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Interpretable Deep Learning

1. Intro to Interpretability
1a. Interpretability definition: Convert implicit NN information to human-interpretable information
1b. Motivation: Verify model works as intended; debug classifier; make discoveries; Right to explanation
1c. Ante-hoc (train interpretable model) vs. Post-hoc (interpret complex model; degree of “locality”)
2. Interpreting Deep Neural Networks
2a. Interpreting Models (macroscopic, understand internals) vs. decisions (microscopic, practical applications)
2b. Interpreting Models: Weight visualization, Surrogate model, Activation maximization, Example-based
2c. Interpreting Decisions:
- Example-based
- Attribution Methods: why are gradients noisy?
- Gradient-based Attribution: SmoothGrad, Interior Gradient
- Backprop-based Attribution: Deconvolution, Guided Backpropagation
3. Evaluating Attribution Methods
3a. Qualitative: Coherence: Attributions should highlight discriminative features / objects of interest
3b. Qualitative: Class Sensitivity: Attributions should be sensitive to class labels
3c. Quantitative: Sensitivity: Removing feature with high attribution = large decrease in class probability
3d. Quantitative: ROAR & KAR. Low class prob cuz image unseen = remove pixels, retrain, measure acc. drop

Slides by Beomsu Kim, KAIST



Previously

» We've seen ways to model X->Y for a
fixed dataset

= But that's not what the world looks like:
* NoY
» Limited samples
 Many related datasets
* Changes over time

= Can we learn the rules which govern how
the real world varies?



Learning Representations



Key idea: Representation learning

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+ RelU + RelU Connected Connected
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. Bird (0)
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‘Modern’ Deep learning: ‘Classical’ Fully-connected
Hierarchical Representation Learning Neural Networks
Feature extraction Classification

In deep learning, the two tasks are coupled:
» the classification task “drives” the feature extraction

» Extremely powerful and general paradigm

= Be creative! The field is still at its infancy!
= New application domains (e.g. beyond images) can have
structure that current architectures do not capture/exploit
=» (Genomics/biology/neuroscience can help
drive development of new architectures



Representation learning without annotations?

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+ RelU + RelU Connected Connected

Boat (1)
Bird (0)

N arget — output)*

X ‘Modern’ Deep learning: 7 ‘Classj ted y
Hierarchical Representat.lon Learning L atent space Netw
Feature extraction representation  Classification

data

Many ideas are possible (and yours could be even better!):

1. Predict the future: RNNs, Video

2. Pretext tasks: predict self, before/after, missing patch, correct rotation,
colorization, up-sampling, multimodal

Compression: Autoencoder (predict self, through clamp), representation z
Capture parameter distribution (variance): Variational Auto-Encoders
Make latent space parameters z meaningful, orthogonal, explicit, tuneable
Train using a second network: GANs - Improve quality of output images
The Sky is the Limit
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Representation learning without annotations?

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+ RelU + RelU Connected Connected

Boat (1)
Bird (0)

N arget — output)*

X ‘Modern’ Deep learning: 7 ‘Classj ted y
Hierarchical Representat.lon Learning L atent space Netw
Feature extraction representation  Classification

data

Many ideas are possible (and yours could be even better!):

1. Predict the future: RNNs, Video

2. Compression: Autoencoder (predict self, through clamp), representation z
3. Pretext tasks: predict self, before/after, missing patch, correct rotation,
colorization, up-sampling, multimodal

Capture parameter distribution (variance): Variational Auto-Encoders
Make latent space parameters z meaningful, orthogonal, explicit, tuneable
Train using a second network: GANs - Improve quality of output images
The Sky is the Limit
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Pretext Tasks



A tour of pretext tasks

Self-supervised learning

e Goal: Learn good representations

e Means: Construct a pretext task
o Don’t care about the pretext task itself
o  Only important it enables learning

Rough pretext task classification

Inferring structure
Transformation prediction
Reconstruction

Exploiting time
Multimodal

Instance classification

Slide Credit: Relja Arandjelovic

—

Training signal
(pretext task)

Processing

Input signal

Don’t care

Useful behaviour
emerges

Often distorts/hides
parts of the signal



Inferring structure
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["Unsupervised visual representation learning by context prediction”, Doersh et al. 15]

Context prediction

Can you guess the spatial configuration for the two pairs of patches?

Question 1:

[ '-unu:;_'
‘ 111 l‘ 6
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["Unsupervised visual representation learning by context prediction”, Doersh et al. 15]

Context prediction

Can you guess the spatial configuration for the two pairs of patches? Much easier if you recognize the object!

Question 1:

B e POt
_ !|_u‘;’|‘;!g Intuition
e The network should learn to
recognize object parts and their
spatial relations

Slide Credit: Relja Arandjelovic



["Unsupervised visual representation learning by context prediction”, Doersh et al. 15]

Context prediction

Classifier

Network Network

Slide Credit: Relja Arandjelovic



Context prediction

Classifier

Slide Credit: Relja Arandjelovic

Pros

Cons

[“Unsupervised visual representation learning by context prediction”, Doersh et al. 15]

(arguably) The first self-supervised method
Intuitive task that should enable learning about object parts

Assumes training images are photographed with canonical

orientations (and canonical orientations exist)

Training on patches, but trying to learn image representations

Networks can “cheat” so special care is needed [discussed later]
o  Further gap between train and eval

Not fine-grained enough due to no negatives from other images
o e.g.noreason to distinguish cat from dog eyes

Small output space - 8 cases (positions) to distinguish?



["Unsupervised learning of visual representations by solving jigsaw puzzles”, Noroozi et al. 17]

Jigsaw puzzles

Divide image into patches and permute them Predict the permutation

Network Classifier

Pros & Cons: Same as for context prediction apart from being harder

Slide Credit: Relja Arandjelovic



Transformation
prediction

90° rotation 270° rotation 180° rotation 0° rotation

Slide Credit: Relja Arandjelovic



[“Unsupervised representation learning by predicting image rotations”, Gidaris et al. 18]

Rotation prediction

Can you guess how much rotated is applied?

12
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[“Unsupervised representation learning by predicting image rotations”, Gidaris et al. 18]

Rotation prediction

Can you guess how much rotated is applied? Much easier if you recognize the content!

90° rotation 270° rotation 1 80° rotation 0° rotation

13
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[“Unsupervised representation learning by predicting image rotations”, Gidaris et al. 18]

Rotation prediction

Label: 180 degrees rotation

180°
O o0°l 270° [ Classification
Loss

Rotation prediction
(confidence scores)

Rotate by a
multiple of
90 degrees

e Very simple to implement and use, while being quite effective

Assumes training images are photographed with canonical orientations (and canonical orientations exist)
Train-eval gap: no rotated images at eval
Not fine-grained enough due to no negatives from other images
o e.g. noreason to distinguish cat from dog
Small output space - 4 cases (rotations) to distinguish [not trivial to increase; see later]

Some domains are trivial e.g. StreetView = just recognize sky
14
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[“AET vs. AED: Unsupervised representation learning by auto-encoding transformations rather than data”, Zhang et al. 19]

Relative transformation prediction

Estimate the transformation between two images. Requires good features

16
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[“AET vs. AED: Unsupervised representation learning by auto-encoding transformations rather than data”, Zhang et al. 19]

Relative transformation prediction

E(x)

—_—

E(t(x))

Pros
e Inline with classical computer vision, e.g. SIFT was developed for matching
Cons

e Train-eval gap: no transformed images at eval

e Not fine-grained enough due to no negatives from other images
o e.g. noreason to distinguish cat from dog

e Questionable importance of semantics vs low-level features (assuming we want semantics)
o Features are potentially not invariant to transformations

|7
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Reconstruction
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[“Extracting and composing robust features with denoising autoencoders”, Vincent et al. 08]

Denoising autoencoders

What is the noise and what is the signal?

Recognizing the digit helps!

Reconstruction
—
loss

Decoder Pros

e Simple classical method
e Apart from representations, we get a denoiser for free

Representation -

Cons

e Train-eval gap: training on noisy data
e Too easy, no need for semantics - low level cues are
sufficient

—  Input signal

19
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[“Context encoders: Feature learning by inpainting”, Pathak et al. 16]

Context encoders

What goes in the middle?

