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Recurrent Neural Networks (RNNs) + Generalization
1. How do you read/listen/understand/write? Can machines do that? 

– Context matters: characters, words, letters, sounds, completion, multi-modal
– Predicting next word/image: from unsupervised learning to supervised learning

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs
– Primitives: hidden state, memory of previous experiences, limitations of HMMs
– RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse

3. Vanishing gradients, Long-Short-Term Memory (LSTM), initialization
– Key idea: gated input/output/memory nodes, model choose to forget/remember
– Example: online character recognition with LSTM recurrent neural network

4. Transformer modules
– Learning temporal relationships without unrolling and without RNNs
– Encoder/Decoder output architecture and multi-head attention modeule

5. Graph Neural Networks
– Applications: social, brain, chemical drug design, graphics, transport, knowledge
– Define each node’s computation graph, from its neighborhood
– Classical network/graph problems: Node/graph classification, link prediction
– Research frontiers: deep generative models, latent graph inferences



1a. What do you hear and why?



Context matters

Phonemic 
restoration

Top-down
processing

Adults: 200 ms delay max disruption. 
Children: 500 ms

https://www.sciencedaily.com/releases/2018/11/181129142352.htm

https://youtu.be/PWGeUztTkRA?t=35

Hearing lips and seeing voices 
(McGurk, MacDonald, Nature 1976)

Split class into 4 groups: (1) close your 
eyes, (2) look left, (3) middle, (4) right

Delayed typing: Google Docs, zoom 
video screen sharing, slow computer

https://www.sciencedaily.com/releases/2018/11/181129142352.htm
https://youtu.be/PWGeUztTkRA?t=35
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2a. Encoding time



Getting targets when modeling sequences
•When applying machine learning to sequences, we often want to turn an input 
sequence into an output sequence that lives in a different domain.

– E. g. turn a sequence of sound pressures into a sequence of word identities.

•When there is no separate target sequence, we can get a teaching signal by trying to 
predict the next term in the input sequence. 

– The target output sequence is the input sequence with an advance of 1 step.
– This seems much more natural than trying to predict one pixel in an image 

from the other pixels, or one patch of an image from the rest of the image.
– For temporal sequences there is a natural order for the predictions.

•Predicting the next term in a sequence blurs the distinction between supervised and 
unsupervised learning.

– It uses methods designed for supervised learning, but it doesn’t require a 
separate teaching signal.



Memoryless models for sequences

• Autoregressive models          
Predict the next term in a  
sequence from a fixed number of 
previous terms using “delay taps”.

• Feed-forward neural nets        
These generalize autoregressive 
models by using one or more 
layers of non-linear hidden units. 
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Beyond memoryless models

• If we give our generative model some hidden state, and if we give 
this hidden state its own internal dynamics, we get a much more 
interesting kind of model.
– It can store information in its hidden state for a long time.
– If the dynamics is noisy and the way it generates outputs from its 

hidden state is noisy, we can never know its exact hidden state.
– The best we can do is to infer a probability distribution over the 

space of hidden state vectors.
• This inference is only tractable for two types of hidden state model.



Linear Dynamical Systems (engineers love them!)

• These are generative models. They have a real-
valued hidden state that cannot be observed 
directly. 
– The hidden state has linear dynamics with 

Gaussian noise and produces the observations 
using a linear model with Gaussian noise.

– There may also be driving inputs.
• To predict the next output (so that we can shoot 

down the missile) we need to infer the hidden 
state. 
– A linearly transformed Gaussian is a Gaussian. So 

the distribution over the hidden state given the data 
so far is Gaussian. It can be computed using 
“Kalman filtering”. 
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Hidden Markov Models (computer scientists love them!)

• Hidden Markov Models have a discrete one-
of-N hidden state. Transitions between states 
are stochastic and controlled by a transition 
matrix. The outputs produced by a state are 
stochastic. 
– We cannot be sure which state produced a 

given output. So the state is “hidden”.
– It is easy to represent a probability distribution 

across N states with N numbers.
• To predict the next output we need to infer the 

probability distribution over hidden states.
– HMMs have efficient algorithms for 

inference and learning.
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A fundamental limitation of HMMs
• Consider what happens when a hidden Markov model generates 

data.
– At each time step it must select one of its hidden states. So with N 

hidden states it can only remember log(N) bits about what it generated 
so far.

