dies” what happens to it?



Pooling layers:
Positional invariance



Why Pooling



Pooling

Max Pooling, average pooling

1) Reduced
dimensionality

2) Spatial invariance

tf.keras.layers.Max
Pool2D(
pool_size=(2,2),
strides=2)



Pooling reduces dimensionality by giving up
spatial location

• max pooling reports the maximum output
within a defined neighborhood
• Padding can be SAME or VALID

x = tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME')

Output Input Pooling Batch H W Input channel
Neighborhood

[batch, height, width, channels]



Classification: 
fully-connected layers



Fully Connected Neural Network

Fully Connected:
• Each neuron in 

hidden layer 
connected to all 
neurons in input
layer

• No spatial information
• Many, many

parameters

Input:
• 2D image
• Vector of pixel

values

Key idea: Use spatial structure in input to inform architecture 
of the network



Fully Connected Neural Network



Edge cases (literally):
Practical issues of convolutions



Padding



(Goodfellow 2016)

Zero Padding Controls Output Size

• Full convolution: zero pad input so output is produced whenever an output value 
contains at least one input value (expands output)

• Valid-only convolution: output only when 
entire kernel contained in input (shrinks output)

• Same convolution: zero pad input so output 
is same size as input dimensions

x = tf.nn.conv2d(x, W, strides=[1,strides,strides,1],padding='SAME')

• TF convolution operator takes stride and zero fill option as parameters
• Stride is distance between kernel applications in each dimension
• Padding can be SAME or VALID



Edge cases (literally):
Practical issues of convolutions



Stride



Dilated Convolution



Real-world Feature Invariance: 
Data augmentation



Detect
features
to
classify

Li/Johnson/Yeung C231n

Feature invariance to perturbation is hard



X or X?

Image is represented as matrix of pixel values… and computers are literal!
We want to be able to classify an X as an X even if it’s shifted, shrunk, rotated, deformed.

Rohrer How do CNNs work?





How can computers recognize objects? 

Challenge: 
• Objects can be anywhere in the scene, in any orientation, rotation, color hue, etc. 
• How can we overcome this challenge?
Answer: 
• Learn a ton of features (millions) from the bottom up
• Learn the convolutional filters, rather than pre-computing them



CNNs: Putting all their 
ingredients together



Many similarities with the brain
Property Human Visual System Property Deep Learning CNN Building Block

Locality Low-level neurons respond to 
local patches (receptive field)

Local computation of convolutional filters 
(not a fully-connected network)

Filters Specialized neurons carry out 
low-level detection operation

Low-level filters carry out the same 
operation throughout the network

Layers / 
abstraction

Layers of neurons learn 
increasingly abstract ‘concepts’

Layers of hidden units, abstract concepts 
learned from simpler parts / building blocks

Threshold Neurons fire after cross activation 
threshold  non-linearity

Activation functions introduce non-
linearities expand universe of functions

Pooling Higher-level neurons invariant to 
exact position, sum/max of prev.

Max/Avg pooling layers: positional invarnce
reduced # parameters, speed up compute

Multimodal Different neurons extract 
different features of image

Multiple filters applied simultaneously, each 
captures different aspects of original image

Saturation Neurons ‘tired’ after activation, 
signal quiets down

Limiting weight of individual hidden units, 
dropout learning, regularization

Reinforcem
ent

Useful connections strengthened 
over time

Back-propagation, adjusting weights across 
the hierarchy

Feed-fward
edges

Neurons with long connections 
from lower levels to higher ones

Residual networks (ResNets) feed lower-
level signal, avoid vanishing gradients



Building blocks of deep convolutional networks



Putting it all together
import tensorflow as tf

def generate_model():

model = tf.keras.Sequential([

# first convolutional layer

tf.keras.layers.Conv2D(32, filter_size=3, activation='relu’),

tf.keras.layers.MaxPool2D(pool_size=2, strides=2),

# second convolutional layer

tf.keras.layers.Conv2D(64, filter_size=3, activation='relu’),

tf.keras.layers.MaxPool2D(pool_size=2, strides=2),

# fully connected classifier

tf.keras.layers.Flatten(),

tf.keras.layers.Dense(1024, activation='relu’),

tf.keras.layers.Dense(10, activation=‘softmax’)

