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Recurrent Neural Networks (RNNs) + Generalization

1. How do you read/listen/understand/write? Can machines do that?
— Context matters: characters, words, letters, sounds, completion, multi-modal
— Predicting next word/image: from unsupervised learning to supervised learning

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs
— Primitives: hidden state, memory of previous experiences, limitations of HMMs
— RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse

3. Vanishing gradients, Long-Short-Term Memory (LSTM), initialization
— Key idea: gated input/output/memory nodes, model choose to forget/remember
— Example: online character recognition with LSTM recurrent neural network

4. Transformer modules
— Learning temporal relationships without unrolling and without RNNs
— Encoder/Decoder output architecture and multi-head attention modeule

5. Graph Neural Networks
— Applications: social, brain, chemical drug design, graphics, transport, knowledge
— Define each node’s computation graph, from its neighborhood
— Classical network/graph problems: Node/graph classification, link prediction
— Research frontiers: deep generative models, latent graph inferences



1a. What do you hear and why?



Context matters

Top-down
processing
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Hearing lips and seeing voices
(McGurk, MacDonald, Nature 1976)
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"When we listen to someone talking, the change in our brain's
processing from not caring what kind of sound it is to recognizing it
as a word happens surprisingly early," said Simon. "In fact, this
happens pretty much as soon as the linguistic information
becomes available."

When it is engaging in speech perception, the brain's auditory
cortex analyzes complex acoustic patterns to detect words that
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Adults: 200 ms delay max disruption.
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hat sounds signal language most frequently, the brain can predict
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Delayed typing: Google Docs, zoom
video screen sharing, slow computer

localized bilaterally in the brain's superior temporal lobes --

involves recognizing an intermediate, phonetic level of sound.
https://www.sciencedaily.com/releases/2018/11/181129142352.htm



https://www.sciencedaily.com/releases/2018/11/181129142352.htm
https://youtu.be/PWGeUztTkRA?t=35

Recurrent Neural Networks (RNNs) + Generalization

1. How do you read/listen/understand/write? Can machines do that?
— Context matters: characters, words, letters, sounds, completion, multi-modal
— Predicting next word/image: from unsupervised learning to supervised learning

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs
— Primitives: hidden state, memory of previous experiences, limitations of HMMs
— RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse

3. Vanishing gradients, Long-Short-Term Memory (LSTM), initialization
— Key idea: gated input/output/memory nodes, model choose to forget/remember
— Example: online character recognition with LSTM recurrent neural network

4. Transformer modules
— Learning temporal relationships without unrolling and without RNNs
— Encoder/Decoder output architecture and multi-head attention modeule

5. Graph Neural Networks
— Applications: social, brain, chemical drug design, graphics, transport, knowledge
— Define each node’s computation graph, from its neighborhood
— Classical network/graph problems: Node/graph classification, link prediction
— Research frontiers: deep generative models, latent graph inferences



2a. Encoding time



Getting targets when modeling sequences

‘When applying machine learning to sequences, we often want to turn an input
sequence into an output sequence that lives in a different domain.

— E. g. turn a sequence of sound pressures into a sequence of word identities.

*\WWhen there is no separate target sequence, we can get a teaching signal by trying to
predict the next term in the input sequence.

— The target output sequence is the input sequence with an advance of 1 step.

— This seems much more natural than trying to predict one pixel in an image
from the other pixels, or one patch of an image from the rest of the image.

— For temporal sequences there is a natural order for the predictions.

*Predicting the next term in a sequence blurs the distinction between supervised and
unsupervised learning.

— It uses methods designed for supervised learning, but it doesn’t require a
separate teaching signal.



Memoryless models for sequences

Autoregressive models

Predict the next term in a
sequence from a fixed number of
previous terms using “delay taps”.

Feed-forward neural nets

These generalize autoregressive
models by using one or more
layers of non-linear hidden units.
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Beyond memoryless models

If we give our generative model some hidden state, and if we give
this hidden state its own internal dynamics, we get a much more
interesting kind of model.

— It can store information in its hidden state for a long time.

— If the dynamics is noisy and the way it generates outputs from its
hidden state is noisy, we can never know its exact hidden state.

— The best we can do is to infer a probability distribution over the
space of hidden state vectors.

This inference is only tractable for two types of hidden state model.



Linear Dynamical Systems (engineers love them!)

These are generative models. They have a real-
valued hidden state that cannot be observed
directly.

— The hidden state has linear dynamics with

Gaussian noise and produces the observations
using a linear model with Gaussian noise.

— There may also be driving inputs.

To predict the next output (so that we can shoot
down the missile) we need to infer the hidden
state.
— Alinearly transformed Gaussian is a Gaussian. So
the distribution over the hidden state given the data

so far is Gaussian. It can be computed using
“Kalman filtering”.
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Hidden Markov Models (computer scientists love them!)

Hidden Markov Models have a discrete one-
of-N hidden state. Transitions between states
are stochastic and controlled by a transition
matrix. The outputs produced by a state are
stochastic.
— We cannot be sure which state produced a
given output. So the state is “hidden”.
— ltis easy to represent a probability distribution
across N states with N numbers.
To predict the next output we need to infer the
probability distribution over hidden states.

— HMMs have efficient algorithms for
inference and learning.
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A fundamental limitation of HMMs

Consider what happens when a hidden Markov model generates
data.

— At each time step it must select one of its hidden states. So with N
hidden states it can only remember log(N) bits about what it generated
so far.