20
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[“Context encoders: Feature learning by inpainting”, Pathak et al. 16]

Context encoders

What goes in the middle? Much easier if you recognize the objects!

Natural language processing (e.g. word2vec, BERT)
All [MASK] have tusks. = All elephants have tusks.

[“Distributed representations of words and phrases and their compositionality”, Mikolov et al. 13]
["BERT: Pre-training of deep bidirectional transformers for language understanding”, Devlin et al. 18] 21
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[“Context encoders: Feature learning by inpainting”, Pathak et al. 16]

Context encoders
Pros
Reconstruction
—  + perceptual e Requires preservation of fine-grained information
loss
Cons

Train-eval gap: no masking at eval

Reconstruction is too hard and ambiguous

Lots of effort spent on “useless” details: exact colour, good boundary,
etc

Decoder

Representation -

Encoder

Mask out

— Input image

22
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[“Colorful image colorization”, Zhang et al. 16]

Colorization

What is the colour of every pixel? Hard if you don’t recognize the object!

24
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Context encoders

Reconstruction
loss

Decoder

Representation -

Encoder

Greyscale

—— Input image

Slide Credit: Relja Arandjelovic

[“Colorful image colorization”, Zhang et al. 16]

Pros
e Requires preservation of fine-grained information
Cons

e Reconstruction is too hard and ambiguous

e Lots of effort spent on “useless” details: exact colour, good
boundary, etc

e Forced to evaluate on greyscale images, losing information

25



[“Split-brain autoencoders: Unsupervised learning by cross-channel prediction”, Zhang et al. 17]

Context encoders = Split-brain encoders

L Grayscale Channel X; Predicted Color Channels X,

.\
P

—

Input Image X Predicted Image X

ab Color Channels X, Predicted Grayscale Channel X; Pros

e Requires preservation of fine-grained information
Cons

e Reconstruction is too hard and ambiguous
e Lots of effort spent on “useless” details: exact colour, good
boundary, etc

e Processes different chunks of the input independently

26
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[“Learning representations by predicting bags of visual words”, Gidaris et al. 20]

Predicting bag-of-words

Extract features: A
use a pre-trained self-supervised convnet ¢(-) assign features to visual words

Bag-of-words reminder

image x feature map
histogram

|
lp..[0

' vocabulary of CEIEe -
visual words Bag-of-Words (BoW)

k means clustering

e Loses low-level details

e Encodes mid/high-level concepts
27
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[“Learning representations by predicting bags of visual words”, Gidaris et al. 20]

Predicting bag-of-words

v N B

orlglnal image x perturbed image x

randomly perturb

Pre—;rained
o(:)
Bag-of-Visual-Words feature
target y(x) of x predict: vector
fc + softmax pooling BoWNet
A —— S —
DDDD D o(-)
D D . |:| ......
& NG 4

Generate BoW targets Predict BoW targets from perturbed image

Inspired by NLP: targets = discrete concepts (words)

28
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[“Learning representations by predicting bags of visual words”, Gidaris et al. 20]

Predicting bag-of-words

4 N/ N\

original image x perturbed image x

randomly perturb

Pre-trained
®(:)
i Pros
Bag-of-Visual-Words feature e Representations are invariant to desired
target y(x) of x predict: vector .
% sofmax pooling |  BowNet transformations
DD | ep—e— ing ski

= () e Learn contextual reasoning skills
L EEmE - IR 4 o Infer words of missing image regions
Generate BoW targets Predict BoW targets from perturbed image Gons

e Requires bootstrapping from another network

o e.g. hard to learn more fine-grained features
e Pitfalls of BoW

o (partial) loss of spatial information

o  SpatialBoW not improving

29
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Instance

classification

Slide Credit: Relja Arandjelovic



["Discriminative unsupervised feature learning with exemplar convolutional neural networks”, Dosovitskiy et al. 14]

Exemplar ConvNets

This m is a distorted crop extracted from an image, which of these crops has the same source image?

31
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["Discriminative unsupervised feature learning with exemplar convolutional neural networks”, Dosovitskiy et al. 14]

Exemplar ConvNets

This m is a distorted crop extracted from an image, which of these crops has the same source image?

Easy if robust to the desired transformations (geometry and colour)

32
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["Discriminative unsupervised feature learning with exemplar convolutional neural networks”, Dosovitskiy et al. 14]

Exemplar ConvNets

Classification into K
“classes”
(source images)

Pros

e Representations are invariant to desired transformations

Network : : : : : :
e Requires preservation of fine-grained information

Cons

e Choosing the augmentations is important
e Exemplar based: images of the same class or instance are negatives
o Nothing prevents it from focusing on the background
e Original formulation is not scalable (number of “classes” = dataset size)

Augmentation

Input image

33
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[“Representation Learning with Contrastive Predictive Coding”, van den Oord et al. 18]

Exemplar ConvNets via metric learning

Classification
[1,0,0,.] [1560:0:.] [0,1,0,.]

Exemplar ConvNets are not scalable (number of “classes” = number of
training images)

Reformulate in terms of metric learning Network
Traditional losses such as contrastive or triplet [“Multi-task self-supervised

visual learning”, Doersch and Zisserman 17], ["HowTolOOM: Learning a text-video embedding by
watching hundred million narrated video clips”, Miech et al. 19]

L4 Recently popular: InfoNCE [“Representation Learning with Contrastive Predictive Coding”,
van den Oord et al. 18]

o Used by many recent methods: CPC, AMDIM, SimCLR, MoCo, ..

Slide Credit: Relja Arandjelovic



[“Representation Learning with Contrastive Predictive Coding”, van den Oord et al. 18]

Noise Contrastive Estimation

Classification

InfoNCE loss (a specific popular version) [.0,0,.] [1.0,0,.] [0.1,0,.]

e For query, positive and negative:

exp(¢” p)

exp(q'p) + X nen(q) exXP(a' 1) m \

e Like a ranking loss: (g,p) should be close, (g,n) should be far

Network Network

— log

e Animplementation
logits = [¢" p, ¢ n1,q" no, .| = q* [p,n1,na, ] Metric learning
labels = [1,0,0,..]

InfoNCE = cross_entropy(softmax(logits),labels)

e Squint and see classification loss
o Replace [p,n1,ng,..] with [w,, wy,, Wy, ..]
o Like classification with weight=exemplars

e More details and perspectives in the next part

Slide Credit: Relja Arandjelovic



[“Representation Learning with Contrastive Predictive Coding”, van den Oord et al. 18]
["Data-efficient image recognition with contrastive prediction coding”, Hénaff et al. 19]

Contrastive predictive coding (CPC)

Roughly: Context Prediction + Exemplar ConvNets

e From a patch, predict representations of other patches below it
e Use InfoNCE loss to contrast the (predictions, correct, negatives)
o Negatives: other patches from the same image and other images

gar - output
Jenc - output
e, N e S S [ C
e -—”'J e ”}t!
,::::ii;f/:, P I P o i _-__f_,,ﬂ-f"' . J///
64 px - :://// / -/,/./'/.
=# /'//’/ T RE+2| e o
B v = e 7" Predictions
Lt F Zt%|—4 < —
50% overlap |
256 px: :
\4 input image |

Slide Credit: Relja Arandjelovic
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[“Representation Learning with Contrastive Predictive Coding”, van den Oord et al. 18]
["Data-efficient image recognition with contrastive prediction coding”, Hénaff et al. 19]

Contrastive predictive coding (CPC)

Jar - Ooutput
Jenc = output
ety  a
P o (ft
g i
64 px [ a8 ’_,'/_/'/'
T TRl T
,"/ Zt+3| |1 1 -~ Predictions
= b Ztl+4 o i =
50% overlap |
256 px: :
\ / input image | Pros
Generic framework easily applied to images, video, audio, NLP, ..
Exemplar: Requires preservation of fine-grained information
Context prediction: Should enable learning about object parts
Cons

Exemplar based: images of the same class or instance are negatives
Train-eval gap: training on patches, evaluating on images
Assumes training images are photographed with canonical
orientations (and canonical orientations exist)

e Somewhat slow training due to dividing into patches

37
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Exploiting time

Slide Credit: Relja Arandjelovic



[“Learning features by watching objects move”, Pathak et al. 16]

Watching objects move

Which pixels will move?