• Consider the information that the first half of an utterance contains 
about the second half:
– The syntax needs to fit (e.g. number and tense agreement).
– The semantics needs to fit. The intonation needs to fit.
– The accent, rate, volume, and vocal tract characteristics must all fit.

• All these aspects combined could be 100 bits of information that the 
first half of an utterance needs to convey to the second half. 2^100 
is big!



2b. Recurrent Neural Networks 
(RNNs)



Recurrent neural networks
• RNNs are very powerful, because they 

combine two properties:
– Distributed hidden state that allows 

them to store a lot of information 
about the past efficiently.

– Non-linear dynamics that allows 
them to update their hidden state in 
complicated ways.

• With enough neurons and time, RNNs 
can compute anything that can be 
computed by your computer. 
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Do generative models need to be stochastic?

• Linear dynamical systems and 
hidden Markov models are 
stochastic models.
– But the posterior probability 

distribution over their 
hidden states given the 
observed data so far is a 
deterministic function of the 
data.

• Recurrent neural networks are 
deterministic. 
– So think of the hidden state 

of an RNN as the 
equivalent of the 
deterministic probability 
distribution over hidden 
states in a linear dynamical 
system or hidden Markov 
model.



Recurrent neural networks

• What kinds of behaviour can RNNs exhibit?
– They can oscillate. Good for motor control?
– They can settle to point attractors. Good for retrieving memories?
– They can behave chaotically. Bad for information processing?
– RNNs could potentially learn to implement lots of small programs 

that each capture a nugget of knowledge and run in parallel, 
interacting to produce very complicated effects.

• But the computational power of RNNs makes them very hard to train.
– For many years we could not exploit the computational power of 

RNNs despite some heroic efforts (e.g. Tony Robinson’s speech 
recognizer).



The equivalence between feedforward nets and recurrent 
nets

w1 w4

w2 w3
w1  w2  W3     W4

time=0

time=2

time=1

time=3

Assume that there is a time 
delay of 1 in using each 
connection.

The recurrent net is just a 
layered net that keeps 
reusing the same weights.

w1  w2  W3     W4

w1  w2  W3     W4



2c. Alternative architectures 
for RNNs



Different RNN remembering architectures

Recurrent network with no outputs

o: output, y: target, L: loss
Memory: h(t-1) h(t)

o: output, y: target, L: loss
Memory: o(t-1) h(t) . Only train sequentially

Single output 
after entire 
sequence

Teacher-forcing: train from y and x in parallel



2d. Back-propagation through 
time (BPTT)



Reminder: Backpropagation with weight 
constraints

• It is easy to modify the 
backprop algorithm to 
incorporate linear constraints 
between the weights.

• We compute the gradients as 
usual, and then modify the 
gradients so that they satisfy 
the constraints.
– So if the weights started off 

satisfying the constraints, 
they will continue to satisfy 
them. 21
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Backpropagation through time

• We can think of the recurrent net as a layered, feed-forward 
net with shared weights and then train the feed-forward net 
with weight constraints.

• We can also think of this training algorithm in the time domain: 
– The forward pass builds up a stack of the activities of all 

the units at each time step. 
– The backward pass peels activities off the stack to 

compute the error derivatives at each time step. 
– After the backward pass we add together the derivatives at 

all the different times for each weight.
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– This seems much more natural than trying to predict one pixel in an image 

from the other pixels, or one patch of an image from the rest of the image.
– For temporal sequences there is a natural order for the predictions.

•Predicting the next term in a sequence blurs the distinction between supervised and 
unsupervised learning.

– It uses methods designed for supervised learning, but it doesn’t require a 
separate teaching signal.
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3a. Remembering for 
longer time periods



Four effective ways to increase length of memory

• Long Short Term Memory                
Make the RNN out of little 
modules that are designed to 
remember values for a long time. 

• Hessian Free Optimization: Deal 
with the vanishing gradients 
problem by using a fancy 
optimizer that can detect 
directions with a tiny gradient but 
even smaller curvature.
– The HF optimizer ( Martens & 

Sutskever, 2011) is good at 
this.

• Echo State Networks:  Initialize the 
inputhidden and hiddenhidden and 
outputhidden connections very 
carefully so that the hidden state has a 
huge reservoir of weakly coupled 
oscillators which can be selectively driven 
by the input.
– ESNs only need to learn the 

hiddenoutput connections.
• Good initialization with momentum    

Initialize like in Echo State Networks, but 
then learn all of the connections using 
momentum.