Consider the information that the first half of an utterance contains
about the second half:

— The syntax needs to fit (e.g. number and tense agreement).

— The semantics needs to fit. The intonation needs to fit.

— The accent, rate, volume, and vocal tract characteristics must all fit.
All these aspects combined could be 100 bits of information that the

first half of an utterance needs to convey to the second half. 2*100
is big!



2b. Recurrent Neural Networks
(RNNSs)



Recurrent neural networks

RNNs are very powerful, because they
combine two properties:

— Distributed hidden state that allows
them to store a lot of information
about the past efficiently.

— Non-linear dynamics that allows
them to update their hidden state in
complicated ways.

With enough neurons and time, RNNs
can compute anything that can be
computed by your computer.
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Do generative models need to be stochastic?

« Linear dynamical systemsand < Recurrent neural networks are

hidden Markov models are deterministic.
stochastic models. — So think of the hidden state
— But the posterior probability of an RNN as the

distribution over their equivalent of the
hidden states given the deterministic probability
observed data so far is a distribution over hidden
deterministic function of the states in a linear dynamical
data. system or hidden Markov

model.



Recurrent neural networks

« What kinds of behaviour can RNNs exhibit?
— They can oscillate. Good for motor control?
— They can settle to point attractors. Good for retrieving memories?
— They can behave chaotically. Bad for information processing?

— RNNs could potentially learn to implement lots of small programs
that each capture a nugget of knowledge and run in parallel,
interacting to produce very complicated effects.

« But the computational power of RNNs makes them very hard to train.

— For many years we could not exploit the computational power of
RNNs despite some heroic efforts (e.g. Tony Robinson’s speech
recognizer).



The equivalence between feedforward nets and recurrent

nets
w1
time=3 O O
w 2 W 4
w2
time=2 O O
Assume that there is a time w 2 W 4
delay of 1 in using each
connection.
The recurrent net is just a time=1 O O
layered net that keeps W 2 W 4

reusing the same weights.
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2c. Alternative architectures
for RNNs



Different RNN remembering architectures
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2d. Back-propagation through
time (BPTT)



Reminder: Backpropagation with weight
constraints

It is easy to modify the
backprop algorithm to
incorporate linear constraints
between the weights.

We compute the gradients as
usual, and then modify the
gradients so that they satisfy
the constraints.

— So if the weights started off
satisfying the constraints,
they will continue to satisfy
them.

To constrain: wy=w,

we need: Aw =Aw,

) oF
compute: — and —
aWI 8W2
E OF
use ‘ + ‘ for wy, and w,

0W1 8W2



Backpropagation through time

We can think of the recurrent net as a layered, feed-forward
net with shared weights and then train the feed-forward net
with weight constraints.

We can also think of this training algorithm in the time domain:

— The forward pass builds up a stack of the activities of all
the units at each time step.

— The backward pass peels activities off the stack to
compute the error derivatives at each time step.

— After the backward pass we add together the derivatives at
all the different times for each weight.



Getting targets when modeling sequences

‘When applying machine learning to sequences, we often want to turn an input
sequence into an output sequence that lives in a different domain.

— E. g. turn a sequence of sound pressures into a sequence of word identities.

*\WWhen there is no separate target sequence, we can get a teaching signal by trying to
predict the next term in the input sequence.

— The target output sequence is the input sequence with an advance of 1 step.

— This seems much more natural than trying to predict one pixel in an image
from the other pixels, or one patch of an image from the rest of the image.

— For temporal sequences there is a natural order for the predictions.

*Predicting the next term in a sequence blurs the distinction between supervised and
unsupervised learning.

— It uses methods designed for supervised learning, but it doesn’t require a
separate teaching signal.



Recurrent Neural Networks (RNNs) + Generalization

1. How do you read/listen/understand/write? Can machines do that?
— Context matters: characters, words, letters, sounds, completion, multi-modal
— Predicting next word/image: from unsupervised learning to supervised learning

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs
— Primitives: hidden state, memory of previous experiences, limitations of HMMs
— RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse

3. Vanishing gradients, Long-Short-Term Memory (LSTM), initialization
— Key idea: gated input/output/memory nodes, model choose to forget/remember
— Example: online character recognition with LSTM recurrent neural network

4. Transformer modules
— Learning temporal relationships without unrolling and without RNNs
— Encoder/Decoder output architecture and multi-head attention modeule

5. Graph Neural Networks
— Applications: social, brain, chemical drug design, graphics, transport, knowledge
— Define each node’s computation graph, from its neighborhood
— Classical network/graph problems: Node/graph classification, link prediction
— Research frontiers: deep generative models, latent graph inferences



3a. Remembering for
longer time periods



Four effective ways to increase length of memory

Long Short Term Memory

Make the RNN out of little
modules that are designed to
remember values for a long time.

Hessian Free Optimization: Deal
with the vanishing gradients
problem by using a fancy
optimizer that can detect
directions with a tiny gradient but
even smaller curvature.

— The HF optimizer ( Martens &
Sutskever, 2011) is good at
this.

Echo State Networks: Initialize the
input->hidden and hidden—>hidden and
output->hidden connections very
carefully so that the hidden state has a
huge reservoir of weakly coupled
oscillators which can be selectively driven
by the input.

— ESNs only need to learn the

hidden—->output connections.

Good initialization with momentum
Initialize like in Echo State Networks, but
then learn all of the connections using
momentum.