# 10 outputs

])

return model



LeNet-5

• Gradient Based Learning Applied To Document Recognition -
Y. Lecun, L. Bottou, Y. Bengio, P. Haffner; 1998

• Helped establish how we use CNNs today
• Replaced manual feature extraction

[LeCun et al., 1998]



LeNet-5

⋮ ⋮
�𝑦𝑦

32×32×1 28×28×6 14×14×6 10×10×16

5×5×16
120 84

5 × 5
s = 1

f = 2
s = 2

avg pool

5 × 5
s = 1

avg pool

f = 2
s = 2

. . .

. . .

Reminder:
Output size = (N+2P-F)/stride + 1

10

conv conv

FC FC

[LeCun et al., 1998]This slide is taken from Andrew Ng



LeNet-5

• Only 60K parameters
• As we go deeper in the network: 𝑁𝑁𝐻𝐻 ↓, 𝑁𝑁𝑊𝑊↓, 𝑁𝑁𝐶𝐶 ↑
• General structure: 

conv->pool->conv->pool->FC->FC->output

• Different filters look at different channels
• Sigmoid and Tanh nonlinearity

[LeCun et al., 1998]



Backpropagation of convolution

Slide taken from Forward And Backpropagation in Convolutional Neural Network. - Medium



CNNs for Classification

1. Convolution: Apply filters to generate feature maps.

2. Non-linearity: Often ReLU.

3. Pooling: Downsampling operation on each feature map.

Train model with image data.
Learn weights of filters in convolutional layers.

tf.keras.layers.Conv2
D

tf.keras.activations.
*

tf.keras.layers.MaxPool2
D



Example – Six convolutional layers



CNNs: Spatial Arrangement of Output 
Volume

depth

width

height

Layer Dimensions:
ℎ w d

where h and w are spatial 
dimensions d (depth) = number of

filters

Stride:
Filter step size

Receptive Field:
Locations in input image 

that a node is path 
connected to

tf.keras.layers.Conv2D( filters=d, kernel_size=(h,w), strides=s )



91
CNNs for Classification: Feature Learning

1. Learn features in input image through convolution
2. Introduce non-linearity through activation function (real-world data is

non-linear!)
3. Reduce dimensionality and preserve spatial invariance with pooling



CNNs for Classification: Class Probabilities

- CONV and POOL layers output high-level features of input
- Fully connected layer uses these features for classifying input image
- Express output as probability of image belonging to a particular class



The art of CNN training



Foundations of CNN training

• Needs lots of data for training



Normalization matters



Vanishing / exploding gradients



Mini-batch gradient descent



Optimizing training



Hyperparameter Tuning



Train / Dev / Test sets



Importance of train/dev sets



Metrics for performance



Bias vs. Variance



Bayes Optimal Error; Suprassing Human Performance



Error Analysis



Regularization



Regularization



Extended Learning



Transfer learning



Multi-task learning



End-to-End Learning



CNN applications



Detection, localization, landmarks



Face Recognition



Style transfer



Automatic Colorization of Black and White Images



Optimizing Images

Post Processing Feature Optimization 
(Illumination)

Post Processing Feature Optimization 
(Color Curves and Details)

Post Processing Feature Optimization 
(Color Tone: Warmness)



Up-scaling low-resolution images



Next-generation models
explode # of parameters





Residual Networks



Network-in-Network: 1x1 convolution



Inception networks



ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) winners

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 



AlexNet

• ImageNet Classification with Deep Convolutional 
Neural Networks - Alex Krizhevsky, Ilya Sutskever, 
Geoffrey E. Hinton; 2012

• Facilitated by GPUs, highly optimized convolution 
implementation and large datasets (ImageNet) 

• One of the largest CNNs to date
• Has 60 Million parameter compared to 60k 

parameter of LeNet-5

[Krizhevsky et al., 2012]



ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) winners

• The annual “Olympics” of computer vision.

• Teams from across the world compete to see who has the 
best computer vision model for tasks such as classification, 
localization, detection, and more. 