Long Short Term Memory (LSTM)

• Hochreiter & Schmidhuber 
(1997) solved the problem of 
getting an RNN to remember 
things for a long time (like 
hundreds of time steps). 

• They designed a memory cell 
using logistic and linear units 
with multiplicative interactions. 

• Information gets into the cell 
whenever its “write” gate is on.

• The information stays in the 
cell so long as its “keep” gate 
is on.

• Information can be read from 
the cell by turning on its “read” 
gate.



Implementing a memory cell in a neural network

To preserve information for a long time in 
the activities of an RNN, we use a circuit 
that implements an analog memory cell.
– A linear unit that has a self-link with a 

weight of 1 will maintain its state.
– Information is stored in the cell by 

activating its write gate. 
– Information is retrieved by activating 

the read gate.
– We can backpropagate through this 

circuit because logistics are have nice 
derivatives.

output to rest 
of RNN

input from 
rest of RNN

read 
gate

write 
gate

keep 
gate

1.73



RNN LSTM Backpropagation through a memory cell
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Reading cursive handwriting

• This is a natural task for an 
RNN.

• The input is a sequence of 
(x,y,p) coordinates of the tip of 
the pen, where p indicates 
whether the pen is up or down.

• The output is a sequence of 
characters.

• Graves & Schmidhuber (2009) 
showed that RNNs with LSTM 
are currently the best systems 
for reading cursive writing.
– They used a sequence of 

small images as input 
rather than pen 
coordinates.



Demonstration of online handwriting recognition by an RNN with 
Long Short Term Memory (from Alex Graves)

• Row 1:  Shows when characters are 
recognized.
– It never revises its output so 

difficult decisions are more 
delayed.

• Row 2:  Shows the states of a subset 
of the memory cells.
– Notice how they get reset when it 

recognizes a character.

• Row 3:  Shows the writing. The net 
sees the x and y coordinates.
– Optical input actually works a bit 

better than pen coordinates.
• Row 4:  Shows the gradient 

backpropagated all the way to the x 
and y inputs from the currently most 
active character.
– This lets you see which bits of the 

data are influencing the decision.
https://youtu.be/9T2X6WRUwFU?t=2791

https://youtu.be/9T2X6WRUwFU?t=2791


3b. Initialization



Initialization: Dealing with boundary cases

• We need to specify the initial activity state of all the hidden and output 
units. 

• We could just fix these initial states to have some default value like 0.5.
• But it is better to treat the initial states as learned parameters.
• We learn them in the same way as we learn the weights.

– Start off with an initial random guess for the initial states.
– At the end of each training sequence, backpropagate through time all 

the way to the initial states  to get the gradient of the error function 
with respect to each initial state.

– Adjust the initial states by following the negative gradient.



Teaching signals for recurrent networks

• We can specify targets in several 
ways:
– Specify desired final activities 

of all the units
– Specify desired activities of all 

units for the last few steps
• Good for learning attractors
• It is easy to add in extra error 

derivatives as we 
backpropagate.

– Specify the desired activity of a 
subset of the units.

• The other units are input or 
hidden units.

w1    w2 W3      W4

w1    w2 W3      W4

w1    w2 W3      W4



What the network learns

• It learns four distinct patterns of 
activity for the 3 hidden units. 
These patterns correspond to the 
nodes in the finite state 
automaton.
– Do not confuse units in a 

neural network with nodes in a 
finite state automaton. Nodes 
are like activity vectors.

– The automaton is restricted to 
be in exactly one state at 
each time. The hidden units 
are restricted to have exactly 
one vector of activity at each 
time.

• A recurrent network can emulate 
a finite state automaton, but it is 
exponentially more powerful. 
With N hidden neurons it has 2^N 
possible binary activity vectors    
(but only N^2 weights)
– This is important when the 

input stream has two separate 
things going on at once. 

– A finite state automaton 
needs to square its number of 
states.

– An RNN needs to double its   
number of units.



The backward pass is linear

• There is a big difference between the 
forward and backward passes.

• In the forward pass we use squashing
functions (like the logistic) to prevent the 
activity vectors from exploding.

• The backward pass, is completely linear. If 
you double the error derivatives at the final 
layer, all the error derivatives will double. 
– The forward pass determines the slope 

of the linear function used for 
backpropagating through each neuron.