Long Short Term Memory (LSTM)

Hochreiter & Schmidhuber
(1997) solved the problem of
getting an RNN to remember
things for a long time (like
hundreds of time steps).

They designed a memory cell
using logistic and linear units
with multiplicative interactions.

Information gets into the cell
whenever its “write” gate is on.

The information stays in the
cell so long as its “keep” gate
is on.

Information can be read from
the cell by turning on its “read”
gate.



Implementing a memory cell in a neural network

To preserve information for a long time in
the activities of an RNN, we use a circuit
that implements an analog memory cell.

A linear unit that has a self-link with a
weight of 1 will maintain its state.

Information is stored in the cell by
activating its write gate.

Information is retrieved by activating
the read gate.

We can backpropagate through this
circuit because logistics are have nice
derivatives.

input from
rest of RNN

output to rest
of RNN




RNN LSTM Backpropagation through a memory cell
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Reading cursive handwriting

This is a natural task for an
RNN.

The input is a sequence of
(x,y,p) coordinates of the tip of
the pen, where p indicates

whether the pen is up or down.

The output is a sequence of
characters.

Graves & Schmidhuber (2009)
showed that RNNs with LSTM
are currently the best systems
for reading cursive writing.

— They used a sequence of
small images as input
rather than pen
coordinates.



Demonstration of online handwriting recognition by an RNN with
Long Short Term Memory (from Alex Graves)

Row 1: Shows when characters are
recognized.

— It never revises its output so
difficult decisions are more

delayed.
T s R T s TR, T ‘.J' = Row 2: Shows the states of a subset
_ s B ..:-LL..L"’..EI:. ""_':"‘ %2 of the memory cells.
—'L;-;-wc.‘_..ﬁ.m'%?;m-.ﬂ.-:-;.- w.,_-;:; ¢ — Notice how they get reset when it
= i i st e - :
: e e =3;-.._ — recognizes a character.

. — ———

:1—11—._.}

e = u-‘-.-h-——-—-g— -‘..—hx_ﬁ_ﬂ-_-p-pp— -

_—7- e - y -

B Row 3: Shows the writing. The net

. '&L sees the x and y coordinates.
s le. ﬁfwwx Cr LM % — Optical input actually works a bit
s e

better than pen coordinates.

Row 4: Shows the gradient
backpropagated all the way to the x
_'f & and y inputs from the currently most

17
active character.
— This lets you see which bits of the
data are influencing the decision.

https://youtu.be/9T2X6WRUWFU?t=2791



https://youtu.be/9T2X6WRUwFU?t=2791

3b. Initialization



Initialization: Dealing with boundary cases

We need to specify the initial activity state of all the hidden and output
units.

We could just fix these initial states to have some default value like 0.5.
But it is better to treat the initial states as learned parameters.
We learn them in the same way as we learn the weights.

— Start off with an initial random guess for the initial states.

— At the end of each training sequence, backpropagate through time all
the way to the initial states to get the gradient of the error function
with respect to each initial state.

— Adjust the initial states by following the negative gradient.



Teaching signals for recurrent networks

» We can specify targets in several
Q O O
— Specify desired final activities (;Vz V'\>3\ (/V
of all the units /<
— Specify desired activities of all / N
units for the last few steps Q O
» Good for learning attractors ol
- ltis easy to add in extra error w W2 W QV
derivatives as we /
backpropagate.
— Specify the desired activity of a O O
subset of the units. \J\
* The other units are input or w Wz W <V4
hidden units. /




What the network learns

It learns four distinct patterns of
activity for the 3 hidden units.
These patterns correspond to the
nodes in the finite state
automaton.

— Do not confuse units in a
neural network with nodes in a
finite state automaton. Nodes
are like activity vectors.

— The automaton is restricted to
be in exactly one state at
each time. The hidden units
are restricted to have exactly
one vector of activity at each
time.

A recurrent network can emulate
a finite state automaton, but it is
exponentially more powerful.
With N hidden neurons it has 2N
possible binary activity vectors
(but only N*2 weights)

— This is important when the
Input stream has two separate
things going on at once.

— Afinite state automaton
needs to square its number of
states.

— An RNN needs to double its
number of units.



The backward pass is linear

* There is a big difference between the
forward and backward passes.

* |In the forward pass we use squashing
functions (like the logistic) to prevent the
activity vectors from exploding.

 The backward pass, is completely linear. If
you double the error derivatives at the final
layer, all the error derivatives will double.

— The forward pass determines the slope
of the linear function used for
backpropagating through each neuron.




The problem of exploding or vanishing gradients

What happens to the magnitude of

the gradients as we
backpropagate through many
layers?
— If the weights are small, the
gradients shrink
exponentially.

— If the weights are big the
gradients grow
exponentially.

Typical feed-forward neural nets
can cope with these exponential
effects because they only have a
few hidden layers.

In an RNN trained on long
sequences (e.g. 100 time steps)
the gradients can easily explode
or vanish.

— We can avoid this by
initializing the weights very
carefully.

Even with good initial weights, its
very hard to detect that the
current target output depends on
an input from many time-steps
ago.

— S0 RNNs have difficulty
dealing with long-range
dependencies.