• 2012 marked the first year where a CNN was used to 
achieve a top 5 test error rate of 15.3%. 

• The next best entry achieved an error of 26.2%.



ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) winners

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 



AlexNet

[Krizhevsky et al., 2012]

Architecture
CONV1
MAX POOL1 
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8

• Input: 227x227x3 images (224x224 before 
padding)

• First layer: 96 11x11 filters applied at stride 4

• Output volume size? 
(N-F)/s+1 = (227-11)/4+1 = 55 -> 

[55x55x96]

• Number of parameters in this layer? 
(11*11*3)*96 = 35K

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 



AlexNet

[Krizhevsky et al., 2012]



AlexNet

[Krizhevsky et al., 2012]

• Input: 227x227x3 images (224x224 before 
padding)

• After CONV1: 55x55x96
• Second layer: 3x3 filters applied at stride 2

• Output volume size? 
(N-F)/s+1 = (55-3)/2+1 = 27 -> [27x27x96]

• Number of parameters in this layer? 
0!

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 

Architecture
CONV1
MAX POOL1 
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8



AlexNet

. . .

227×227 ×3 55×55 × 96 27×27 ×96 27×27 ×256

13×13
×256

13×13 ×384 13×13 ×384 13×13 ×256 6×6 ×256

11 × 11
s = 4
P = 0

3 × 3
s = 2

max pool

5 × 5
S = 1
P = 2

3 × 3
s = 2

max pool

3 × 3
S = 1
P = 1

3 × 3
s = 1
P = 1

3 × 3
S = 1
P = 1

3 × 3
s = 2

max pool

conv conv

conv conv conv
. . .

[Krizhevsky et al., 2012]

. . .

This slide is taken from Andrew Ng



AlexNet

. . .

4096 4096

Softmax
1000

⋮ ⋮

[Krizhevsky et al., 2012]

FC FC

This slide is taken from Andrew Ng



AlexNet

[Krizhevsky et al., 2012]

Details/Retrospectives:
• first use of ReLU
• used Norm layers (not common anymore)
• heavy data augmentation
• dropout 0.5
• batch size 128
• 7 CNN ensemble

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 



AlexNet

[Krizhevsky et al., 2012]

• Trained on GTX 580 GPU with only 3 GB of memory.

• Network spread across 2 GPUs, half the neurons (feature 
maps) on each GPU.

• CONV1, CONV2, CONV4, CONV5:
Connections only with feature maps on same GPU.

• CONV3, FC6, FC7, FC8:
Connections with all feature maps in preceding layer, 
communication across GPUs.

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 



AlexNet

AlexNet was the coming out party for CNNs in the computer 
vision community. This was the first time a model performed 
so well on a historically difficult ImageNet dataset. This 
paper illustrated the benefits of CNNs and backed them up 
with record breaking performance in the competition.

[Krizhevsky et al., 2012]



ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) winners

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 



ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) winners

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 



VGGNet

• Very Deep Convolutional Networks For Large Scale 
Image Recognition - Karen Simonyan and Andrew 
Zisserman; 2015

• The runner-up at the ILSVRC 2014 competition
• Significantly deeper than AlexNet
• 140 million parameters

[Simonyan and Zisserman, 2014]



VGGNet
• Smaller filters

Only 3x3 CONV filters, stride 1, pad 1
and 2x2 MAX POOL , stride 2

• Deeper network
AlexNet: 8 layers 
VGGNet: 16 - 19 layers

• ZFNet: 11.7% top 5 error in ILSVRC’13
• VGGNet: 7.3% top 5 error in ILSVRC’14

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [Simonyan and Zisserman, 2014]

Input
3x3 conv, 64
3x3 conv, 64
Pool 1/2
3x3 conv, 128
3x3 conv, 128
Pool 1/2
3x3 conv, 256
3x3 conv, 256
Pool 1/2
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool 1/2
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool 1/2
FC 4096
FC 4096
FC 1000
Softmax



VGGNet

[Simonyan and Zisserman, 2014]

• Why use smaller filters? (3x3 conv)
Stack of three 3x3 conv (stride 1) layers has the same effective
receptive field as one 7x7 conv layer.