The problem of exploding or vanishing gradients

• What happens to the magnitude of 
the gradients as we 
backpropagate through many 
layers? 
– If the weights are  small, the 

gradients shrink 
exponentially.

– If the weights are big the 
gradients grow 
exponentially.

• Typical feed-forward neural nets 
can cope with these exponential 
effects because they only have a 
few hidden layers.

• In an RNN trained on long 
sequences (e.g. 100 time steps) 
the gradients can easily explode 
or vanish.
– We can avoid this by 

initializing the weights very 
carefully.

• Even with good initial weights, its 
very hard to detect that the 
current target output depends on 
an input from many time-steps 
ago.
– So RNNs have difficulty 

dealing with long-range 
dependencies.

– Can use ideas for residual 
networks (ResNet), pass info 
from the input to far away 
nodes
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– Predicting next word/image: from unsupervised learning to supervised learning
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– Encoder/Decoder output architecture and multi-head attention modeule

5. Graph Neural Networks
– Applications: social, brain, chemical drug design, graphics, transport, knowledge
– Define each node’s computation graph, from its neighborhood
– Classical network/graph problems: Node/graph classification, link prediction
– Research frontiers: deep generative models, latent graph inferences



4. Attention and 
transformer models



Encoder/Decoder/Attention modules in Transformer

Q: matrix, query, vector representation of one word in sequence
K: all keys, vector representations of all words in sequence
V: values, vector representations of all words in sequence

Encoder, decoder, multi-head attention module: V = same word sequence as Q
Attention module = V different from Q, uses encoder and decoder sequences

Time explicitly encoded
No need for RNN structure

Training setup: Predict next work each time, decoder shifted by one

Transforms one sequence into another sequence, using full context for each
(e.g. sentence translation, or any other sequential task)
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5. Graph Neural Networks

Guest lecture by Neil Band



Sources /Further Reading

● Adapted from

○ Thomas Kipf’s presentations (Cambridge CompBio, IPAM UCLA)

○ Graph Neural Networks by Xavier Bresson (Guest lecture in Yann LeCun’s NYU DL course)

○ CS224 Machine Learning on Graphs by Jure Leskovec (Course @ Stanford)

○ Junction Tree VariationalAutoencoder (Wengong Jin, ICML 2018)

● Mining and Learning with Graphs at Scale (Google Graph Mining team @ NIPS 2020)

● Graph Representation Learning (Book by Will Hamilton,2020)

● Thomas Kipf’s thesis (Deep Learning with Graph Structured Representations, 2020)

● Further reading: Petar Veličković’s thread of resources 

Jraph! (GNNs with Jax)

http://tkipf.github.io/misc/SlidesCambridge.pdf
http://helper.ipam.ucla.edu/publications/glws4/glws4_15546.pdf
https://atcold.github.io/pytorch-Deep-Learning/en/week13/13-1/
http://web.stanford.edu/class/cs224w/
https://qdata.github.io/deep2Read/talks2019/Extra19s/TkachJunctionTreeVAE.pdf
https://gm-neurips-2020.github.io/master-deck.pdf
https://www.cs.mcgill.ca/%7Ewlh/grl_book/files/GRL_Book.pdf
https://dare.uva.nl/search?identifier=1b63b965-24c4-4bcd-aabb-b849056fa76d
https://twitter.com/petarv_93/status/1306689702020382720?lang=en
https://github.com/deepmind/jraph
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Outline
1. Motivation

2. Graph neural nets (GNNs)
Introduction and history

3. GNNs for classic network problems

4. Research frontiers

Node 
classification

Graph 
classification

...
Link prediction

Latent graph 
inference

Deep 
generative 

graph models

With applications in...

● Chemical synthesis
● Interacting systems (physical,  

multi-agent, biological)
● Causal inference
● Program induction



The ML canon lives in grid world

● Images, volumes,videos lie on
2D,3D,2D + 1 grids

● Sentences,words, speech lie on
1D grids

● Deep neural nets on grids exploit:
- translation equivariance (weight sharing)
- hierarchical compositionality



But there’s so much more...



But there’s so much more...



