
6.874, 6.802, 20.390, 20.490, HST.506
Computational Systems Biology
Deep Learning in the Life Sciences

Lecture 4:
Recurrent Neural Networks

LSTMs, Transformers,
Graph Neural Networks

Prof. Manolis Kellis
Guest lecture: Neil Band

http://mit6874.github.io
Slides credit: Geoffrey Hinton, Ian Goodfellow,
David Gifford, 6.S191 (Ava Soleimany, Alex Amini)

Recurrent Neural Networks (RNNs) + Generalization
1. How do you read/listen/understand/write? Can machines do that?

– Context matters: characters, words, letters, sounds, completion, multi-modal
– Predicting next word/image: from unsupervised learning to supervised learning

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs
– Primitives: hidden state, memory of previous experiences, limitations of HMMs
– RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse

3. Vanishing gradients, Long-Short-Term Memory (LSTM), initialization
– Key idea: gated input/output/memory nodes, model choose to forget/remember
– Example: online character recognition with LSTM recurrent neural network

4. Transformer modules
– Learning temporal relationships without unrolling and without RNNs
– Encoder/Decoder output architecture and multi-head attention modeule

5. Graph Neural Networks
– Applications: social, brain, chemical drug design, graphics, transport, knowledge
– Define each node’s computation graph, from its neighborhood
– Classical network/graph problems: Node/graph classification, link prediction
– Research frontiers: deep generative models, latent graph inferences

1a. What do you hear and why?

Context matters

Phonemic
restoration

Top-down
processing

Adults: 200 ms delay max disruption.
Children: 500 ms

https://www.sciencedaily.com/releases/2018/11/181129142352.htm

https://youtu.be/PWGeUztTkRA?t=35

Hearing lips and seeing voices
(McGurk, MacDonald, Nature 1976)

Split class into 4 groups: (1) close your
eyes, (2) look left, (3) middle, (4) right

Delayed typing: Google Docs, zoom
video screen sharing, slow computer

https://www.sciencedaily.com/releases/2018/11/181129142352.htm
https://youtu.be/PWGeUztTkRA?t=35

Recurrent Neural Networks (RNNs) + Generalization
1. How do you read/listen/understand/write? Can machines do that?

– Context matters: characters, words, letters, sounds, completion, multi-modal
– Predicting next word/image: from unsupervised learning to supervised learning

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs
– Primitives: hidden state, memory of previous experiences, limitations of HMMs
– RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse

3. Vanishing gradients, Long-Short-Term Memory (LSTM), initialization
– Key idea: gated input/output/memory nodes, model choose to forget/remember
– Example: online character recognition with LSTM recurrent neural network

4. Transformer modules
– Learning temporal relationships without unrolling and without RNNs
– Encoder/Decoder output architecture and multi-head attention modeule

5. Graph Neural Networks
– Applications: social, brain, chemical drug design, graphics, transport, knowledge
– Define each node’s computation graph, from its neighborhood
– Classical network/graph problems: Node/graph classification, link prediction
– Research frontiers: deep generative models, latent graph inferences

2a. Encoding time

Getting targets when modeling sequences
•When applying machine learning to sequences, we often want to turn an input
sequence into an output sequence that lives in a different domain.

– E. g. turn a sequence of sound pressures into a sequence of word identities.

•When there is no separate target sequence, we can get a teaching signal by trying to
predict the next term in the input sequence.

– The target output sequence is the input sequence with an advance of 1 step.
– This seems much more natural than trying to predict one pixel in an image

from the other pixels, or one patch of an image from the rest of the image.
– For temporal sequences there is a natural order for the predictions.

•Predicting the next term in a sequence blurs the distinction between supervised and
unsupervised learning.

– It uses methods designed for supervised learning, but it doesn’t require a
separate teaching signal.

Memoryless models for sequences

• Autoregressive models
Predict the next term in a
sequence from a fixed number of
previous terms using “delay taps”.

• Feed-forward neural nets
These generalize autoregressive
models by using one or more
layers of non-linear hidden units.

input(t-2) input(t-1) input(t)

hidde
n

input(t-2) input(t-1) input(t)

Beyond memoryless models

• If we give our generative model some hidden state, and if we give
this hidden state its own internal dynamics, we get a much more
interesting kind of model.
– It can store information in its hidden state for a long time.
– If the dynamics is noisy and the way it generates outputs from its

hidden state is noisy, we can never know its exact hidden state.
– The best we can do is to infer a probability distribution over the

space of hidden state vectors.
• This inference is only tractable for two types of hidden state model.