39
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[“Learning features by watching objects move”, Pathak et al. 16]

Watching objects move

Which pixels will move? Easy if we can segment objects!

40
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[“Learning features by watching objects move”, Pathak et al. 16]

Watching objects move

Mask prediction
(pixel-wise logistic
regression)

Network

Pros
Emerging behaviour: segmentation
e No train-eval gap
Cons
e “Blind spots”: stationary objects
e Potential focus on large salient objects
e Depends on an external motion segmentation algorithm
e Cannot be extended to temporal nets (pretext task would be trivial)

4
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[“Tracking emerges by colorizing videos”, Vondrick et al. 18]

Tracking by colorization

Given an earlier frame, colourize the new one.

42
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[“Tracking emerges by colorizing videos”, Vondrick et al. 18]

Tracking by colorization

Given an earlier frame, colourize the new one. Easy if everything can be tracked!

43
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[“Tracking emerges by colorizing videos”, Vondrick et al. 18]

Tracking by colorization

Reference Frame Input Frame

Reference Colors Target Colors

Pros
e Emerging behaviour: tracking, matching, optical flow, segmentation
Cons

e Low level cues are effective - less emphasis on semantics
e Forced to evaluate on greyscale frames, losing information

44
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[“Shuffle and learn: Unsupervised learning using temporal order verification”, Misra et al. 16]

Temporal ordering

Is this sequence of frames correctly ordered?

45
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[“Shuffle and learn: Unsupervised learning using temporal order verification”, Misra et al. 16]

Temporal ordering

Is this sequence of frames correctly ordered? Easy if we recognize the action and human pose!

46
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[“Shuffle and learn: Unsupervised learning using temporal order verification”, Misra et al. 16]

Temporal ordering

Classifier

e No train-eval gap
e Learns to recognize human pose

Cons

e Mostly focuses on human pose - not always sufficient
e Questionable if it can be extended to temporal nets
(potentially task becomes too easy)

Extensions

e N frames with one randomly placed - find it

[“Self-supervised video representation learning with odd-one-out networks”, Fernando et al. 16]

e Ranking loss: embeddings should be similar for frames close in time and dissimilar for far away frames

[“Time-contrastive networks: Self-supervised learning from video”, Sermanet et al. 17]

47
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Multimodal

Slide Credit: Relja Arandjelovic



[“Look, Listen and Learn”, Arandjelovié et al. 17]

Audio-visual correspondence

Does the sound go with the image?

O

49
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[“Look, Listen and Learn”, Arandjelovié et al. 17]

Audio-visual correspondence

Does the sound go with the image? Easy if we recognize what is happening in both the frame and the audio

X

O

50
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[“Look, Listen and Learn”, Arandjelovié et al. 17]

Audio-visual correspondence

positive

Video! <
-
)

Video? <
N

ol

Slide Credit: Relja Arandjelovic



[“Look, Listen and Learn”, Arandjelovié et al. 17]

Audio-visual correspondence

Binary classification loss

Classifier

Vision Audio

Network Network

["Objects that sound”, Arandjelovié et al. 18]

Pros
Natural different views of the training data, no need for augmentations
No train-eval gap
Representations in both modalities for free

Cons

“Blind spots”: not everything makes a sound
Exemplar based: videos of the same class or instance are negatives
Small output space - two cases (corresponds or not)

o Can be improved by contrastive approaches 52
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["End-to-end learning of visual representations from uncurated instructional videos”, Miech et al. 19]

Leveraging narration

Does the narration go with the video?

(Text obtained from automatic speech recognition)

" % o gL A ) ) ] s /
; e 2y ; Y S N 5 « SR )
- = . _ g . = = 1. s 4 < -b__ o - .- -_'I—.‘ . 3 r o =
s RN = - e 4 - < % % A L d
9 . . - / - ; £ - .
- 3 e Yy . < £\ - - A
\V £ 7 = \ g ; . r R G 4

53
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["End-to-end learning of visual representations from uncurated instructional videos”, Miech et al. 19]

Leveraging narration

Does the narration go with the video? Easy if we recognize what is happening in the video and narrations

(Text obtained from automatic speech recognition)

Complication compared to the audio-visual case:

e Narration and visual content are less aligned

54
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["End-to-end learning of visual representations from uncurated instructional videos”, Miech et al. 19]

Leveraging narration

Multiple instance learning extension of the NCE loss

—d - o%l.zg sander as you're going over this entire

1
|_a «| Y area otherwise the end all product won't
MIL-NCE
NCE q4— Y be as flat as you would like it so just

I—a -« y2 be aware now once you have them enjoy

4
—-a «| Y | your sanding down your one on round

Pros
Natural different views of the training data, no need for augmentations
No train-eval gap
Representations in both modalities for free

Cons

“Blind spots”: not everything is mentioned in narrations
Exemplar based: videos of the same class or instance are negatives
Assumes a single language, potentially non-trivial to extend to more 55
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Representation learning without annotations?

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+ RelU + RelU Connected Connected

Boat (1)
Bird (0)

arget — output)*

X ‘Modern’ Deep learning: 7 ‘Classj ted y
Hierarchical Representat.lon Learning L atent space Netw
Feature extraction representation  Classification

data

Many ideas are possible (and yours could be even better!):

1. Predict the future: RNNs, Video

2. Compression: Autoencoder (predict self, through clamp), representation z
3. Pretext tasks: predict self, before/after, missing patch, correct rotation,
colorization, up-sampling, multimodal

Capture parameter distribution (variance): Variational Auto-Encoders
Make latent space parameters z meaningful, orthogonal, explicit, tuneable
Train using a second network: GANs - Improve quality of output images
The Sky is the Limit

N o oA



Auto-Encoders



Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation

from unlabeled training data

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality
reduction?

A: Want features to

<

Originally: Linear +
nonlinearity (sigmoid)

Later: Deep, fully-connected
Later: ReLU CNN

T Encoder ’%ﬁ

capture meaningful Features
factors of variation in
data

Input data

L

ol MRS Iy

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung

a7l < [

May 9, 2019
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Some background first: Autoencoders

How to learn this feature representation?

Train such that features can be used to reconstruct original data

“Autoencoding” - encoding itself

Originally: Linear +
nonlinearity (sigmoid)

Later: Deep, fully-connected
Later: ReLU CNN (upconv)

Reconstructed
iInput data

Decoder

Encoder EE @
A
a7l < B

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019 62
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Input data




Some background first: Autoencoders _Reconstucted data
Trai h that feat D t labels! ’H‘_ﬁ!-
rain such that features n’ _ - :
can be used to L2 Loss function: OESITERE ERER ’E.H
reconstruct original data H$ _ i'||2 < ﬂn!ﬂﬂn

1 sl <« WSS
Reconstructed A . !
. £ Encoder: 4-layer conv
Input data Decoder: 4-layer upconv
F)ecoder A
Featu®S > --‘I:n .
- i #é -1-'_." j &
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Some background first: Autoencoders

Reconstructed
iInput data

7
Features > T After training,
X

Input data

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019 64



Some background first: Autoencoders

Encoder can be
used to initialize a
supervised model

Predicted Label

Loss function
(Softmax, etc)

AN

Classifier

Features

Encoder

Input data

|
|

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung

bird plane

dog deer  truck

Train for final task

Fine-tune | _
encoder (sometimes with
jointly with small data)
classifier

ool W R

May 9, 2019 65



Some background first: Autoencoders

Reconstructed

iInput data

Features

Decoder

Encoder

Input data

|
|

Autoencoders can reconstruct
data, and can learn features to
initialize a supervised model

Features capture factors of
variation in training data. Can we
generate new images from an
autoencoder?



Representation learning without annotations?