• What is the effective receptive field of three 3x3 conv (stride
1) layers?

7x7
But deeper, more non-linearities
And fewer parameters: 3 * (32C2) vs. 72C2 for C channels per layer

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 



VGGNet

[Simonyan and Zisserman, 2014]

VGG16:
TOTAL memory: 24M * 4 bytes ~= 96MB / image 
TOTAL params: 138M parameters

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 

Input
3x3 conv, 64
3x3 conv, 64
Pool 
3x3 conv, 128
3x3 conv, 128
Pool 
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
Pool 
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool 
FC 4096
FC 4096
FC 1000
Softmax



[Simonyan and Zisserman, 2014]Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 

Input memory:  224*224*3=150K params: 0
3x3 conv, 64 memory:  224*224*64=3.2M params: (3*3*3)*64 = 1,728 
3x3 conv, 64 memory:  224*224*64=3.2M params: (3*3*64)*64 = 36,864
Pool memory:  112*112*64=800K params: 0
3x3 conv, 128 memory:  112*112*128=1.6M params: (3*3*64)*128 = 73,728 

3x3 conv, 128 memory:  112*112*128=1.6M params: (3*3*128)*128 = 
147,456
Pool memory:  56*56*128=400K params: 0
3x3 conv, 256 memory:  56*56*256=800K params: (3*3*128)*256 = 294,912 
3x3 conv, 256 memory:  56*56*256=800K params: (3*3*256)*256 = 589,824 
3x3 conv, 256 memory:  56*56*256=800K params: (3*3*256)*256 = 589,824
Pool memory:  28*28*256=200K params: 0
3x3 conv, 512 memory:  28*28*512=400K params: (3*3*256)*512 = 1,179,648 
3x3 conv, 512 memory:  28*28*512=400K params: (3*3*512)*512 = 2,359,296 
3x3 conv, 512 memory:  28*28*512=400K params: (3*3*512)*512 = 2,359,296
Pool memory:  14*14*512=100K params: 0
3x3 conv, 512 memory:  14*14*512=100K params: (3*3*512)*512 = 2,359,296 
3x3 conv, 512 memory:  14*14*512=100K params: (3*3*512)*512 = 2,359,296 
3x3 conv, 512 memory:  14*14*512=100K params: (3*3*512)*512 = 2,359,296
Pool memory:  7*7*512=25K  params: 0
FC 4096 memory:  4096  params: 7*7*512*4096 = 102,760,448
FC 4096 memory:  4096  params: 4096*4096 = 16,777,216
FC 1000 memory:  1000  params: 4096*1000 = 4,096,000



VGGNet

[Simonyan and Zisserman, 2014]

Details/Retrospectives :
• ILSVRC’14 2nd in classification, 1st in localization
• Similar training procedure as AlexNet
• No Local Response Normalisation (LRN)
• Use VGG16 or VGG19 (VGG19 only slightly better, more 

memory)
• Use ensembles for best results
• FC7 features generalize well to other tasks
• Trained on 4 Nvidia Titan Black GPUs for two to three weeks.

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 



VGGNet

VGG Net reinforced the notion that convolutional neural 
networks have to have a deep network of layers in order for 
this hierarchical representation of visual data to work. 
Keep it deep. 
Keep it simple.

[Simonyan and Zisserman, 2014]



ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) winners

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 



GoogleNet

• Going Deeper with Convolutions - Christian Szegedy et 
al.; 2015

• ILSVRC 2014 competition winner
• Also significantly deeper than AlexNet
• x12 less parameters than AlexNet
• Focused on computational efficiency 

[Szegedy et al., 2014]



GoogleNet
• 22 layers

• Efficient “Inception” module - strayed from 
the general approach of simply stacking conv 
and pooling layers on top of each other in a 
sequential structure

• No FC layers

• Only 5 million parameters!