Linear Dynamical Systems (engineers love them!)

• These are generative models. They have a real-
valued hidden state that cannot be observed
directly.
– The hidden state has linear dynamics with

Gaussian noise and produces the observations
using a linear model with Gaussian noise.

– There may also be driving inputs.
• To predict the next output (so that we can shoot

down the missile) we need to infer the hidden
state.
– A linearly transformed Gaussian is a Gaussian. So

the distribution over the hidden state given the data
so far is Gaussian. It can be computed using
“Kalman filtering”.

driving
input

hidden

hidden

hidden

output

output

output

time 
driving
input

driving
input

Hidden Markov Models (computer scientists love them!)

• Hidden Markov Models have a discrete one-
of-N hidden state. Transitions between states
are stochastic and controlled by a transition
matrix. The outputs produced by a state are
stochastic.
– We cannot be sure which state produced a

given output. So the state is “hidden”.
– It is easy to represent a probability distribution

across N states with N numbers.
• To predict the next output we need to infer the

probability distribution over hidden states.
– HMMs have efficient algorithms for

inference and learning.

output

output

output

time 

A fundamental limitation of HMMs
• Consider what happens when a hidden Markov model generates

data.
– At each time step it must select one of its hidden states. So with N

hidden states it can only remember log(N) bits about what it generated
so far.

• Consider the information that the first half of an utterance contains
about the second half:
– The syntax needs to fit (e.g. number and tense agreement).
– The semantics needs to fit. The intonation needs to fit.
– The accent, rate, volume, and vocal tract characteristics must all fit.

• All these aspects combined could be 100 bits of information that the
first half of an utterance needs to convey to the second half. 2^100
is big!

2b. Recurrent Neural Networks
(RNNs)

Recurrent neural networks
• RNNs are very powerful, because they

combine two properties:
– Distributed hidden state that allows

them to store a lot of information
about the past efficiently.

– Non-linear dynamics that allows
them to update their hidden state in
complicated ways.

• With enough neurons and time, RNNs
can compute anything that can be
computed by your computer.

input

input

input

hidden

hidden

hidden

output

output

output
time 

Do generative models need to be stochastic?

• Linear dynamical systems and
hidden Markov models are
stochastic models.
– But the posterior probability

distribution over their
hidden states given the
observed data so far is a
deterministic function of the
data.

• Recurrent neural networks are
deterministic.
– So think of the hidden state

of an RNN as the
equivalent of the
deterministic probability
distribution over hidden
states in a linear dynamical
system or hidden Markov
model.

Recurrent neural networks

• What kinds of behaviour can RNNs exhibit?
– They can oscillate. Good for motor control?
– They can settle to point attractors. Good for retrieving memories?
– They can behave chaotically. Bad for information processing?
– RNNs could potentially learn to implement lots of small programs

that each capture a nugget of knowledge and run in parallel,
interacting to produce very complicated effects.

• But the computational power of RNNs makes them very hard to train.
– For many years we could not exploit the computational power of

RNNs despite some heroic efforts (e.g. Tony Robinson’s speech
recognizer).

The equivalence between feedforward nets and recurrent
nets

w1 w4

w2 w3
w1 w2 W3 W4

time=0

time=2

time=1

time=3

Assume that there is a time
delay of 1 in using each
connection.

The recurrent net is just a
layered net that keeps
reusing the same weights.

w1 w2 W3 W4

w1 w2 W3 W4

2c. Alternative architectures
for RNNs

Different RNN remembering architectures

Recurrent network with no outputs

o: output, y: target, L: loss
Memory: h(t-1) h(t)

o: output, y: target, L: loss
Memory: o(t-1) h(t) . Only train sequentially

Single output
after entire
sequence

Teacher-forcing: train from y and x in parallel

2d. Back-propagation through
time (BPTT)

Reminder: Backpropagation with weight
constraints

• It is easy to modify the
backprop algorithm to
incorporate linear constraints
between the weights.

• We compute the gradients as
usual, and then modify the
gradients so that they satisfy
the constraints.
– So if the weights started off

satisfying the constraints,
they will continue to satisfy
them. 21

21

21

21

21

:

:
:

wandwfor
w
E

w
Euse

w
Eand

w
Ecompute

wwneedwe
wwconstrainTo

∂
∂

+
∂
∂

∂
∂

∂
∂

∆=∆
=

Backpropagation through time

• We can think of the recurrent net as a layered, feed-forward
net with shared weights and then train the feed-forward net
with weight constraints.