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+ RelU + RelU Connected Connected

Boat (1)
Bird (0)

arget — output)*

X ‘Modern’ Deep learning: 7 ‘Classj ted y
Hierarchical Representat.lon Learning L atent space Netw
Feature extraction representation  Classification

data

Many ideas are possible (and yours could be even better!):

1. Predict the future: RNNs, Video

2. Compression: Autoencoder (predict self, through clamp), representation z
3. Pretext tasks: predict self, before/after, missing patch, correct rotation,
colorization, up-sampling, multimodal

Capture parameter distribution (variance): Variational Auto-Encoders
Make latent space parameters z meaningful, orthogonal, explicit, tuneable
Train using a second network: GANs - Improve quality of output images
The Sky is the Limit
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Variational AutoEncoders
(VAEs)



Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {;(9)1N is generated from underlying unobserved (latent)
{ }?,—1

representation z

Sample from

true conditional

po-(z | 27)

Sample from
true prior

po-(2)

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung

Intuition (remember from autoencoders!):
X is an image, z is latent factors used to
generate x: attributes, orientation, etc.

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

May 9, 2019
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Variational Autoencoders

We want to estimate the true parameters g*
of this generative model.

Sample from

How should we represent this model?

true conditional €I
po- (| V) t Choose prior p(z) to be simple, e.g.
Decoder Gaussian.
network - _
Sample from Conditional p(x|z) is complex (generates
true prior > image) => represent with neural network
po=(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Sample from
true conditional

po-(z | 21%))

Sample from
true prior

po(2)

ol

A

Decoder
network

yA

We want to estimate the true parameters g*
of this generative model.

How to train the model?

Remember strategy for training generative
models from FVBNs. Learn model parameters
to maximize likelihood of training data

fpg 2)pe(x|2)dz

\
Now with latent z

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Sample from
true conditional

po-(z | 21%))

Sample from
true prior

po(2)

ol

A

Decoder
network

yA

We want to estimate the true parameters g*
of this generative model.

How to train the model?

Remember strategy for training generative
models from FVBNs. Learn model parameters
to maximize likelihood of training data

= [ po(2)pg(z|2)d=
Q: What is the problem with this?

Intractable!
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic Mean and

(diagonal) covariance of z | x

Hz|x
Encoder network

d¢(2|)

(parameters ¢)

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung

Mean and (diagonal) covariance of X | z

M|z

Decoder network

Po(z|2)

(parameters )

E:J[:|.z:'

pA

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

May 9, 2019
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Variational Autoencoders

Since we're modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Sample z from  z|x ~ N ()4, 2,)2) Sample x|z from  Z|z ~ N (g5, X))
Hz|x z|:c Hx|z :1:|z
Encoder network Decoder network
9 (2|z) pe(z|2)
(parameters ¢) (parameters )
X Z

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019
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Variational Autoencoders

Since we're modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Sample z from  z|x ~ N ()4, 2,)2) Sample x|z from  Z|z ~ N (g5, X))
Hz|x z|:c Hx|z :1:|z
Encoder network Decoder network
9 (2|z) pe(z|2)
(parameters ¢) (parameters )
X Z

Encoder and decoder networks also called
“recognition”/“inference” and "generation” networks  Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:
log pg(z?) = E, g, (zla®) [logpg(az(i))] (po(z') Does not depend on z)
po (x| 2)po(2)
po(z | z(V)

po (2 | 2)pp(2) g (2 | 2'¥)
po(z | ) qy(z | 2()

=E. |log ] (Bayes’ Rule)

= E, |log ] (Multiply by constant)

- , 1 () (4)
—E. |logpg(z'? | 2)| —E, llog 42 | @ )] + E, llog 47 | @ . )] (Logarithms)
: : Po(2) po(z | x()

=E, |logpy(z'? | 2)| — Drr(gs(z | 2'9) || pe(2)) + Drr(gs(z | 29) || pa(z | £?))

—

The expectation wrt. z (using
encoder network) let us write
nice KL terms

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019 76



Variational Autoencoders

Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

log pg(z?) = E, g, (zla®) [logpg(m(i))] (po(z') Does not depend on z)

T (4)
/ = E. |log pola™ | Z)(?)g(z)] (Bayes’ Rule)
We want to De (_Z | 1) |
maximizethe [ pp(a¥ | 2)py(2) g (2 | D)
data = E. |log po(z | 20) gz | 2®)
likelihood -

gy(z | (V)

] (Multiply by constant)

log pe(z?) | 2)

log pa (2 | 2)|

*

Decoder network gives py(x|z), can

(2)
—E. [log q¢(z E )] + E. llog
po(2)

po(z | z)

] (Logarithms)

— Drcr(go(z | 29) || po(2)) + Drr(gs(2 | #19) || po(z | 1))

*

This KL term (between

Gaussians for encoder and z
prior) has nice closed-form
solution!

compute estimate of this term through
sampling. (Sampling differentiable
through reparam. trick, see paper.)

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung

*

Pg(z|x) intractable (saw
earlier), can’t compute this KL

term :( But we know KL
divergence always >= 0.

May 9, 2019
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

log pg(z?) = E, . (zla®) [logpg(az(i))] (po(z') Does not depend on z)

I (2)
/ = E; |log sl Z)(i?)G(Z)] (Bayes” Rule)
We want to I po(z | z\V))
maximize the T (2) (¢)
data —E, |log (2 ( ‘| Z)(P)G)(Z) %EZ : m(.);] (Multiply by constant)
2 | mA* z | wmh
likelihood - bo 14

- , 1 (2) (2)
—E, |logpg(z?) | 2)| — E, [log 4> | @ )] + E, [log 42 | @ )] (Logarithms)
: : Po(2) po(z | z)

= |- [logpo(e” | 2)| = Dicr(ag(= | #?)[| po(=)|+ D (o2 | 1) l| po (2 | 27)
L(zD,0, ) >0
Tractable lower bound which we can take

gradient of and optimize! (p4(x|z) differentiable,
KL term differentiable)

May 9, 2019 78



Variational Autoencoders

Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

log pg(z?) = E, . (zla®) [logpg(a:(i))] (po(z') Does not depend on z)

L po(x' | 2)pe(2 :
= E, |log ;9 (Z ‘| {L')(Z))( )] (Bayes Rule) Make approximate
Reconstruct posterior distribution

: T (2) (2)
the inputdata= g, |log po(z™ | Z)PG(Z) 4o(2 | @ : )] (Multiply by constant) close to prior
po(z | 2W)  qg(z | 2)

- , - ) (%)
— E. |log pylz? | 2)| — E, [log 4o (% | )] +E., [log 9p(2 | 2 )] (Logarithms)
| - poff) polz | 2)
=E. |logps(a'”) | 2)| — Dri(gg(2 | ') || po(z )) + Dir(gg(z | 219 2otz )
L(zD),0, ) >0
. , 0* — Lz 0
log pe(2)) > L2, 6, 6) O maxz )
Variational lower bound ("ELBQO") Training: MaX|m|ze Iower bound

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019



Variational Autoencoders

— x
Maximize
likelihood of ~ Sample x|z from |z ~ N (g5, X))

likelihoog-1fower bound original input
being / \

E. {logp@(a?(i) | Z)] — Drr(gs(z | 2®) || pe(z)) reconstructed M|z Em|z

) £($(;): 0,9) ’ Decoder network \/
po(z|2)

<

Sample z from z|x ~ N(Uzlmzzm)

posterior distribution / \

close to prior Hz|x Ez|:c

Encoder network
For every minibatch of input ( | ) \/
data: compute this forward dp\<|T

pass, and then backprop! Input Data £z

Putting it all to maximizing the

Make approximate

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019 80



Datal

ing

Generatl

Variational Autoencoders

Data manifold for 2-d z

Use decoder network. Now sample z from prior!