— Can use ideas for residual
networks (ResNet), pass info
from the input to far away
nodes



Recurrent Neural Networks (RNNs) + Generalization

1. How do you read/listen/understand/write? Can machines do that?
— Context matters: characters, words, letters, sounds, completion, multi-modal
— Predicting next word/image: from unsupervised learning to supervised learning

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs
— Primitives: hidden state, memory of previous experiences, limitations of HMMs
— RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse

3. Vanishing gradients, Long-Short-Term Memory (LSTM), initialization
— Key idea: gated input/output/memory nodes, model choose to forget/remember
— Example: online character recognition with LSTM recurrent neural network

4. Transformer modules
— Learning temporal relationships without unrolling and without RNNs
— Encoder/Decoder output architecture and multi-head attention modeule

5. Graph Neural Networks
— Applications: social, brain, chemical drug design, graphics, transport, knowledge
— Define each node’s computation graph, from its neighborhood
— Classical network/graph problems: Node/graph classification, link prediction
— Research frontiers: deep generative models, latent graph inferences



4 . Attention and
transformer models



Encoder/Decoder/Attention modules in Transformer

Output
Probabilities Scaled Dot-Product Attention Multi-Head Attention

MatMul

Add & Norm !t
Feed Scaled Dot-Product h
Forward Attention

| | |

I

Linear Linear Linear
Multi-Head
s Attenti
Forward 7 e}n =l Nx Q K v
% v K Q
N Add & Norm
~—>|_Add & Norm | Masked
Multi—Hlead Multi-Head
Attention Attention Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
At 2 At 2 attention layers running in parallel.

\———— J — ) T
Positional Positional / = —_—
Encoding ? @ Encoding Attenthn(Q, K, V) = SOftmax V

Input Output \/ dk
Embedding Embedding . . .
1 ‘I Q: matrix, query, vector representation of one word in sequence
Inputs Outputs K: all keys, vector representations of all words in sequence
(shifted right) V: values, vector representations of all words in sequence

Figure 1: The Transformer - model architecture.
Encoder, decoder, multi-head attention module: V = same word sequence as Q
Attention module =V different from Q, uses encoder and decoder sequences

Time explicitly encoded

Training setup: Predict next work each time, decoder shifted by one
No need for RNN structure

Transforms one sequence into another sequence, using full context for each
(e.g. sentence translation, or any other sequential task)



Recurrent Neural Networks (RNNs) + Generalization

1. How do you read/listen/understand/write? Can machines do that?
— Context matters: characters, words, letters, sounds, completion, multi-modal
— Predicting next word/image: from unsupervised learning to supervised learning

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs
— Primitives: hidden state, memory of previous experiences, limitations of HMMs
— RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse

3. Vanishing gradients, Long-Short-Term Memory (LSTM), initialization
— Key idea: gated input/output/memory nodes, model choose to forget/remember
— Example: online character recognition with LSTM recurrent neural network

4. Transformer modules

— Learning temporal relationships without unrolling and without RNNs
— Encoder/Decoder output architecture and multi-head attention modeule

5. Graph Neural Networks
— Applications: social, brain, chemical drug design, graphics, transport, knowledge
— Define each node’s computation graph, from its neighborhood
— Classical network/graph problems: Node/graph classification, link prediction
— Research frontiers: deep generative models, latent graph inferences




5. Graph Neural Networks

'~ | Guest lecture by Neil Band



Sources / Further Reading

Adapted from

o  Thomas Kipf’s presentations (Cambridge CompBio, IPAM UCLA)

o  Graph Neural Networks by Xavier Bresson (Guest lecture in Yann LeCun’s NYU DL course)

o  (S224 Machine Learning on Graphs by Jure Leskovec (Course @ Stanford)

o Junction Tree Variational Autoencoder (Wengong Jin, ICML 2018)

Mining and Learning with Graphs at Scale (Google Graph Mining team @ NIPS 2020)

Graph Representation Learning (Book by Will Hamilton, 2020)

Thomas Kipf’s thesis (Deep Learning with Graph Structured Representations, 2020)

Further reading: Petar Velickovic’s thread of resources

raph! (GNNs with Jax



http://tkipf.github.io/misc/SlidesCambridge.pdf
http://helper.ipam.ucla.edu/publications/glws4/glws4_15546.pdf
https://atcold.github.io/pytorch-Deep-Learning/en/week13/13-1/
http://web.stanford.edu/class/cs224w/
https://qdata.github.io/deep2Read/talks2019/Extra19s/TkachJunctionTreeVAE.pdf
https://gm-neurips-2020.github.io/master-deck.pdf
https://www.cs.mcgill.ca/%7Ewlh/grl_book/files/GRL_Book.pdf
https://dare.uva.nl/search?identifier=1b63b965-24c4-4bcd-aabb-b849056fa76d
https://twitter.com/petarv_93/status/1306689702020382720?lang=en
https://github.com/deepmind/jraph
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I. Motivation

2  Graph neural nets (GNNs)
Introduction and history

3. GNNs for classic network problems

Node G.r'?\ph .
classification classification

Link prediction

4. Research frontiers

Deep
generative
graph models

Latent graph
inference

With applications in...

Chemical synthesis
Interacting systems (physical,
multi-agent, biological)

e (Causal inference

e Program induction



The ML canon lives in grid world

e Images, volumes, videos lie on
2D 3D 2D + | grids

e Sentences, words, speech lie on
ID grids

e Deep neural nets on grids exploit:
- translation equivariance (weight sharing)
- hierarchical compositionality




But theres so much more...
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But theres so much more...

Social networks

Scene understanding
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Cool applications (in the last year!)