• We can also think of this training algorithm in the time domain:
– The forward pass builds up a stack of the activities of all

the units at each time step.
– The backward pass peels activities off the stack to

compute the error derivatives at each time step.
– After the backward pass we add together the derivatives at

all the different times for each weight.

Getting targets when modeling sequences
•When applying machine learning to sequences, we often want to turn an input
sequence into an output sequence that lives in a different domain.

– E. g. turn a sequence of sound pressures into a sequence of word identities.

•When there is no separate target sequence, we can get a teaching signal by trying to
predict the next term in the input sequence.

– The target output sequence is the input sequence with an advance of 1 step.
– This seems much more natural than trying to predict one pixel in an image

from the other pixels, or one patch of an image from the rest of the image.
– For temporal sequences there is a natural order for the predictions.

•Predicting the next term in a sequence blurs the distinction between supervised and
unsupervised learning.

– It uses methods designed for supervised learning, but it doesn’t require a
separate teaching signal.

Recurrent Neural Networks (RNNs) + Generalization
1. How do you read/listen/understand/write? Can machines do that?

– Context matters: characters, words, letters, sounds, completion, multi-modal
– Predicting next word/image: from unsupervised learning to supervised learning

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs
– Primitives: hidden state, memory of previous experiences, limitations of HMMs
– RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse

3. Vanishing gradients, Long-Short-Term Memory (LSTM), initialization
– Key idea: gated input/output/memory nodes, model choose to forget/remember
– Example: online character recognition with LSTM recurrent neural network

4. Transformer modules
– Learning temporal relationships without unrolling and without RNNs
– Encoder/Decoder output architecture and multi-head attention modeule

5. Graph Neural Networks
– Applications: social, brain, chemical drug design, graphics, transport, knowledge
– Define each node’s computation graph, from its neighborhood
– Classical network/graph problems: Node/graph classification, link prediction
– Research frontiers: deep generative models, latent graph inferences

3a. Remembering for
longer time periods

Four effective ways to increase length of memory

• Long Short Term Memory
Make the RNN out of little
modules that are designed to
remember values for a long time.

• Hessian Free Optimization: Deal
with the vanishing gradients
problem by using a fancy
optimizer that can detect
directions with a tiny gradient but
even smaller curvature.
– The HF optimizer (Martens &

Sutskever, 2011) is good at
this.

• Echo State Networks: Initialize the
inputhidden and hiddenhidden and
outputhidden connections very
carefully so that the hidden state has a
huge reservoir of weakly coupled
oscillators which can be selectively driven
by the input.
– ESNs only need to learn the

hiddenoutput connections.
• Good initialization with momentum

Initialize like in Echo State Networks, but
then learn all of the connections using
momentum.

Long Short Term Memory (LSTM)

• Hochreiter & Schmidhuber
(1997) solved the problem of
getting an RNN to remember
things for a long time (like
hundreds of time steps).

• They designed a memory cell
using logistic and linear units
with multiplicative interactions.

• Information gets into the cell
whenever its “write” gate is on.

• The information stays in the
cell so long as its “keep” gate
is on.

• Information can be read from
the cell by turning on its “read”
gate.

Implementing a memory cell in a neural network

To preserve information for a long time in
the activities of an RNN, we use a circuit
that implements an analog memory cell.
– A linear unit that has a self-link with a

weight of 1 will maintain its state.
– Information is stored in the cell by

activating its write gate.
– Information is retrieved by activating

the read gate.
– We can backpropagate through this

circuit because logistics are have nice
derivatives.

output to rest
of RNN

input from
rest of RNN

read
gate

write
gate

keep
gate

1.73

RNN LSTM Backpropagation through a memory cell

read
1

write
0

keep
1

1.7

read
0

write
0

1.7

read
0

write
1

1.7

1.71.7

keep
1

keep
0

keep
0

time 

Reading cursive handwriting

• This is a natural task for an
RNN.

• The input is a sequence of
(x,y,p) coordinates of the tip of
the pen, where p indicates
whether the pen is up or down.

• The output is a sequence of
characters.

• Graves & Schmidhuber (2009)
showed that RNNs with LSTM
are currently the best systems
for reading cursive writing.
– They used a sequence of

small images as input
rather than pen
coordinates.