DA NANNANAANNNNSNNNNNS
QAP EHLELLLLLWYNNN~
QUAVININNRRLELLLLVYY Y NN~
QAVVNININNL G WOV Y W~~~
QAVVHHINNNVWWBPBVIOVIVY W - —-—
QAOODHINININMmE POV W - - —
QAQODOHIMNMNMMMNBDIID D W - ——
QOO MMNMMMMN OO DD D " —
OODMMM MMM N ®DD DD e e —
OODOMMMMM MNP DD e e —
QOO0 W e on o o —
DA P00 000000 0 o~ o~ 0~~~
NI L L GG R R e
SN L G ko S S
Al dodogorororororraaaannN~N
SdadadaddoorrrrrrrTTIINN
SddddgorrrrrrdFFITITRIRINN
SAdTTTTrrrrr>rrrr2r22NN
I g gl i il ol ol ol ol ol ol ol S N NI L NN

< >

Vary z,

:Emz

N

M|z

Sample x|z from :L‘|z ~ N(Hmlz: Em|z)

Decoder network
po(z|2)

<
Sample z from z ~ A/(0, )

Vary z,

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

May 9, 2019

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung



Variational Autoencoders: Generating Data!

Pia.gonal prior on z L:‘_‘,Jj“f ' j“
sontverablos | Degreeofsmie ;51[3‘1;.3.3;‘3;1' |
N e B B B B e i
Different \ :‘;3;‘3;‘1;‘ ‘ﬁq:g ”
dimensions of z Vary z, :!;I:.r;:r."qqq'q_n .
Y

encode
interpretable factors
of variation v

\

Also good feature representation that
can be computed using q,(z|x)!

Head pose
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019 82



Variational Autoencoders: Generating Data!

Labeled Faces in the Wild

32x32 CIFAR-10
Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019 83



Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as
PixelRNN/Pixel CNN
- Samples blurrier and lower quality compared to state-of-the-art (GANSs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal
Gaussian, e.g., Gaussian Mixture Models (GMMs)
- Incorporating structure in latent variables, e.g., Categorical Distributions

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019
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Representation learning without annotations?

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+ RelU + RelU Connected Connected

Boat (1)
Bird (0)

arget — output)*

X ‘Modern’ Deep learning: 7 ‘Classj ted y
Hierarchical Representat.lon Learning L atent space Netw
Feature extraction representation  Classification

data

Many ideas are possible (and yours could be even better!):

1. Predict the future: RNNs, Video

2. Compression: Autoencoder (predict self, through clamp), representation z
3. Pretext tasks: predict self, before/after, missing patch, correct rotation,
colorization, up-sampling, multimodal

Capture parameter distribution (variance): Variational Auto-Encoders
Make latent space parameters z meaningful, orthogonal, explicit, tuneable
Train using a second network: GANs - Improve quality of output images
The Sky is the Limit

N o oA



GANs:
Generative Adversarial Networks



Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional training distribution. No direct

way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to

training distribution.

Q: What can we use to
represent this complex
transformation?

A: A neural network!

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung

Output: Sample from
training distribution

Input: Random noise

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator
Network

?

Z

May 9, 2019



lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

f

Discriminator Network

Fake Images , Real Images
(from generator) ’ E : (from training set)
4
Generator Network

?

Random noise yA

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019



lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game
Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

I%iﬂ max [Emwpdam log Dy, (%) + Eznp(z) log(l — Dy, (Ge,(2)))
g d | | l |

Discriminalltor output Discriminaltor output for
for real data x generated fake data G(z)

- Discriminator (8,) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to 0 (fake)

- Generator (8,) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)



lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Minimax objective function:

n;in max [Emwpdam log Dy, () + E.np(z) log(1 — Dy, (Go, (z)))]
g d

Alternate between:

1. Gradient ascent on discriminator
Gradient signal

max |:E$diata log Dy, (z) + E,p(z) log(1 — Dy, (G, (z)))] dominated by region

6 .
¢ where sample is

2. Gradient descent on generator already QO\Od
1 _ .1 | | ‘I— 1og‘E‘\I—D(G(a)‘;) I
I%_f,n E~p(z) 108(1 — Do, (G, (2))) When sample is likely | _

fake, want to learn i

In practice, optimizing this generator objective from it to improve e

does not work well! generator. But
gradient in this region-| |
s relatively flat! B I ¥ S T R TR

D{G(=))

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019



lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Minimax objective function:
min max |Egnpg,,, 108 Doy () + Exnp(s) log(1 — Do, (G, (2))]

6, 064 . . .
' Aside: Jointly training two
_ networks is challenging,
Alternate b_etween' S can be unstable. Choosing
landscapes helps training,

mﬂim |:E$diata log Dy, (z) + Eznp(z) log(1 — ng(Ggg (z)))] is an active area of
research.

2. Instead: Gradient ascent on generator, different objective

11193,::«: Ezr—up(z) log(Dﬁ’d (Gﬁ’g (z)))

’ /

Instead of minimizing likelihood of discriminator being correct, now  High gradiént signal

maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient

signal for bad samples => works much better! Standard in practice.

= %] L7%) -
T T T

3L

Il
0.0 0.2

Cow:gradient signal

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019



lan Goodfellow et al., “Generative

Tra Talla g GAN S Two- p | aye I ga me Adversarial Nets”, NIPS 2014
Putting it together: GAN training algorithm

for number of training iterations do

for|k steps hﬂ

e Sample minibatch of m noise samples {z(),. .., 2("™)} from noise prior p,(2).
Some find k=1 ° SHEHI;IE minibatch of m examples {:1:{1}, S— m{m}} from data generating distribution
more stable o> . . . .
’ e Update the discriminator by ascending its stochastic gradient:
others use k > 1, . . o . =
no best rule. Vo, —~ Z []og Do, (z®) + log(1 — Dy, (G, (z(z))))]
i=1
Recent work (e.g.
Wasserstein GAN) o
e Sample minibatch of m noise samples {z(V), ..., 2(")} from noise prior p,(2).

alleviates this
problem, better

" 1 & -
stability! Vo, — ; log(Da,(Ga, ("))

e Update the generator by ascending its stochastic gradient (improved objective):

end for

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019



lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

f

Discriminator Network

/
Fake Images .
(from generator) ’ 5
4

Generator Network
] After training, use generator network to

generate new images

Real Images
(from training set)

-

Random noise Z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019



Mean Squared Error Can Ignore
Small but Task-Relevant Features

Input

Reconstruction

Figure 15.5

The ping pong ball vanishes because it is not large

enough to significantly affect the mean squared error

Slide Credit: lan Goodfellow

(Goodfellow 2017)



Adversarial Losses Preserve Any Features
with Highly Structured Patterns

Ground Truth MSE Adversarial

Figure 15.6
Mean squared error loses the ear because it causes a
small change in few pixels. Adversarial loss preserves

the ear because it is easy to notice its absence.
Slide Credit: lan Goodfellow (Goodellow 2017)



lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets

Generated samples

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.



lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets
Generated samples (CIFAR-10)

-

_—

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.



GANs + CNNs:

Convolutional Architectures for
Generative Adversarial Networks



Generative Adversarial Nets: Convolutional Architectures

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.
e Remove fully connected hidden layers for deeper architectures.
e Use ReLU activation in generator for all layers except for the output, which uses Tanh.

e Use LeakyReLU activation in the discriminator for all layers.

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016



Generative Adversarial Nets: Convolutional Architectures

I
512 6
16| ==
100 z L - _ .
|5 (I3
16
Project and reshape
CONV 2 R
CONV 4 e
Generator G(2)

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016



Generative Adversarial Nets: Convolutional Architectures

. AR - ’ r" ] -
o A { TN TS
=5 s i g;;,n

-_— -———

Samples il |«
from the q
model look

much

better!