• ILSVRC’14 classification winner (6.7% top 5 
error)

[Szegedy et al., 2014]



GoogleNet

“Inception module”: design a good local network topology (network within 
a network) and then stack these modules on top of each other

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [Szegedy et al., 2014]
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pooling



GoogleNet
Details/Retrospectives :
• Deeper networks, with computational efficiency
• 22 layers
• Efficient “Inception” module
• No FC layers
• 12x less params than AlexNet
• ILSVRC’14 classification winner (6.7% top 5 error)

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [Szegedy et al., 2014]



GoogleNet

Introduced the idea that CNN layers didn’t always have to be 
stacked up sequentially. Coming up with the Inception 
module, the authors showed that a creative structuring of 
layers can lead to improved performance and 
computationally efficiency. 

[Szegedy et al., 2014]



ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) winners

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 



ResNet

• Deep Residual Learning for Image Recognition -
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun; 
2015

• Extremely deep network – 152 layers
• Deeper neural networks are more difficult to train.
• Deep networks suffer from vanishing and 

exploding gradients.
• Present a residual learning framework to ease the 

training of networks that are substantially deeper 
than those used previously. 

[He et al., 2015]



ResNet

• ILSVRC’15 classification winner (3.57% top 5 
error, humans generally hover around a 5-
10% error rate)
Swept all classification and detection 
competitions in ILSVRC’15 and COCO’15!

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [He et al., 2015]



ResNet

• What happens when we continue stacking deeper layers on a 
convolutional neural network?

• 56-layer model performs worse on both training and test error
-> The deeper model performs worse (not caused by overfitting)!

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [He et al., 2015]



ResNet

• Hypothesis: The problem is an optimization problem. Very 
deep networks are harder to optimize.

• Solution: Use network layers to fit  residual mapping instead 
of directly trying to fit a desired underlying mapping.

• We will use skip connections allowing us to take the activation 
from one layer and feed it into another layer, much deeper 
into the network.

• Use layers to fit residual F(x) = H(x) – x
instead of H(x) directly

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. [He et al., 2015]



ResNet
Residual Block
Input x goes through conv-relu-conv series and gives us F(x). 
That result is then added to the original input x. Let’s call that 
H(x) = F(x) + x. 
In traditional CNNs, H(x) would just be equal to F(x). So, instead 
of just computing that transformation (straight from x to F(x)), 
we’re computing the term that we have to add, F(x), to the 
input, x. 

[He et al., 2015]



ResNet

Short cut/ skip connection

𝑎𝑎[𝑙𝑙] 𝑎𝑎[𝑙𝑙+2]

𝐳𝐳[𝐥𝐥+𝟏𝟏] = 𝐖𝐖[𝐥𝐥+𝟏𝟏] 𝐚𝐚[𝐥𝐥] + 𝐛𝐛[𝐥𝐥+𝟏𝟏]

𝐚𝐚[𝐥𝐥+𝟏𝟏] = 𝐠𝐠(𝐳𝐳[𝐥𝐥+𝟏𝟏])

𝐳𝐳[𝐥𝐥+𝟐𝟐] = 𝐖𝐖[𝐥𝐥+𝟐𝟐]𝐚𝐚[𝐥𝐥+𝟏𝟏] + 𝐛𝐛[𝐥𝐥+𝟐𝟐]

𝐚𝐚[𝐥𝐥+𝟐𝟐] = 𝐠𝐠(𝐳𝐳[𝐥𝐥+𝟐𝟐])

𝑎𝑎[𝑙𝑙+1]

a[l]

a[l+1]
𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 a[l+2]

𝐚𝐚[𝐥𝐥+𝟐𝟐] = 𝐠𝐠 𝐳𝐳 𝐥𝐥+𝟐𝟐 + 𝐚𝐚 𝐥𝐥 = 𝐠𝐠(𝐖𝐖[𝐥𝐥+𝟐𝟐]𝐚𝐚[𝐥𝐥+𝟏𝟏] + 𝐛𝐛[𝐥𝐥+𝟐𝟐] + 𝐚𝐚 𝐥𝐥 ) 

[He et al., 2015]



ResNet

Full ResNet architecture:
• Stack residual blocks
• Every residual block has two 3x3 conv layers
• Periodically, double # of filters and 

downsample spatially using stride 2 (in each 
dimension)

• Additional conv layer at the beginning
• No FC layers at the end (only FC 1000 to 

output classes)

[He et al., 2015]Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 



ResNet

• Total depths of 34, 50, 101, or 152 layers for 
ImageNet

• For deeper networks (ResNet-50+), use 
“bottleneck” layer to improve efficiency 
(similar to GoogLeNet)

[He et al., 2015]Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 



ResNet

Experimental Results:
• Able to train very deep networks without degrading
• Deeper networks now achieve lower training errors as 

expected

[He et al., 2015]Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 



ResNet

The best CNN architecture that we currently have and is a 
great innovation for the idea of residual learning.
Even better than human performance!