DeepMind / Google Maps ETA improvements across world SuperGlue (Magic Leap) feature matching
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MaSIF predicts protein-protein interactions
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https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks
https://github.com/magicleap/SuperGluePretrainedNetwork
https://news.fnal.gov/2020/09/the-next-big-thing-the-use-of-graph-neural-networks-to-discover-particles/
https://www.nature.com/articles/s41592-019-0666-6

Setup

@ Craphs & are defined by :
@ Vertices V
o Edges F

@ Adjacency matrix A

@ Graph features :
@ Node features : h;, h; (atom type)
o Edge features :h(;; (bond type)

@ Graph features : g (molecule energy)

c R



Naive approach

1. Join adjacency matrix and node features

2. Plug them into a deep neural net

hidden layer 1 hidden layer 2 hidden layer 3

input layer

A B CDE Feat
A 01 1 1 0 1 0 i
Bl /1 o o 1 1 o o ?
¢l 1 0 0 1 o0 0 1 ]
D 11 1 0 1 1 1
ELo 1010 10
e Issues with this idea: @Pinterest Ty
o O(N) parameters — 6 billion nodes in Pinterest v N
: % SUCCESSFUL
o  Not applicable to graphs of different sizes — graphs change! k ‘b RECOMMENDATION

o  Not invariant to node ordering — expensive sorting
Source pin

BAD RECOMMENDATION



| Graph neural nets



Aggregating neighbors

ldea: Node’s neighborhood defines a
computation graph

H ' H HL label
. P |
1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Learn how to propagate information across the
graph to compute node features



Recap: CNN (on grids) as message passing

hg

h
Sinele CNNI| h O\‘Q’/O Update for a single pixel:
ingle ayer wit
3x3 filter oY - Transform messages individually W h;

O‘\O - Add everythingup » . W;h;
O 6 h;

h; € R? are (hidden layer) activations of a pixel/node

Full update:

Animation by Vincent Dumoulin hz(ll—‘_l) — 0 (W(()l)h(()l) _|_ ng)hgl) _|_ e _l_ Wg)hg))



Aggregating neighbors

Key idea: Generate node embeddings based
on local network neighborhoods

NNs

TARGET NODE

l

INPUT GRAPH



Aggregating neighbors

= Intuition: Network neighborhood defines a
computation graph

Every node defines a computation
graph based on its neighborhood!

INPUT GRAPH
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Graph convolutional networks (GCNs)

Kipf & Welling (ICLR 2017), related previous works: Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update Desirable properties:
undirected graph: for node in red: « Weight sharing over all locations
* Invariance to permutations

O O /O * Linear complexity O(E)
O O 8 » Applicable both in transductive

O O O/\o

and inductive settings

Limitations:

* Requires gating mechanism /

Update (i+1) D xr(D) L () xr (D) residual connections for depth

rule: h; =o | h;"Wy’ + Z ;hj Wi « Only indirect support for edge features
JEN;

Scalability: subsample messages [Hamilton et al., NIPS 2017] M : neighbor indices  C;; : norm. constant

(fixed/trainable)



GCN classification on citation networks

Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

Input: Citation networks (nodes are papers, edges are citation links,
optionally bag-of-words features on nodes) \

Target: Paper category (e.g. stat.ML, cs.LG, ...)

Model: 2-layer GCN Z = f(X, A) = softmax(fl ReLU (AXW@) W(l))

Classification results (accuracy) ===
Method Citeseer Cora Pubmed NELL 1
ManiReg [3] 60.1 59.5 70.7 21.8
SemiEmb [24] 59.6 59.0 Tl:l 26.7
_ e LP [27] 45.3 68.0 63.0 26.5 )y
no input features DeepWalk [18] 43.2 67.2 65.3 58.1 #7
Planetoid* [25] 64.7(26s)  75.7(13s) 77.2(25s) 61.9 (185s) - _
GCN (this paper)  70.3 (7s) 81.5(4s)  79.0(38s) 66.0 (48s) 4 (PGSO SRSl Bl L,

Szlam, Vandergheynst, 2016)



GNNs with edge embeddings (Neural message passing)

Battaglia et al. (NIPS 2016), Gilmer et al. (ICML 2017), Kipf et al. (ICML 2018)

Py Pros:
hs 1) « Support for edge features
hin g * Very flexib_le/_expressive
/ ' parameterization
1® » Supports sparse ops
h4 )

Cons:

* Need to store intermediate
edge-based activations

Formally:  v—e: h(i,j) = fe([hi, hy]) - In practice significantly slower
e—31) * h;- _ fv(ziej\[j h(i7j)) than GCN / self-attention models



Graph neural nets with attention

Monti et al. (CVPR 2017), Hoshen (NIPS 2017), Veli¢kovi¢ et al. (ICLR 2018)
Pros:

» No need to store intermediate
edge-based activation vectors
(when using dot-product attn.)

» Slower than GCNs but faster

softmax

concat/av B
hs i@ than GNNs with edge embeddings
Cons:
R e N » (Most likely) less expressive than
Wi, Wh; GNNs with edge embeddings
[Figure from Veli¢kovié et al. (ICLR 2018)] « Can be more difficult to optimize
| K exp (LeakyReLU (5T [Wﬁiuwﬁj]))
=0 | = ok Wk Qyj = — -
i K kZZI jeZM ij J D ken, €XD (LeakyReLU (E{T [WhZHth]))



2 Application to “classical”
network problems

Node Graph

classification classification Link prediction



One fits all: Classification and link prediction with GNNs/GCNs

Hidden layer

® o
®
o
*—¢
.
e
® o
°
°
*—¢
-
e
® %

Hidden layer

\.