Demonstration of online handwriting recognition by an RNN with
Long Short Term Memory (from Alex Graves)

• Row 1: Shows when characters are
recognized.
– It never revises its output so

difficult decisions are more
delayed.

• Row 2: Shows the states of a subset
of the memory cells.
– Notice how they get reset when it

recognizes a character.

• Row 3: Shows the writing. The net
sees the x and y coordinates.
– Optical input actually works a bit

better than pen coordinates.
• Row 4: Shows the gradient

backpropagated all the way to the x
and y inputs from the currently most
active character.
– This lets you see which bits of the

data are influencing the decision.
https://youtu.be/9T2X6WRUwFU?t=2791

https://youtu.be/9T2X6WRUwFU?t=2791

3b. Initialization

Initialization: Dealing with boundary cases

• We need to specify the initial activity state of all the hidden and output
units.

• We could just fix these initial states to have some default value like 0.5.
• But it is better to treat the initial states as learned parameters.
• We learn them in the same way as we learn the weights.

– Start off with an initial random guess for the initial states.
– At the end of each training sequence, backpropagate through time all

the way to the initial states to get the gradient of the error function
with respect to each initial state.

– Adjust the initial states by following the negative gradient.

Teaching signals for recurrent networks

• We can specify targets in several
ways:
– Specify desired final activities

of all the units
– Specify desired activities of all

units for the last few steps
• Good for learning attractors
• It is easy to add in extra error

derivatives as we
backpropagate.

– Specify the desired activity of a
subset of the units.

• The other units are input or
hidden units.

w1 w2 W3 W4

w1 w2 W3 W4

w1 w2 W3 W4

What the network learns

• It learns four distinct patterns of
activity for the 3 hidden units.
These patterns correspond to the
nodes in the finite state
automaton.
– Do not confuse units in a

neural network with nodes in a
finite state automaton. Nodes
are like activity vectors.

– The automaton is restricted to
be in exactly one state at
each time. The hidden units
are restricted to have exactly
one vector of activity at each
time.

• A recurrent network can emulate
a finite state automaton, but it is
exponentially more powerful.
With N hidden neurons it has 2^N
possible binary activity vectors
(but only N^2 weights)
– This is important when the

input stream has two separate
things going on at once.

– A finite state automaton
needs to square its number of
states.

– An RNN needs to double its
number of units.

The backward pass is linear

• There is a big difference between the
forward and backward passes.

• In the forward pass we use squashing
functions (like the logistic) to prevent the
activity vectors from exploding.

• The backward pass, is completely linear. If
you double the error derivatives at the final
layer, all the error derivatives will double.
– The forward pass determines the slope

of the linear function used for
backpropagating through each neuron.

The problem of exploding or vanishing gradients

• What happens to the magnitude of
the gradients as we
backpropagate through many
layers?
– If the weights are small, the

gradients shrink
exponentially.

– If the weights are big the
gradients grow
exponentially.

• Typical feed-forward neural nets
can cope with these exponential
effects because they only have a
few hidden layers.

• In an RNN trained on long
sequences (e.g. 100 time steps)
the gradients can easily explode
or vanish.
– We can avoid this by

initializing the weights very
carefully.

• Even with good initial weights, its
very hard to detect that the
current target output depends on
an input from many time-steps
ago.
– So RNNs have difficulty

dealing with long-range
dependencies.

– Can use ideas for residual
networks (ResNet), pass info
from the input to far away
nodes

Recurrent Neural Networks (RNNs) + Generalization
1. How do you read/listen/understand/write? Can machines do that?

– Context matters: characters, words, letters, sounds, completion, multi-modal
– Predicting next word/image: from unsupervised learning to supervised learning

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs
– Primitives: hidden state, memory of previous experiences, limitations of HMMs
– RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse

3. Vanishing gradients, Long-Short-Term Memory (LSTM), initialization
– Key idea: gated input/output/memory nodes, model choose to forget/remember
– Example: online character recognition with LSTM recurrent neural network

4. Transformer modules
– Learning temporal relationships without unrolling and without RNNs
– Encoder/Decoder output architecture and multi-head attention modeule

5. Graph Neural Networks
– Applications: social, brain, chemical drug design, graphics, transport, knowledge
– Define each node’s computation graph, from its neighborhood
– Classical network/graph problems: Node/graph classification, link prediction
– Research frontiers: deep generative models, latent graph inferences