Cool applications (in the last year!)
DeepMind /Google Maps ETA improvements across world SuperGlue (Magic Leap) feature matching

Large Hadron Collider real-time collision analysis MaSIF predicts protein-protein interactions

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks
https://github.com/magicleap/SuperGluePretrainedNetwork
https://news.fnal.gov/2020/09/the-next-big-thing-the-use-of-graph-neural-networks-to-discover-particles/
https://www.nature.com/articles/s41592-019-0666-6


Setup



Naive approach
1. Join adjacency matrix and node features

2. Plug them into a deep neural net

● Issues with this idea:

○ O(N) parameters → 6 billion nodes in Pinterest

○ Not applicable to graphs of different sizes → graphs change!

○ Not invariant to node ordering → expensive sorting



1 Graph neural nets



Aggregating neighbors



Recap: CNN (on grids) as message passing

Single CNNlayer with  
3x3 filter

Animation by Vincent Dumoulin



Aggregating neighbors

NNs



Aggregating neighbors



Graph convolutional networks (GCNs)
Kipf & Welling (ICLR 2017), related previous works: Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)



GCN classification on citation networks
Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017



GNNs with edge embeddings (Neural message passing)
Battaglia et al. (NIPS 2016), Gilmer et al. (ICML 2017), Kipf et al. (ICML 2018)



Graph neural nets with attention
Monti et al. (CVPR 2017), Hoshen (NIPS 2017), Veličković et al. (ICLR 2018)



2 Application to “classical”  
network problems

Node 
classification

Graph 
classification

Link prediction



One fits all: Classification and link prediction with GNNs/GCNs



3 Research frontiers

Latent graph 
inference

Deep 
generative 

graph models



Unsupervised learning with GNNs



Unsupervised learning with GNNs

● Sampling strategies
e.g. positive: neighbor; negative: random node

● Encoder variants
GCN, GAT,MLP,Lookup table

● Node representations
Geometry of latent space, distributional embeddings (e.g. Hyperbolic GCNN, Chami et al. 2019)

● Score functions
Inner/bilinear product, local vs. global (e.g. Deep Graph Infomax, Velickovic et al. 2019)

● Loss
(Cross-entropy,MSE, exponential)



Unsupervised learning takeaways
A Modular Framework for Unsupervised Graph Representation Learning, Daza & Kipf (WIP)



Likelihood-based (deep) graph generation

(Variational) 
Graph Auto-Encoders

Kipf &Welling  
(NIPS BDL 2016)

Graphite
Grover et al.

(NIPS BDL 2017)

Graph2Gauss
Bojchevski &
Gunneman 
(ICLR 2018)

Hyperspherical VAEs
Davidson et al.

(UAI 2018)

VGAE generative model (with ELBO loss)



Likelihood-based (deep) graph generation



Likelihood-based (deep) graph generation



Likelihood-based (deep) graph generation

Learning Graphical  
State Transitions

Johnson 
(ICLR 2017)

Deep Generative  
Models of Graphs

Li et al.  
(arXiv 2018)

GraphVAE
Simonovsky et al.

(arXiv 2018)

GraphRNN
You et al.

(ICML 2018)



Graph generation for drug discovery
Junction Tree VariationalAutoencoder, Jin et al. (ICML 2018)

Aim:generate molecules with high potency



How should we decode the graph?
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

● Not every graph is chemically valid

● Invalid intermediate states → hard to validate

● Many intermediate states (i.e. long sequences) → difficult to train (Li et al. 2018)



How should we decode the graph?
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

● Shorter action sequence

● Easy to check validity as we construct

● Vocabulary size: ~800 for 250K  
molecules

Tree Decomposition



High-level approach
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)



Focus on the cool part: tree decoding
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)



Tree decoding
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)



Tree decoding
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)

Topological Prediction:Should we add a child node, or backtrack?

Label Prediction:What do we label the new node?



Tree decoding
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)

Topological Prediction:Should we add a child node, or backtrack?

Label Prediction:What do we label the new node?