Node classification:

softmax(z
Output ( n)
2 e.g. Kipf & Welling (ICLR 2017)
®
® .ge -
*—d Graph classification:
® ®
* ¢, | softmax()_, zn)
J
e.g. Duvenaud et al. (NIPS 2015
Z =HM\ e

Link prediction:

_ T, .
p(Asj) = o(z; )
Kipf & Welling (NIPS BDL 2016)
“Graph Auto-Encoders”



3 Research frontiers

Deep
generative
graph models

Latent graph
inference



Unsupervised learning with GNNs

Objective: Learn node embeddings for downstream tasks

Most approaches follow a contrastive learning approach:

pos
® |L\

neg

GCN /MLP
N

“\

Graph / sampling Encoder Representation Score Loss




Unsupervised learning with GNNs

A
T : i @
Objective: Learn node embeddings for downstream tasks ﬁ = 3
i i G Sneg
Most approaches follow a contrastive learning approach: \
S
[ ) Sampl]ng Strategies Graph / sampling Encoder Representation Score Loss

e.g. positive: neighbor; negative: random node

Encoder variants
GCN, GAT MLP Lookup table

Node representations
Geometry of latent space, distributional embeddings (e.g. Hyperbolic GCNN, Chami et al. 2019)

Score functions ocal vs. global)
Inner/bilinear product, local vs. global (e.g. Deep Graph Infomax, Velickovic et al. 2019)

Loss
(Cross-entropy, MSE, exponential)



Unsupervised learning takeaways

A Modular Framework for Unsupervised Graph Representation Learning, Daza & Kipf (WIP)
A
. S
pos
® L

Graph / sampling Encoder Representation Score Loss

4

GCN / MLP

Graph-based encoders often improve performance
Neighbor-based scoring (GAE) effective for both link prediction & node classification
Local-global scoring (DGI) especially effective for node classification

Ideal node representation (distributional, hyperspherical, etc.) heavily data-dependent



Likelihood-based (deep) graph generation

Version 1: Generate graph (or predict new links) between known entities

Graph-based autoencoders:
- Encoder: GNN/GCN

- Decoder: Pairwise scoring function

Likelihood-based:
- we have some ground truth graphs

p(A4i) = f(2s,2;) - define likelihood as how well a generated graph
T matches a ground truth graph
eg. p(Ay) =o(z; z;)

N N ’
p(A|Z) =T, T2 p(Aij | 2i25) , with p(Aiy = 1]24,25) = o(z] 2;)
VGAE generative model (with ELBO loss)

(Incomplete) History:

(Variational) . Graph2Gauss :
Graphite P . Hyperspherical VAEs
—— Graph AUtO-EnCOderS | Grover et al. = Bg];f:]ee\;ilgn& = Davidson et al. —
Kipf & Welling (NIPS BDL 2017) u (UA1 2018)

(NIPS BDL 2016) (ICLR 2018)



Likelihood-based (deep) graph generation

Version 2: Generate graphs from scratch (single embedding vector)

h 1 h 2 1 11.1

@Jijiﬂ
i

Sequentially:

S

—_—

Sample + Edge-level RNN

GraphRNN St —_—
Graph-level RNN




Likelihood-based (deep) graph generation

Version 2: Generate graphs from scratch (single embedding vector)
115

O—B

@

@—®

—_—

Sample + Edge-level RNN

hy llg

Sequentially:

GraphRNN Graph-level RNN

Or in a single step:

&

po(Glz)

GraphVAE



Likelihood-based (deep) graph generation

Version 2: Generate graphs from scratch (single embedding vector) Or in a single step:
- " hl llz 113 11,1 115 K
Sequentially: oG D—0) @ -
-1 « )
J O—® | 0@ Al
~|Z E
pe(G|z)
Sample + Edge-level RNN = Fv
GraphRNN Grapmél - i GraphVAE
Learning Graphical Deep Generative
—| StateTransitions  |_ Models of Graphs |_ Sin?orr?oB?IX/A;Eal _— G:(‘ZEZ&TN >
Johnson Li et al. (arXiv 2018) (ICML 2018)

(ICLR 2017) (arXiv 2018)



Graph generation for drug discovery

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

Aim: generate molecules with high potency

4.93 4.45

OO gﬁ oo P

OO 0 Mg

r

4.07 4.04 4.04 4.03



How should we decode the graph?

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

Node by Node

v Valid X Invalid X Invalid X Invalid v/ Valid

e Not every graph is chemically valid
e [nvalid intermediate states — hard to validate

e Many intermediate states (i.e. long sequences) — difficult to train (Li et al. 2018)



How should we decode the graph?

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

GrOUp by GrOUp Functional Groups
CI (07 T PO

\/Va“d \/Va“d \/Va“d Aromat|c rings

Iz

Tree Decomposition

e Shorter action sequence Molecule Junction tree

S e db

|
e Easy to check validity as we construct @ & \ P
e Vocabularysize: ~800 for 250K @ ‘_}
usters
molecules Cl o

N
Cluster label N N NN O O Cl S -
Vocanuiary §] @ @ > O @ I I N G



High-level approach

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

Molecule d Molecular
S /
o v =
Cl
Tree 0 Junction 1
Decomposition | Tree T
S N -

<::::>} ‘o, Clusters
'\_/

Encode
—_—

Encode
—p

Zq

zT

//’
.
Decode

Decode \fj/ﬁj
E—



Focus on the cool part: tree decoding

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

—0

/M
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Tree decoding

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)

Label Prediction

|
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\
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£
/ /
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// ,/
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Tree decoding

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)

1. Topological Prediction @
Message vector IEL I
@)

2. Label Prediction

Topological Prediction: Should we add a child node, or backtrack?