4. Attention and
transformer models

Encoder/Decoder/Attention modules in Transformer

Q: matrix, query, vector representation of one word in sequence
K: all keys, vector representations of all words in sequence
V: values, vector representations of all words in sequence

Encoder, decoder, multi-head attention module: V = same word sequence as Q
Attention module = V different from Q, uses encoder and decoder sequences

Time explicitly encoded
No need for RNN structure

Training setup: Predict next work each time, decoder shifted by one

Transforms one sequence into another sequence, using full context for each
(e.g. sentence translation, or any other sequential task)

Recurrent Neural Networks (RNNs) + Generalization
1. How do you read/listen/understand/write? Can machines do that?

– Context matters: characters, words, letters, sounds, completion, multi-modal
– Predicting next word/image: from unsupervised learning to supervised learning

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs
– Primitives: hidden state, memory of previous experiences, limitations of HMMs
– RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse

3. Vanishing gradients, Long-Short-Term Memory (LSTM), initialization
– Key idea: gated input/output/memory nodes, model choose to forget/remember
– Example: online character recognition with LSTM recurrent neural network

4. Transformer modules
– Learning temporal relationships without unrolling and without RNNs
– Encoder/Decoder output architecture and multi-head attention modeule

5. Graph Neural Networks
– Applications: social, brain, chemical drug design, graphics, transport, knowledge
– Define each node’s computation graph, from its neighborhood
– Classical network/graph problems: Node/graph classification, link prediction
– Research frontiers: deep generative models, latent graph inferences

5. Graph Neural Networks

Guest lecture by Neil Band

Sources /Further Reading

● Adapted from

○ Thomas Kipf’s presentations (Cambridge CompBio, IPAM UCLA)

○ Graph Neural Networks by Xavier Bresson (Guest lecture in Yann LeCun’s NYU DL course)

○ CS224 Machine Learning on Graphs by Jure Leskovec (Course @ Stanford)

○ Junction Tree VariationalAutoencoder (Wengong Jin, ICML 2018)

● Mining and Learning with Graphs at Scale (Google Graph Mining team @ NIPS 2020)

● Graph Representation Learning (Book by Will Hamilton,2020)

● Thomas Kipf’s thesis (Deep Learning with Graph Structured Representations, 2020)

● Further reading: Petar Veličković’s thread of resources

Jraph! (GNNs with Jax)

http://tkipf.github.io/misc/SlidesCambridge.pdf
http://helper.ipam.ucla.edu/publications/glws4/glws4_15546.pdf
https://atcold.github.io/pytorch-Deep-Learning/en/week13/13-1/
http://web.stanford.edu/class/cs224w/
https://qdata.github.io/deep2Read/talks2019/Extra19s/TkachJunctionTreeVAE.pdf
https://gm-neurips-2020.github.io/master-deck.pdf
https://www.cs.mcgill.ca/%7Ewlh/grl_book/files/GRL_Book.pdf
https://dare.uva.nl/search?identifier=1b63b965-24c4-4bcd-aabb-b849056fa76d
https://twitter.com/petarv_93/status/1306689702020382720?lang=en
https://github.com/deepmind/jraph

Outline
1. Motivation

2. Graph neural nets (GNNs)
Introduction and history

3. GNNs for classic network problems

Node
classification

Graph
classification

...
Link prediction

Outline
1. Motivation

2. Graph neural nets (GNNs)
Introduction and history

3. GNNs for classic network problems

4. Research frontiers

Node
classification

Graph
classification

...
Link prediction

Latent graph
inference

Deep
generative

graph models

With applications in...

● Chemical synthesis
● Interacting systems (physical,

multi-agent, biological)
● Causal inference
● Program induction

The ML canon lives in grid world

● Images, volumes,videos lie on
2D,3D,2D + 1 grids

● Sentences,words, speech lie on
1D grids

● Deep neural nets on grids exploit:
- translation equivariance (weight sharing)
- hierarchical compositionality

But there’s so much more...

But there’s so much more...

Cool applications (in the last year!)
DeepMind /Google Maps ETA improvements across world SuperGlue (Magic Leap) feature matching

Large Hadron Collider real-time collision analysis MaSIF predicts protein-protein interactions

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks
https://github.com/magicleap/SuperGluePretrainedNetwork
https://news.fnal.gov/2020/09/the-next-big-thing-the-use-of-graph-neural-networks-to-discover-particles/
https://www.nature.com/articles/s41592-019-0666-6

Setup

Naive approach
1. Join adjacency matrix and node features

2. Plug them into a deep neural net

● Issues with this idea:

○ O(N) parameters → 6 billion nodes in Pinterest

○ Not applicable to graphs of different sizes → graphs change!