Radford et al,
ICLR 2016

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019



Generative Adversarial Nets: Convolutional Architectures

e QH dgl*

__"‘u“& i ‘:-.-uﬂuvh " 0 had

Interpolating =
between
random
points in Iaten
space

Radford et al,
ICLR 2016

May 9, 2019

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung



Generative Adversarial Nets: Interpretable Vector Math

. Radford et al, ICLR 2016
Smiling woman Neutral woman Neutral man

e >

Samples
from the <
model

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019



Generative Adversarial Nets: Interpretable Vector Math

. Radford et al, ICLR 2016
Smiling woman Neutral woman Neutral man

: &

Samples
from the <
model

Average Z
vectors, do
arithmetic

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019



Generative Adversarial Nets: Interpretable Vector Math

- Radford et al, ICLR 2016
Smiling woman Neutral woman Neutral man

Smiling Man

Samples
from the <
model

Average Z
vectors, do
arithmetic

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019



Generative Adversarial Nets: Interpretable Vector Math

Glasses man  No glasses man No glasses woman

Radford et al,
ICLR 2016



Generative Adversarial Nets: Interpretable Vector Math

Glasses man  No glasses man No glasses woman Radford et al,

ICLR 2016
= =

Woman with glasses

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019



Next-Generation GANs



2017: Explosion of GANs
“The GAN Zoo”

* GAN - Generative Adversarial Networks

» 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
* acGAN - Face Aging With Conditional Generative Adversarial Networks

* AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs

« AdaGAN - AdaGAN: Boosting Generative Models

« AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

« AffGAN - Amortised MAP Inference for Image Super-resolution

» AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts

= ALl - Adversarially Learned Inference

* AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization

« AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
» ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs

* b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks

« Bayesian GAN - Deep and Hierarchical Implicit Models

« BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks

» BiGAN - Adversarial Feature Learning

+ BS-GAN - Boundary-Seeking Generative Adversarial Networks

* CGAN - Conditional Generative Adversarial Nets

« CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters
with Generative Adversarial Networks

+ CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
= CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
» CoGAN - Coupled Generative Adversarial Networks

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung

Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation

C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets
CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

DTN - Unsupervised Cross-Domain Image Generation

DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition

DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation

EBGAN - Energy-based Generative Adversarial Network

f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization

FF-GAN - Towards Large-Pose Face Frontalization in the Wild

GAWWN - Learning What and Where to Draw

GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
Geometric GAN - Geometric GAN

GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending

IAN - Neural Photo Editing with Introspective Adversarial Networks

iGAN - Generative Visual Manipulation on the Natural Image Manifold

IcGAN - Invertible Conditional GANs for image editing

ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network

Improved GAN - Improved Techniques for Training GANs

InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
Synthesis

LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

May 9, 2019



- " FREtAEHS ol piMiHGs GAN soumith/ganhacks for tips
201 7; Explosion of GANs

» Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation
+ C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural netwaorks with adversarial training

* GAN - Generative Adversarial Networks

* 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling » CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets

* 8cGAN - Face Aging With Conditional Generative Adversarial Networks » CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

* AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs e CycleGAN - Unpaired Image-to-lmage Translation using Cycle-Consistent Adversarial Networks

« AdaGAN - AdaGAN: Boosting Generative Models » DTN - Unsupervised Cross-Domain Image Generation

« AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets » DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

’ ; + DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
s AffGAN - Amortised MAP Inference for Image Super-resolution 9

» DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition

*» AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts - | DSIGAN - DislGAN: Unsupeiised Dial Lesking tor Imsijeto-inage Tianslation

* ALl - Adversarially Learned Inference » EBGAN - Energy-based Generative Adversarial Network

* AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization » f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
* AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery * FF-GAN - Towards Large-Pose Face Frontalization in the Wild

» ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs * GAWWN - Learning What and Where to Draw

» GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
» Geometric GAN - Geometric GAN
» GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

» b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks

« Bayesian GAN - Deep and Hierarchical Implicit Models

» BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks « GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending
» BiGAN - Adversarial Feature Learning + |AN - Neural Photo Editing with Introspective Adversarial Networks
= BS-GAN - Boundary-Seeking Generative Adversarial Networks = iGAN - Generative Visual Manipulation on the Natural Image Manifold

*» CGAN - Conditional Generative Adversarial Nets * IcGAN - Invertible Conditional GANs for image editing

: ; : \ . . . . *» ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network
* CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters " g g

f 4 ) » Improved GAN - Improved Techniques for Training GANs
with Generative Adversarial Networks . p . 4

+ InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

* CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks » LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

= CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis
» CoGAN - Coupled Generative Adversarial Networks * LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo


https://github.com/soumith/ganhacks

2017: Explosion of GANS

Better training and generation

LSGAN, Zhu 2017. Wasserstein GAN,
Arjovsky 2017.

Improved Wasserstein
GAN, Gulrajani 2017.

Progressive GAN, Karras 2018.

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019



2017: Explosion of GANs

Source->Target domain transfer

Input Input

Output

Output

- winter Yosemite

CycleGAN. Zhu et al. 2017.

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung

Text -> Image Synthesis

this small bird has a pink this magnificent fellow is
breast and crown, and black almost all black with a red
primaries and secondaries. crest, and white cheek patch.

Reed et al. 2017.
Many GAN applications

fn\\\

Pix2pix. Isola 2017. any xamples at
https://phillipi.github.io/pix2pix/

May 9, 2019



2019: BigGAN

Brock et al., 2019

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019
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Figure 8. The effect of truncation trick as a function of style scale
1. When we fade 1» — 0, all faces converge to the “mean” face
of FFHQ. This face is similar for all trained networks, and the in-
terpolation towards it never seems to cause artifacts. By applying
negative scaling to styles, we get the corresponding opposite or
“anti-face”. It 1s interesting that various high-level attributes of-
ten flip between the opposites, including viewpoint, glasses, age,

coloring. hair length. and often gender.
Latent z € Z Latent 2z € 2 Noise

Synthesis network g
| Normalize | Normalize | |Const Ax4x 512|
7 Mapping
| Fully-connected | network f
Y

i

PixelNorm

| Conv 3X%3 |

PixelNorm

l H
-
=

|  Upsample |
]
| Conv3x3 |

|  Upsample |
I

| Conv 33 |

PixelNorm

l

| Conv3x3 |

PixelNorm
X8

¥

Source B

Source A

Coarse styles from source B

Middle styles from source B

Fine from B

Figure 3. Two sets of images were generated from their respective latent codes (sources A and B): the rest of the images were generated by
copying a specified subset of styles from source B and taking the rest from source A. Copying the styles corresponding to coarse spatial
resolutions (42 — 87) brings high-level aspects such as pose, general hair style, face shape, and eyeglasses from source B, while all colors
(eyes. hair, lighting) and finer facial features resemble A. If we instead copy the styles of middle resolutions (162 — 32?) from B, we inherit
smaller scale facial features, hair style, eyes open/closed from B, while the pose, general face shape, and eyeglasses from A are preserved.
Finally, copying the fine styles (642 — 1024?) from B brings mainly the color scheme and microstructure.



Representation learning without annotations?

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+ RelU + RelU Connected Connected

Boat (1)
Bird (0)

N arget — output)*

X ‘Modern’ Deep learning: 7 ‘Classj ted y
Hierarchical Representat.lon Learning L atent space Netw
Feature extraction representation  Classification

data

Many ideas are possible (and yours could be even better!):

1. Predict the future: RNNs, Video

2. Compression: Autoencoder (predict self, through clamp), representation z
3. Pretext tasks: predict self, before/after, missing patch, correct rotation,
colorization, up-sampling, multimodal

Capture parameter distribution (variance): Variational Auto-Encoders
Make latent space parameters z meaningful, orthogonal, explicit, tuneable
Train using a second network: GANs - Improve quality of output images
The Sky is the Limit

N o oA



Taxonomy of Generative Models Direct

GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density Markov Chain
Fully Visible Belief Nets / \ @SN

-  NADE — _

- MADE Variational Markov Chain

: PNIIXC?IIER/NRI\Ie/a?m\IjP Variational Autoencoder Boltzmann Machine

- Glow | | | | |

_ = fjor d Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Slides: Fei-Fei Li, Justin Johnson, Serena Yeung May 9, 2019



GANs < VAEs



Let's look at VAE and GAN more closely...