Tree decoding
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)

Functional group featuresEncodes state of subtree thus far



JTVAE evaluation
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

3 Bayesian Optimization

1. Train a VAE, associate each molecule with  
latent vector (mean of encoding distribution)

2. Train a sparse GP to predict target chemical  
property y(m) given the latent representation

3. Use property predictor for BO

1 Molecule Reconstruction

100 forward passes per molecule, report portion of  
decoded molecules identical to input

2 Molecule Validity

Random samples from latent z, report portion that  
are chemically valid (RDKit)
JTVAE without validity checking: 93.5%



3 Research frontiers

Latent graph 
inference

Deep 
generative 

graph models



Modeling implicit/hidden structure
Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)



Neural Relational Inference with GNNs
Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)

Discrete (Gumbel softmax trick) 
[Jang et al., 2016, Maddison et al., 2016]



NRI evaluation - toy data
Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)



NRI evaluation - CMU Motion Capture (e.g. walking)
Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)



NRI applications - causal discovery
Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data, Lowe et al. 2020



Challenges and future work in graph neural nets

● Problems of neighborhood aggregation / message passing
○ Theoretical relation to WL isomorphism, simple graph convolutions; 

tree-structured computation graphs → bounded power
○ Oversmoothing (residual/gated updates help, but don’t solve)
○ See recent work from Max Welling e.g. Natural Graph Networks

● Scalable, stable generative models
● Learning on large,evolving data
● (Mostly) assume a graph structure is provided as input

○ Neural Relational Inference is a preliminary work here, also see Pointer 
Graph Networks (Velickovic et al., NeurIPS 2020)

● Multi-modal and cross-modal learning (e.g. sequence2graph)



Recurrent Neural Networks (RNNs) + Generalization
1. How do you read/listen/understand/write? Can machines do that? 

– Context matters: characters, words, letters, sounds, completion, multi-modal
– Predicting next word/image: from unsupervised learning to supervised learning

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs
– Primitives: hidden state, memory of previous experiences, limitations of HMMs
– RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse

3. Vanishing gradients, Long-Short-Term Memory (LSTM), initialization
– Key idea: gated input/output/memory nodes, model choose to forget/remember
– Example: online character recognition with LSTM recurrent neural network

4. Transformer modules
– Learning temporal relationships without unrolling and without RNNs
– Encoder/Decoder output architecture and multi-head attention modeule

5. Graph Neural Networks
– Applications: social, brain, chemical drug design, graphics, transport, knowledge
– Define each node’s computation graph, from its neighborhood
– Classical network/graph problems: Node/graph classification, link prediction
– Research frontiers: deep generative models, latent graph inferences



Appendix



Graph Transformers (Li et al. 2018)
A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, I Polosukhin, Attention is all you need (2017)

Value

Query Key

Attn in 1-hop  
neighborhood



● We can frame transformers as a special case of GCNs when the
graph is fully connected.

● The neighborhood is the whole graph.

Graph Transformers (Li et al. 2018)
A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, I Polosukhin, Attention is all you need (2017)



A brief history of graph neural nets

Original GNN
Gori et al. (2005)

“Spatial methods”

GG-NN
Li et al.

(ICLR 2016)

Spectral 
Graph CNN

Bruna et al.  
(ICLR 2015)

ChebNet
Defferrard et al.

(NIPS 2016)

MoNet
Monti et al.  

(CVPR 2017)

Neural MP
Gilmer et al.  
(ICML 2017)

GraphSAGE
Hamilton et al.  
(NIPS 2017)

Relation Nets
Santoro et al.  
(NIPS 2017)

Programs as  
Graphs

Allamanis et al.
(ICLR 2018) NRI

Kipf et al.  
(ICML 2018)GAT

Veličković et al.  
(ICLR 2018)

“Spectral methods”
“DLon graphs explosion”

Other early work:
● Duvenaud et al. (NIPS 2015)
● Dai et al. (ICML 2016)
● Niepert et al. (ICML 2016)
● Battaglia et al. (NIPS 2016)
● Atwood &Towsley (NIPS 2016)
● Sukhbaatar et al. (NIPS 2016)



MoNet & Relational GCN for modeling (multi-)relational data
Monti et al. (CVPR 2017), Schlichtkrull & Kipf et al. (ESWC 2018)

Relational GCN update rule



Semi-supervised classification on graphs



Toy example (semi-supervised learning)
from tkipf.github.io/graph-convolutional-networks

Latent space dynamics for 300 training iterations. Labeled 
nodes are highlighted.

GCN model manages to linearly separate classes with 
only 1 training example per class, no node features!

http://tkipf.github.io/graph-convolutional-networks/


Tree decoding
Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)

Topological Prediction

Label Prediction

Training

+ Teacher forcing -- replace topological and label  
predictions with ground truth at train time



Generalizing the space of ML approaches on graphs
Machine Learning on Graphs: A Model and Comprehensive Taxonomy (Chami et al., preprint)

GraphEDM model
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