○ Not invariant to node ordering → expensive sorting

1 Graph neural nets

Aggregating neighbors

Recap: CNN (on grids) as message passing

Single CNNlayer with
3x3 filter

Animation by Vincent Dumoulin

Aggregating neighbors

NNs

Aggregating neighbors

Graph convolutional networks (GCNs)
Kipf & Welling (ICLR 2017), related previous works: Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

GCN classification on citation networks
Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

GNNs with edge embeddings (Neural message passing)
Battaglia et al. (NIPS 2016), Gilmer et al. (ICML 2017), Kipf et al. (ICML 2018)

Graph neural nets with attention
Monti et al. (CVPR 2017), Hoshen (NIPS 2017), Veličković et al. (ICLR 2018)

2 Application to “classical”
network problems

Node
classification

Graph
classification

Link prediction

One fits all: Classification and link prediction with GNNs/GCNs

3 Research frontiers

Latent graph
inference

Deep
generative

graph models

Unsupervised learning with GNNs

Unsupervised learning with GNNs

● Sampling strategies
e.g. positive: neighbor; negative: random node

● Encoder variants
GCN, GAT,MLP,Lookup table

● Node representations
Geometry of latent space, distributional embeddings (e.g. Hyperbolic GCNN, Chami et al. 2019)

● Score functions
Inner/bilinear product, local vs. global (e.g. Deep Graph Infomax, Velickovic et al. 2019)

● Loss
(Cross-entropy,MSE, exponential)

Unsupervised learning takeaways
A Modular Framework for Unsupervised Graph Representation Learning, Daza & Kipf (WIP)

Likelihood-based (deep) graph generation

(Variational)
Graph Auto-Encoders

Kipf &Welling
(NIPS BDL 2016)

Graphite
Grover et al.

(NIPS BDL 2017)

Graph2Gauss
Bojchevski &
Gunneman
(ICLR 2018)

Hyperspherical VAEs
Davidson et al.

(UAI 2018)

VGAE generative model (with ELBO loss)

Likelihood-based (deep) graph generation

Likelihood-based (deep) graph generation

Likelihood-based (deep) graph generation

Learning Graphical
State Transitions

Johnson
(ICLR 2017)

Deep Generative
Models of Graphs

Li et al.
(arXiv 2018)

GraphVAE
Simonovsky et al.

(arXiv 2018)

GraphRNN
You et al.

(ICML 2018)

Graph generation for drug discovery
Junction Tree VariationalAutoencoder, Jin et al. (ICML 2018)

Aim:generate molecules with high potency

How should we decode the graph?
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

● Not every graph is chemically valid

● Invalid intermediate states → hard to validate

● Many intermediate states (i.e. long sequences) → difficult to train (Li et al. 2018)

How should we decode the graph?
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

● Shorter action sequence

● Easy to check validity as we construct

● Vocabulary size: ~800 for 250K
molecules

Tree Decomposition

High-level approach
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

Focus on the cool part: tree decoding
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

Tree decoding
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)

Tree decoding
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)

Topological Prediction:Should we add a child node, or backtrack?

Label Prediction:What do we label the new node?

Tree decoding
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)

Topological Prediction:Should we add a child node, or backtrack?

Label Prediction:What do we label the new node?

Tree decoding
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)

Functional group featuresEncodes state of subtree thus far

JTVAE evaluation
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

3 Bayesian Optimization

1. Train a VAE, associate each molecule with
latent vector (mean of encoding distribution)

2. Train a sparse GP to predict target chemical
property y(m) given the latent representation

3. Use property predictor for BO

1 Molecule Reconstruction

100 forward passes per molecule, report portion of
decoded molecules identical to input

2 Molecule Validity

Random samples from latent z, report portion that
are chemically valid (RDKit)
JTVAE without validity checking: 93.5%

3 Research frontiers

Latent graph
inference

Deep
generative

graph models

Modeling implicit/hidden structure
Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)

Neural Relational Inference with GNNs
Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)

Discrete (Gumbel softmax trick)
[Jang et al., 2016, Maddison et al., 2016]