From Eric Xing's slides for CMU 10-708
Based on "On Unifying Deep Generative Models”

118


https://arxiv.org/pdf/1706.00550.pdf

? Variational Autoencoders (VAES)

o [Kingma & Welling, 2014]

o Use variational inference with an inference model
a Enjoy similar applicability with wake-sleep algorithm

o Generative model pg(x|z), and prior p(2)

o Joint distribution pg (x, 2) = py (x|2)p(2) Bl gi) o
a Inference model g4 (z|x) 40 (2]%) : / po(x|2)
N

inference model generative model

|

Figure courtesy: Kingma & Welling, 2014

@® Eric Xing @ CMU, 2005-2020 25
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% Generative Adversarial Nets (GANS)

o [Goodfellow et al., 2014]

o Generative model x = Gg(2), z ~ p(2)
o Map noise variable z to data space x
o Define an implicit distribution over x: p,,(x)

o a stochastic process to simulate data x
o Intractable to evaluate likelihood

o Discriminator Dy (x)
o Output the probability that x came from the data rather than the generator
o No explicit inference model

o No obvious connection to previous models with inference networks like VAEs
o We will build formal connections between GANs and VAEs later

® Eric Xing @ CMU, 2005-2020
120



? A unified view of deep generative models

o Literatures have viewed these DGM approaches as distinct model
training paradigms
o GANSs: achieve an equilibrium between generator and discriminator
o VAEs: maximize lower bound of the data likelihood

o Let's study a new formulation for DGMs

o Connects GANs, VAEs, and other variants, under a unified view

o Links them back to inference and learning of Graphical Models, and the wake-sleep
heuristic that approximates this

o Provides a tool to analyze many GAN-/VAE-based algorithms

o Encourages mutual exchange of ideas from each individual class of models

1 2 1 @© Eric Xing @ CMU, 2005-2020 38



Generative Adversarial Nets (GANSs):

o Implicit distribution over x ~ pg (x|y)

__ ) Pge (z) y=20
p9($|y) — {pdata(m) y = 1.

QX ~pg,(x) & x=06y(2), z~ p(z|ly =0)

Q X ~ DPdata (x)
o the code space of z is degenerated

o sample directly from data

122

Zgen

Lgen

Ldata

(distribution of real images)

code data/gen

® Eric Xing @ CMU, 2005-2020 39

(distribution of generated images)

3



A new formulation

o Rewrite GAN objectives in the "variational-EM” format
o Recap: conventional formulation:
maxey Lo = Ez—g,(2),z~p(zly=0) [108(1 — Dy())] + Ezrnpyyea () [108 Do ()]
maxg Lo = Ep—G,(2),2~p(zly=0) 108 Dy(x)] + Egrp,... @) l0g(1 — Dy(x))]
= Ex—G,(2),2~p(z|y=0) [l0g Dy ()]

o Rewrite in the new form qg) (y|x)
o Implicit distribution over x ~ pg(x|y)
x =Gg(2), z~ p(zly)
o Discriminator distribution q4(y|x) R
qp¥|x) = q4(1 —y|x) (reverse) ‘4 ‘
po(z|y)

maxgy Lo = Ep, (2)y)p(y) 108 96 (y]T)
maxg Lo = Ep, (a]y)p(y) [108 05 (y]T).

1 23 @® Eric Xing @ CMU, 2005-2020 40




% GANSs vs. Variational EM

Variational EM GAN

o Objectives o Objectives

maxgLe,o = Eq,(z1x)[108 Po (x12)] + KL (g4 (z12)|1p(2) )
maxgLyg = Eq,z(x)[l0g pe (x]2)] + KL (% (zlx)llp(z))

o Single objective for both 8 and ¢
o Extra prior regularization by p(2)

o [he reconstruction term: maximize the

conditional log-likelihood of x with the a

generative distribution pg(x|2)
conditioning on the |latent code z inferred

by g4 (z|x)
o pg(x|z) is the generative model =)
0 ga(z|x) is the inference model =)

124

maxe Lo = By, (z/y)p(y) 108 90 (y])]
maxg Lo = Ep, (x|y)p(y) [log qg (y|:1:)]

o Two objectives
o Have global optimal state in the game
theoretic view

The objectives: maximize the conditional
log-likelihood of y (or 1 — y) with the
distribution g4 (y[x) conditioning on
data/generation x inferred by pg(x|v)

&

Interpret q4(y[x) as the generative model
Interpret pg(x|y) as the inferemeemcdel «




* Interpret x as latent variables
* Interpret generation of x as

% GANSs vs. Variational EM performing inference over latent

In VEM, we minimize the following:

o F(8,;x) = —logp(x) + KL (q4(zlx) || po(zlx) )
Varlatlonal EM GAN 3_K,L_(_mf_e:ence_r_rmdel_|_postenor)
a Objectives a Objectives
maxgyLgye = Eq,(z)x)[l0g po (x|2)] + KL (% (zIx)Ilp(z)) maxg Ly = Ep, (2]y)p(y) 10824 (y|T)]
maxgLye = Eq, 108 Po (x12)] + KL (44 (210 p(2)) maxg Lo = Ep, (aly)p(y) [l0g 75 (y]z)]
o Single objective for both 8 and ¢ o Two objectives
o Extra prior regularization by p(z) o Have gllobgl optimal state in the game
o The reconstruction term: maximize the theoretic view
conditional log-likelihood of x with the o The objectives: maximize the conditional
generative distribution pg (x|2) log-likelihood of y (or 1 — y) with the
conditioning on the latent code z inferred distribution g4 (y[x) conditioning on
Dy g4 (z|x) data/generation x inferred by pg(x|y)
0 pg(x|z) is the generative model o Interpret g4 (y|x) as the generative model

0 gg(z]x) is the inference model 02 Interpret pa(x|y) as the inferemecemicdel ,%g




GANSs: minimizing KLD

o As in Variational EM, we can further rewrite in the form of minimizing KLD
to reveal more insights into the optimization problem

o For each optimization step of pg(x|y) at point (6 = 8y, ¢ = ¢,), let
o p(y): uniform prior distribution

0 po=g,(®) = Ep|pe=e,xy)]
0 q"(xly) € qp=¢ (¥|%)Pe=0, (%)

o Lemma 7. The updates of 8 at 8, have

Vo — Epo(2ly)p(v) [log Qg—g0 (y|:1:)] ] |9=90 -

Vo |Epy) [KL (po(=ly) 14" (2]y))] = ISD (po(@ly = 0)[[po (aly = 1)) ]|

o KL: KL divergence
o JSD: Jensen-shannon divergence

0—0,

©Eric Xing @ CMU, 20052020 43
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% GANSs: minimizing KLD

o Lemma 7. The updates of 8 at 8, have

Vo _ — Epg(mly)p(y) [log q;;:fi’o (y|$)] ] ‘9:60 -

Vo |Epy) KL (po(ly) |4 (l))] — ISD (po(aly = 0)lIpo(ely = 1)) ||

0=0,

o Connection to variational inference
o See x as latent variables, y as visible

0 Ppe=g,(x): prior distribution
o q"(x|y) « qu%(ylx)pg:go(x) . posterior distribution
o pe(x|y): variational distribution

o Amortized inference: updates model parameter 6

o Suggests relations to VAEs, as we will explore shortly

In VEM, we minimize the following:
F(0,¢;x) = —log p(x) + KL (g4 (2lx) || po(z1x))

® Eric Xing @ CMU, 2005-2020 44 g



? GANs: minimizing KLD

Po=6, X1y = 1) = Paara(X)  Po=g, (xly = 0) = pg,_, ()

s

Po=grew (X|y = 0) =pg__ e (%)

e~

-
—————

o Minimizing the KLD drives pg, (x) t0 paata(X)

2. By definition: pg=p, (%) = Epy)[Po=g, @1)] = (Pgy_g, ®) + Paata(®)) / 2

0 KL(pe(xly = DIlq" (x|ly = 1)) = KL(Paara(®)|lg" (x|y = 1)) : constant, no free
parameters

a KL(pg(x|y = 0)]|g" (x|y = 0)) = KL (pg9 )Ig" x|y = 0)) - parameter 6 to optimize
a q"(xly = 0) & gy (¥ = 012)Pp=g, (X) T Wi2)
0 seen as a mixture of py,_ eo(x) and pgqaeq (x) g X
o mixing weights induced from qg,:%(y = 0|x) 469(93@)
o Drives pg, (x|y) to mixture of pg,_ 6, (%) and pagtq (X)
= Drives pg, (%) 10 Pgata(X) 128 ot xig @Ml sae 48 3