[He et al., 2015]



Accuracy comparison

The best CNN architecture that we currently have and is a 
great innovation for the idea of residual learning.

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 



Forward pass time and power 
consumption

The best CNN architecture that we currently have and is a 
great innovation for the idea of residual learning.

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 



ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) winners

Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9. 



Countless applications



An Architecture for Many Applications

Detection
Semantic segmentation
End-to-end robotic control



Semantic Segmentation: Fully Convolutional Networks

FCN: Fully Convolutional Network.
Network designed with all convolutional layers,with downsampling and 

upsampling operations

tf.keras.layers.Conv2DTranspose

Long+ CVPR 2015



Facial Detection & Recognition



Self-Driving Cars

Amini+ ICRA 2019.



Self-Driving Cars: Navigation from Visual Perception

Raw
Perception

I
(ex.camera)

Coarse
Maps

M
(ex.GPS)

Possible Control Commands

Amini+ ICRA 2019



End-to-End Framework for Autonomous Navigation

Entire model trained end-to-end 
without any human labelling or annotations

Amini+ ICRA 2019



Medicine, Biology, Healthcare

Gulshan+ JAMA 2016.



Breast Cancer Screening

6.
Breast cancer case 
missed by radiologist 
but detected byAI

AI
MD
Readers

AI
MD
Readers

CNN-based system outperformed expert 
radiologists at detecting breast 
cancer from mammograms



Semantic Segmentation: Biomedical Image Analysis

Brain Tumors
Dong+ MIUA
2017.

Malaria Infection
Soleimany+ arXiv
2019.

Dong+ MIUA 2017; Soleimany+ arXiv 2019

Origi
nal

Ground
Truth

Segmenta
tion

Uncertai
nty



DeepBind

[Alipanahi et al., 2015]



Predicting disease mutations

[Alipanahi et al., 2015]



Today: Convolutional Neural Networks (CNNs)
1. Scene understanding and object recognition for machines (and humans)

– Scene/object recognition challenge. Illusions reveal primitives, conflicting info
– Human neurons/circuits. Visual cortex layers==abstraction. General cognition

2. Classical machine vision foundations: features, scenes, filters, convolution
– Spatial structure primitives: edge detectors & other filters, feature recognition
– Convolution: basics, padding, stride, object recognition, architectures

3. CNN foundations: LeNet, de novo feature learning, parameter sharing
– Key ideas: learn features, hierarchy, re-use parameters, back-prop filter learning
– CNN formalization: representations(Conv+ReLU+Pool)*N layers + Fully-connected

4. Modern CNN architectures: millions of parameters, dozens of layers
– Feature invariance is hard: apply perturbations, learn for each variation
– ImageNet progression of best performers
– AlexNet: First top performer CNN, 60M parameters (from 60k in LeNet-5), ReLU
– VGGNet: simpler but deeper (819 layers), 140M parameters, ensembles
– GoogleNet: new primitive=inception module, 5M params, no FC, efficiency
– ResNet: 152 layers, vanishing gradients  fit residuals to enable learning

5. Countless applications: General architecture, enormous power
– Semantic segmentation, facial detection/recognition, self-driving, image 

colorization, optimizing pictures/scenes, up-scaling, medicine, biology, genomics



Deep Learning for Computer Vision: Summary

Foundations

• Why computer vision?
• Representing images

• Convolutions for feature
extraction

CNNs

• CNN architecture
• Application to

classification

• ImageNet

Applications

• Segmentation,image
captioning,control

• Security,medicine,
robotics
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