NRI evaluation - toy data
Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)

NRI evaluation - CMU Motion Capture (e.g. walking)
Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)

NRI applications - causal discovery
Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data, Lowe et al. 2020

Challenges and future work in graph neural nets

● Problems of neighborhood aggregation / message passing
○ Theoretical relation to WL isomorphism, simple graph convolutions;

tree-structured computation graphs → bounded power
○ Oversmoothing (residual/gated updates help, but don’t solve)
○ See recent work from Max Welling e.g. Natural Graph Networks

● Scalable, stable generative models
● Learning on large,evolving data
● (Mostly) assume a graph structure is provided as input

○ Neural Relational Inference is a preliminary work here, also see Pointer
Graph Networks (Velickovic et al., NeurIPS 2020)

● Multi-modal and cross-modal learning (e.g. sequence2graph)

Recurrent Neural Networks (RNNs) + Generalization
1. How do you read/listen/understand/write? Can machines do that?

– Context matters: characters, words, letters, sounds, completion, multi-modal
– Predicting next word/image: from unsupervised learning to supervised learning

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs
– Primitives: hidden state, memory of previous experiences, limitations of HMMs
– RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse

3. Vanishing gradients, Long-Short-Term Memory (LSTM), initialization
– Key idea: gated input/output/memory nodes, model choose to forget/remember
– Example: online character recognition with LSTM recurrent neural network

4. Transformer modules
– Learning temporal relationships without unrolling and without RNNs
– Encoder/Decoder output architecture and multi-head attention modeule

5. Graph Neural Networks
– Applications: social, brain, chemical drug design, graphics, transport, knowledge
– Define each node’s computation graph, from its neighborhood
– Classical network/graph problems: Node/graph classification, link prediction
– Research frontiers: deep generative models, latent graph inferences

Appendix

Graph Transformers (Li et al. 2018)
A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, I Polosukhin, Attention is all you need (2017)

Value

Query Key

Attn in 1-hop
neighborhood

● We can frame transformers as a special case of GCNs when the
graph is fully connected.

● The neighborhood is the whole graph.

Graph Transformers (Li et al. 2018)
A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, I Polosukhin, Attention is all you need (2017)

A brief history of graph neural nets

Original GNN
Gori et al. (2005)

“Spatial methods”

GG-NN
Li et al.

(ICLR 2016)

Spectral
Graph CNN

Bruna et al.
(ICLR 2015)

ChebNet
Defferrard et al.

(NIPS 2016)

MoNet
Monti et al.

(CVPR 2017)

Neural MP
Gilmer et al.
(ICML 2017)

GraphSAGE
Hamilton et al.
(NIPS 2017)

Relation Nets
Santoro et al.
(NIPS 2017)

Programs as
Graphs

Allamanis et al.
(ICLR 2018) NRI

Kipf et al.
(ICML 2018)GAT

Veličković et al.
(ICLR 2018)

“Spectral methods”
“DLon graphs explosion”

Other early work:
● Duvenaud et al. (NIPS 2015)
● Dai et al. (ICML 2016)
● Niepert et al. (ICML 2016)
● Battaglia et al. (NIPS 2016)
● Atwood &Towsley (NIPS 2016)
● Sukhbaatar et al. (NIPS 2016)

MoNet & Relational GCN for modeling (multi-)relational data
Monti et al. (CVPR 2017), Schlichtkrull & Kipf et al. (ESWC 2018)

Relational GCN update rule

Semi-supervised classification on graphs

Toy example (semi-supervised learning)
from tkipf.github.io/graph-convolutional-networks

Latent space dynamics for 300 training iterations. Labeled
nodes are highlighted.

GCN model manages to linearly separate classes with
only 1 training example per class, no node features!

http://tkipf.github.io/graph-convolutional-networks/

Tree decoding
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)

Topological Prediction

Label Prediction

Training

+ Teacher forcing -- replace topological and label
predictions with ground truth at train time

Generalizing the space of ML approaches on graphs
Machine Learning on Graphs: A Model and Comprehensive Taxonomy (Chami et al., preprint)