% GANSs: minimizing KLD

Po=6, (xly=1) = Paata (%) Po=¢, (xly =0) = pge:eo (x)

/’

S 4
*Missing mode phenomena of GANSs
* Asymmetry of KLD
« Concentrates pg(x|y = 0) to large modes of
q" (x|y)
= pg, (x) misses modes of pygtq(X)
e Symmetry of JSD
* Does not affect the behavior of mode
missing

-

missed mode

129

-
s

P

Dg=gnew (xly — 0) — pge=9new (x)

KL (pge(0)11g" (xly = 0))

Pge(*)
= | pooro8

Large positive contribution to the KLD in the
regions of x space where g" (x|y = 0) is small,

unless p,, (x) is also small

= pg,(x) tends to avoid regions where

q" (x|y =0) is small

dx

® Eric Xing @ CMU, 2005-2020
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/
f Recap: conventional formulation of VAEs

o Obijective:

maxg,n Lyl = Epy.a (@) [Eq, (212) [l0g Po(]2)] — KL(Gy (2]2)[5(2))]

o p(z): prior over z

0 pg(x|z): generative model

0 §y(z|x): inference model

o Only uses real examples from pgq.:q (%), lacks adversarial mechanism

o To align with GANSs, let’s introduce the real/fake indicator y and
adversarial discriminator

130 © Eric Xing @ CMU, 2005-2020 47



/
(/ VAEs: new formulation
an(zley) ¢ (ylz)

o Assume a perfect discriminator g, (y|x)
o0 q.(y=1|x) =1Iif xis real examples

o q.(y=0]|x) =1Iif xis generated samples . ,
0 g (%) = q.(1 —y[x) ', L
a Generative distribution ®p9($|za Y)
po(xlz) y=0
Tr(z,y)=
PG( | y) {pdata(w) Y = 1.

o Let pg(z,y|x) x pg(xlz,y)p(zly)p(¥)
o Lemma?Z2

‘C’]éc,lf) =2 Epgo (x) [Eqn(z|m,y)q:(y|m) [logpl’? (CB|Z, y)] T KL(QT) (Z|£B, y)q:: (y|m)||p(z|y)p(y))]
=2-Ep, (@) [—KL(q,(2|z,y)q;(y|z)|lpe(2, ylz))] -

©Eric Xing @ CMU, 20052020 48 g
131 :




? GANSs vs VAEs side by side Pl y ) S palxin p(ElypG)

GANs (InfoGAN) VAEs
Generative _ [pgo(®) y=0 _ [pe(xz]z) y=0
distribution | Pe(xly) = {p (@) y=1. po (|2, y) = {pdam(m) y=1.
Discriminator
distribution qde (V|x) q.(v|x), perfect, degenerated
Zrinference q, (z|x,y) of InfoGAN q, (z|x, )
(D to ming KL (pe (x1y) || 4" (x12,)) | mingKL (g, (zlx, y)q7 (¥1%) || pe (2 ¥1x))
minimize

~ mingKL(Pg || Q) ~mingKL(Q || Py)

®©Eric Xing @ CMU, 2005-2020 49
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% GANSs vs VAEs side by side

GANSs (InfoGAN) VAEs
KLD to ming KL (pg(x1y) || ¢"(x]2z,y)) |mingKL(q,(z|x,y)q: (¥|x) || pe (2, y|x))
minimize ~ mingKL(Pg || Q) ~ming KL(Q || Pg)

» Asymmetry of KLDs inspires combination of GANs and VAEs
 GANs: mingKL(Py||Q) tends to missing mode
* VAEs: mingKL(Q||Pg) tends to cover regions with small values of pg4tq

AR
Fo

[Figure courtesy: PRML] Mode covering Mode mi|§§ing




Discriminative vs. Generative:
Blurring the Distinction



Generative vs. Discriminative Classifiers

Training classifiers involves estimating f: X 2 Y, or P(Y|X)

Generative classifiers:

* Assume some functional form for P(X]Y), P(X)

« Estimate parameters of P(X|Y), P(X) directly from training data
* Use Bayes rule to calculate P(Y|X= x)

Discriminative classifiers:

1.  Assume some functional form for P(Y|X)

2. Estimate parameters of P(Y|X) directly from training data

Slide Credit: Tom Mitchell



» Consider learning f: X =2 Y, where
» X is a vector of real-valued features, < X, X >
* Y Is boolean
» assume all X: are conditionally independent given Y
* model P(X: | Y =vy,) as Gaussian N(u,,o)
» model P(Y) as binomial (p)

» What does that imply about the form of P(Y|X)?

1
P(Y =1|X =< 27, ..7n >) =

1 + exp(wo + >2; wix;)

Slide Credit: Tom Mitchell



Logistic regression

* Logistic regression represents the probability
of category / using a linear function of the
iInput variables:

AY =i X =x)=g(W, +wyx +.. +W,x,)

where for i<k
g(zi) —

and for k

g(Zk) — K-1

Slide Credit: Tom Mitchell



Generative-Discriminative Pairs

Example: assume Y boolean, X = <X, X,, ..., X >, where x; are boolean,
perhaps dependent on Y, conditionally independent given Y

Generative model: naive Bayes:

~ s{r; =1,y = b} +1 s indicates size
= 1lly=0>) = <
p(z; Y ) s{y = b} + 21 of set.
[ is smoothing
5y = b) = s{y :_b} parameter
>2isly = j}

Classify new example x based on ratio
Py ="Tlz) _ p(y =T) Ty Dily = T)
ply=Flz) ply = F)Ilj=1p(zily =F)

Equivalently, based on sign of log of this ratio
Slide Credit: Tom Mitchell



Generative-Discriminative Pairs

Example: assume Y boolean, X = <x,, X,, ..., X_ >, where X; are boolean,
perhaps dependent on Y, conditionally independent given Y

Generative model: naive Bayes:

s{x; =1,y=>b}+1

plz; =1y =10b) =

s{y =b} 4+ 2I
o _n_ s{ly=b}
P=b = sy =1)

Classify new example x based on ratio
ply="Tlz) ply=T)Il{—10(xily =T)
ply=Flz) ply=F)Il}=1 p(zily = F)

Discriminative model: logistic regression

Py = Tlw: 8,0) = 1/(1 + eap(— 3" Biz; — 0))
1=1

Note both learn linear decision surface over X 1n this case



What is the difference asymptotically?

Notation: let €(h 4 ) denote error of hypothesis learned via
algorithm A, from m examples

« If assumed model correct (e.g., naive Bayes model), and finite
number of parameters, then

e(hDis,oo) — e(hGen,oo)

e Jfassumed model incorrect

E(hDis,oo) < e(hGen,oo)

Note assumed discriminative model can be correct even when

generative model incorrect, but not vice versa
Slide Credit: Tom Mitchell



pirma (cordinuous)

adult [continuous) boslon (pradict # = median prics, conlinucus)
D' T T Qs T T D:I:
L
08 043
04 \
s Boas
a L]
0.3
0.25
1 1 -“-.“""-!
0.20 0 20 0 0% 20 40 &0
m m
ionosphere (conbnuous) sonar (corfinuoLs) adull (decrede)
Gs 5 T T T T T G? -
0.3
]
i
' ]
L1 [
o' 2
H
IIL
0.1 §
\
—_— 5 02
50 100 150 200 0 2 40 @0 &0 100 120 100 200 300 4
m m m
breast cances (discrebe)
0.5
o
E . . 0.4
L
] - "
, 0.35 .,
l"“'-h
O m e 03 -‘--“"-"'—-uul-l'
0 20 40 &0 &0 100 03 100 200
m m
[ ]
nn n lenses (predict hand vs. sofl, discrele) eick [discrate) valing records (discrele)
ex p e r I e S 05 . . ' ‘ D n D l" ' . ‘
]
i
5
0.4 o 0.3 3,
H‘»
I r0| I l U C I data i 1 E“z
u L] "'l.
‘-l
0.2 o2t o1 l\“ R
0.1 : : : : :
S et S & 5 10 15 20 5 50 100 150 o 20
m m
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