Label Prediction: What do we label the new node?



Tree decoding

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)

(0

Topological Prediction
Backtrack

Topological Prediction: Should we add a child node, or backtrack?

Label Prediction: What do we label the new node?



Tree decoding

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)

h;; = GRU(x;, {hkzi}kENt(z')\j)

I

|

Encodes state of subtree thus far

Functional group features

Label Prediction

HENEEEE NEEEE

Feedforward
NN




JTVAE evaluation

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

Method Reconstruction Validity

CVAE 44.6% 0.7% | Molecule Reconstruction
GVAE 33.7% 1.2% 100 forward passes per molecule, report portion of
SD-VAE 76.2% 43.5% decoded molecules identical to input
GraphVAE - 13.5%
Atom-by-Atom LSTM . 89.2% 2 Molecule Validity
JT-VAE 76.7 % 100.0% Random samples from latent z, report portion that
are chemically valid (RDKit)
JTVAE without validity checking: 93.5%
Method 1st 2nd 3rd 3 Bayesian Optimization
CVAE 1.98 1.42 1.19 1. Train a VAE, associate each molecule with
GVAE 294 7 80 780 latent vector (mean of encoding distribution)
SD-VAE 4.04 3.50 796 2. Train a sparse GP to predict target chemical

property y(m) given the latent representation
JT-VAE 5.30 4.93 4.49 3. Use property predictor for BO




3 Research frontiers

Deep
generative
graph models

Latent graph
inference



Modeling implicit/hidden structure

Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)

S o
/ ®

Observed dynamics Interaction graph



Neural Relational Inference with GNNs

Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)

N o
o o
r | GNN ®- GNN
, -
L) ®
Observe dynamics Interaction graph proposal
x = (x',...,x") z ~ q4(2]x)

Discrete (Gumbel softmax trick)
[Jang et al., 2016, Maddison et al., 2016]

Reconstruct dynamics”

po(x|z)

VAE Objective (ELBO) L =, (,x)[log ps(x|z)] — KL[g¢(z|x)||p(z)]

Reconstruction Regularization



NRI evaluation - toy data

Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)

Table 6.1: Accuracy (in %) of unsupervised interaction recovery.

‘ Springs Kuramoto
Number of objects ‘ 5 10 5 10
Correlation (path) 52.4+0.0 50.4+0.0 | 62.84+0.0 59.3+0.0
Correlation (LSTM) 52.7+0.9 54.9+1.0 | 544405 56.2+0.7

NRI (simulation decoder) | 99.84+0.0 98.2+0.0 - -
NRI (learned decoder) 99.94+0.0 98.4+0.0 | 96.0+0.1 75.7+0.3

W)

MWWV

W]

N

Supervised ‘ 99.9+0.0 98.8+0.0 ‘ YWites Willed
1 d & ST 11000 R
N . R MV 331
821 WWW] 831
. - S TV 31
ol . . B PN . —0.51 \( 1 -054
-2 -1 0 1 -2 -1 0 1 0 50 100 0

Springs (2D) Kuramoto (1D)

Wi Vel

50 100



NRI evaluation - CMU Motion Capture (e.g. walking)

Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)

E 0.0154 — NRI (learned dynjdmic)
s —— NRI (learned static)
rel —=— NRI (full graph)
qé') 0.010{ — NRI (skeleton)
- —— LSTM (single)
£ —— LSTM (joint)
2 0.005
=
©
[}
=
0.000 A

0 20 40
# frames predicted into future

(a) Test MSE comparison (b) Latent graph (left step) (c) Latent graph (right step)

98

(c) Motion capture data



NRI applications - causal discovery

Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data, Lowe et al. 2020

Amortized Causal Discovery Previous Approaches

1
]
I
]
A »
" /.\.\‘ : 3 ( 1 i '.\‘\‘\
X &; "\ X A & X
.‘r_ 5 \\\\ B .-"‘ ! A "%%\ V!
L N \%\.. / | o \ ‘je(\a\ b
i i = =
2 ! R oo
1
) | J— 3
¥ A : W L SAY. -
I x//}( i .'?\/-A’/ /
K\ 1 ! ) | J
T i [ 4
1
’ A : — |,-.‘\
" Q f ‘\. : I ., s @; ,al \)w
“,/‘ "f ; S \[ \J
1
]

Figure 1: Amortized Causal Discovery. We propose to train a single model that infers causal relations across
samples with different underlying causal graphs but shared dynamics. This allows us to generalize across
samples and to improve our performance with additional training data. In contrast, previous approaches fit a new
model for every sample with a different underlying causal graph.