GraphEDM model

	6.874, 6.802, 20.390, 20.490, HST.506�Computational Systems Biology
Deep Learning in the Life Sciences
	Recurrent Neural Networks (RNNs) + Generalization
	1a. What do you hear and why?
	Context matters
	Recurrent Neural Networks (RNNs) + Generalization
	2a. Encoding time
	Getting targets when modeling sequences
	Memoryless models for sequences
	Beyond memoryless models
	Linear Dynamical Systems (engineers love them!)
	Hidden Markov Models (computer scientists love them!)
	A fundamental limitation of HMMs
	2b. Recurrent Neural Networks (RNNs)
	Recurrent neural networks
	Do generative models need to be stochastic?
	Recurrent neural networks
	The equivalence between feedforward nets and recurrent nets
	2c. Alternative architectures �for RNNs
	Different RNN remembering architectures
	2d. Back-propagation through time (BPTT)
	Reminder: Backpropagation with weight constraints
	Backpropagation through time
	Getting targets when modeling sequences
	Recurrent Neural Networks (RNNs) + Generalization
	3a. Remembering for �longer time periods
	Four effective ways to increase length of memory
	Long Short Term Memory (LSTM)
	Implementing a memory cell in a neural network
	RNN LSTM Backpropagation through a memory cell
	Reading cursive handwriting
	Demonstration of online handwriting recognition by an RNN with Long Short Term Memory (from Alex Graves)
	3b. Initialization
	Initialization: Dealing with boundary cases
	Teaching signals for recurrent networks
	What the network learns
	The backward pass is linear
	The problem of exploding or vanishing gradients
	Recurrent Neural Networks (RNNs) + Generalization
	4. Attention and �transformer models
	Encoder/Decoder/Attention modules in Transformer
	Recurrent Neural Networks (RNNs) + Generalization
	5. Graph Neural Networks
	Sources / Further Reading
	Outline
	Outline
	The ML canon lives in grid world
	But there’s so much more...
	But there’s so much more...
	Cool applications (in the last year!)
	Setup
	Naive approach
	1 Graph neural nets
	Aggregating neighbors
	Slide Number 54
	Slide Number 55
	Aggregating neighbors
	Graph convolutional networks (GCNs)
Kipf & Welling (ICLR 2017), related previous works: Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)
	GCN classiﬁcation on citation networks
Kipf & Welling, Semi-Supervised Classiﬁcation with Graph Convolutional Networks, ICLR 2017
	GNNs with edge embeddings (Neural message passing)
Battaglia et al. (NIPS 2016), Gilmer et al. (ICML 2017), Kipf et al. (ICML 2018)
	Graph neural nets with attention
Monti et al. (CVPR 2017), Hoshen (NIPS 2017), Veličković et al. (ICLR 2018)
	2 Application to “classical” network problems
	One ﬁts all: Classiﬁcation and link prediction with GNNs/GCNs
	3 Research frontiers
	Unsupervised learning with GNNs
	Unsupervised learning with GNNs
	Unsupervised learning takeaways
A Modular Framework for Unsupervised Graph Representation Learning, Daza & Kipf (WIP)
	Likelihood-based (deep) graph generation
	Likelihood-based (deep) graph generation
	Likelihood-based (deep) graph generation
	Likelihood-based (deep) graph generation
	Slide Number 71
	How should we decode the graph?
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)
	How should we decode the graph?
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)
	High-level approach
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)
	Focus on the cool part: tree decoding
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)
	Tree decoding
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)
	Tree decoding
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)
	Tree decoding
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)
	Tree decoding
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)
	JTVAE evaluation
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)
	3 Research frontiers
	Modeling implicit/hidden structure
Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)
	Neural Relational Inference with GNNs
Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)
	NRI evaluation - toy data
Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)
	NRI evaluation - CMU Motion Capture (e.g. walking)
Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)
	NRI applications - causal discovery
Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data, Lowe et al. 2020
	Challenges and future work in graph neural nets
	Recurrent Neural Networks (RNNs) + Generalization
	Appendix
	Graph Transformers (Li et al. 2018)
A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, I Polosukhin, Attention is all you need (2017)
	Graph Transformers (Li et al. 2018)
A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, I Polosukhin, Attention is all you need (2017)
	A brief history of graph neural nets
	MoNet & Relational GCN for modeling (multi-)relational data
Monti et al. (CVPR 2017), Schlichtkrull & Kipf et al. (ESWC 2018)
	Semi-supervised classiﬁcation on graphs
	Toy example (semi-supervised learning)
from tkipf.github.io/graph-convolutional-networks
	Tree decoding
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)
	Generalizing the space of ML approaches on graphs
Machine Learning on Graphs: A Model and Comprehensive Taxonomy (Chami et al., preprint)