Challenges and future work in graph neural nets

e Problems of neighborhood aggregation / message passing
o Theoretical relation to WL isomorphism, simple graph convolutions;
tree-structured computation graphs — bounded power

o Oversmoothing (residual/gated updates help, but don’t solve)

o See recent work from Max Welling e.g. Natural Graph Networks
Scalable, stable generative models

Learning on large, evolving data
(Mostly) assume a graph structure is provided as input
o Neural Relational Inference is a preliminary work here, also see Pointer
Graph Networks (Velickovic et al., NeurlPS 2020)

e Multi-modal and cross-modal learning (e.g. sequence2graph)



Recurrent Neural Networks (RNNs) + Generalization

1. How do you read/listen/understand/write? Can machines do that?
— Context matters: characters, words, letters, sounds, completion, multi-modal
— Predicting next word/image: from unsupervised learning to supervised learning

2. Encoding temporal context: Hidden Markov Models (HMMs), RNNs
— Primitives: hidden state, memory of previous experiences, limitations of HMMs
— RNN architectures,unrolling,back-propagation-through-time(BPTT),param reuse

3. Vanishing gradients, Long-Short-Term Memory (LSTM), initialization
— Key idea: gated input/output/memory nodes, model choose to forget/remember
— Example: online character recognition with LSTM recurrent neural network

4. Transformer modules
— Learning temporal relationships without unrolling and without RNNs
— Encoder/Decoder output architecture and multi-head attention modeule

5. Graph Neural Networks
— Applications: social, brain, chemical drug design, graphics, transport, knowledge
— Define each node’s computation graph, from its neighborhood
— Classical network/graph problems: Node/graph classification, link prediction
— Research frontiers: deep generative models, latent graph inferences



Appendix



Graph Transformers (Li et al. 2018)

A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, | Polosukhin, Attention is all you need (2017)

Value
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dx1 x4 jeN;  xXd
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- A y (" :l S
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Attnin I-hop / Zg 'eN, exp( )
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Graph Transformers (Li et al. 2018)

A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, | Polosukhin, Attention is all you need (2017)

e We can frame transformers as a special case of GCNs when the
graph is fully connected.
e The neighborhood A/ is the whole graph.

Fully connected graph

dxd

2 , T
pitt — Wt Concat,{;l( ei-‘f A hg) rt1 = Concati, (Softmax(Qng )Ve) Wt
ieN; N:=V nxd d d d
J i & szhfwé HXE Kxn T]XK
. . eXp(éi'{:E) j ¢ . . e
U — qutl’l’laXN ( ) — fcﬁ K*=nh WK N nxn y
ZJ reN; eXp( ) vE— Bt VVXE/ ) XYL]
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A brief history of graph neural nets

‘““Spatial methods”

Original GNN
Gori et al. (2005)

“‘Spectral methods”

Spectral
Graph CNN

Bruna et al.
(ICLR 2015)

GG-NN
Li et al.
(ICLR 2016)

ChebNet

Defferrard et al.

(NIPS 2016)

MoNet
Monti et al.
(CVPR 2017)

Neural MP
Gilmer et al.
(ICML 2017)

Relation Nets
Santoro et al. GraphSAGE

(NIPS 2017) Hamilton et al.
ProgramS as (NIPS 2017)

Graphs
Allamanis et al.

NRI
Kipf et al.
GAT (ICML 2018)
Velickovic et al.
(ICLR 2018)

‘DL on graphs explosion”

Other early work:

Duvenaud et al. (NIPS 2015)
Dai et al. (ICML 2016)
Niepertetal. (ICML 2016)
Battaglia et al. (NIPS 2016)
Atwood & Towsley (NIPS 2016)
Sukhbaatar et al. (NIPS 2016)



MoNet & Relational GCN for modeling (multi-)relational data

Monti et al. (CVPR 2017), Schlichtkrull & Kipf et al. (ESWC 2018)

— rel_1(n) —

rel_1 (out)

- ZZ&@JWh L

r— 1 J EN I rel_N (in)

_ rel N(out) —

;; based on: I I I

* Edge type (Relational GCN)

_____ self-loop ~— self-loop —

Ce

» Auxiliary features (MoNet), e.g. node degree I

Relational GCN update rule



Semi-supervised classification on graphs

Setting:

Some nodes are labeled (black circle)
All other nodes are unlabeled

Task:
Predict node label of unlabeled nodes

Evaluate loss on labeled nodes only:

F
L=-=) > YilnZy

leYL f=1

YV; set of labeled node indices
Y label matrix
7, GCN output (after softmax)



Toy example (semi-supervised learning)

from tkipf.github.io/graph-convolutional-networks

1o}

0.5

0.0+ ‘

-1.0 -0.5 0.0 0.5 1.0

Latent space dynamics for 300 training iterations. Labeled
nodes are highlighted.

GCN model manages to linearly separate classes with
only | training example per class, no node features!


http://tkipf.github.io/graph-convolutional-networks/

Tree decoding

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)

Algorithm 1 Tree decoding at sampling time

Require: Latent representation z
1: Initialize: Tree 7 < ()
2: function SampleTree(i, t)
3:  Set X; < all cluster labels that are chemically com-
patible with node ¢ and its current neighbors.
Set d; < expand with probability p;. > Eq.(11)
if d; = expand and X; # () then
Create a node j and add it to tree 7.
Sample the label of node j from &;  >. Eq.(12)
SampleTree(j,t + 1)
9: endif
10: end function

QR ey e

Topological Prediction

SSRGS (0

(k,it) th
Label Prediction

q; = softmax(U'r(W!zs + Whh;;)) (12)
Training
Lo(T) =, L4 pub) + ) L@y, q)  (13)

+  Teacher forcing -- replace topological and label
predictions with ground truth at train time



Generalizing the space of ML approaches on graphs

Machine Learning on Graphs: A Model and Comprehensive Taxonomy (Chami et al., preprint)
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