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Interpretable Deep Learning
1. Intro to Interpretability

1a. Interpretability definition: Convert implicit NN information to human-interpretable information
1b. Motivation: Verify model works as intended; debug classifier; make discoveries; Right to explanation
1c. Ante-hoc (train interpretable model) vs. Post-hoc (interpret complex model; degree of “locality”)

2. Interpreting Deep Neural Networks 
2a. Interpreting Models (macroscopic, understand internals) vs. decisions (microscopic, practical applications)
2b. Interpreting Models: Weight visualization, Surrogate model, Activation maximization, Example-based
2c. Interpreting Decisions: 
- Example-based
- Attribution Methods: why are gradients noisy?
- Gradient-based Attribution: SmoothGrad, Interior Gradient
- Backprop-based Attribution: Deconvolution, Guided Backpropagation

3. Evaluating Attribution Methods
3a. Qualitative: Coherence: Attributions should highlight discriminative features / objects of interest
3b. Qualitative: Class Sensitivity: Attributions should be sensitive to class labels
3c. Quantitative: Sensitivity: Removing feature with high attribution  large decrease in class probability
3d. Quantitative: ROAR & KAR. Low class prob cuz image unseen  remove pixels, retrain, measure acc. drop

Slides by Beomsu Kim, KAIST



Previously

▪ We’ve seen ways to model X->Y for a 
fixed dataset

▪ But that’s not what the world looks like:
▪ No Y
▪ Limited samples
▪ Many related datasets
▪ Changes over time

▪ Can we learn the rules which govern how 
the real world varies?

3



Learning Representations
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Key idea: Representation learning

‘Modern’ Deep learning: 
Hierarchical Representation Learning

Feature extraction

‘Classical’ Fully-connected
Neural Networks

Classification

In deep learning, the two tasks are coupled: 
• the classification task “drives” the feature extraction
• Extremely powerful and general paradigm

 Be creative! The field is still at its infancy!
 New application domains (e.g. beyond images) can have 

structure that current architectures do not capture/exploit
 Genomics/biology/neuroscience can help 

drive development of new architectures



Representation learning without annotations? 

‘Modern’ Deep learning: 
Hierarchical Representation Learning

Feature extraction

‘Classical’ Fully-connected
Neural Networks

Classification

Many ideas are possible (and yours could be even better!): 
1. Predict the future: RNNs, Video
2. Pretext tasks: predict self, before/after, missing patch, correct rotation, 

colorization, up-sampling, multimodal
3. Compression: Autoencoder (predict self, through clamp), representation z
4. Capture parameter distribution (variance): Variational Auto-Encoders
5. Make latent space parameters z meaningful, orthogonal, explicit, tuneable
6. Train using a second network: GANs - Improve quality of output images
7. The Sky is the Limit

x yz
data labelLatent space

representation



Representation learning without annotations? 

‘Modern’ Deep learning: 
Hierarchical Representation Learning

Feature extraction

‘Classical’ Fully-connected
Neural Networks

Classification

Many ideas are possible (and yours could be even better!): 
1. Predict the future: RNNs, Video
2. Compression: Autoencoder (predict self, through clamp), representation z
3. Pretext tasks: predict self, before/after, missing patch, correct rotation, 

colorization, up-sampling, multimodal
4. Capture parameter distribution (variance): Variational Auto-Encoders
5. Make latent space parameters z meaningful, orthogonal, explicit, tuneable
6. Train using a second network: GANs - Improve quality of output images
7. The Sky is the Limit

x yz
data labelLatent space

representation



Pretext Tasks
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Representation learning without annotations? 

‘Modern’ Deep learning: 
Hierarchical Representation Learning

Feature extraction

‘Classical’ Fully-connected
Neural Networks

Classification

Many ideas are possible (and yours could be even better!): 
1. Predict the future: RNNs, Video
2. Compression: Autoencoder (predict self, through clamp), representation z
3. Pretext tasks: predict self, before/after, missing patch, correct rotation, 

colorization, up-sampling, multimodal
4. Capture parameter distribution (variance): Variational Auto-Encoders
5. Make latent space parameters z meaningful, orthogonal, explicit, tuneable
6. Train using a second network: GANs - Improve quality of output images
7. The Sky is the Limit

x yz
data labelLatent space

representation



Auto-Encoders
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Some background first: Autoencoders

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 61

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality 
reduction?

A: Want features to 
capture meaningful 
factors of variation in 
data

Lecture 11 -



Some background first: Autoencoders

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 62

Decoder

Features

Encoder

Input data

How to learn this feature representation?
Train such that features can be used to reconstruct original data 
“Autoencoding” - encoding itself

Originally: Linear +

Reconstructed  
input data

nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN (upconv)

Lecture 11 -



Some background first: Autoencoders

Slides: Fei-Fei Li, 
Justin Johnson, 
Serena Yeung

Input data

Reconstructed  
input data

Featu

Reconstructed data

Encoder: 4-layer conv
Decoder: 4-layer upconv

Input data

L2 Loss function:

Decoder
res

Encoder

Train such that features 
can be used to 
reconstruct original data

Lecture 11 -

Doesn’t use labels!



Some background first: Autoencoders

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 64

Encoder

Input data

Features

Decoder

Lecture 11 -

Reconstructed  
input data

After training,
throw away decoder



Some background first: Autoencoders

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 65

Encoder

Input data

Features

Classifier

Predicted Label
Fine-tune 
encoder 
jointly with 
classifier

Loss function 
(Softmax, etc)

Encoder can be 
used to initialize a 
supervised model

plane

Lecture 11 -

dog deer
bird

truck

Train for final task 
(sometimes with 

small data)



Some background first: Autoencoders

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 66

Features

Encoder

Input data

Decoder

Lecture 11 -

Reconstructed  
input data

Autoencoders can reconstruct
data, and can learn features to
initialize a supervised model

Features capture factors of 
variation in training data. Can we 
generate new images from an 
autoencoder?



Representation learning without annotations? 

‘Modern’ Deep learning: 
Hierarchical Representation Learning

Feature extraction

‘Classical’ Fully-connected
Neural Networks

Classification

Many ideas are possible (and yours could be even better!): 
1. Predict the future: RNNs, Video
2. Compression: Autoencoder (predict self, through clamp), representation z
3. Pretext tasks: predict self, before/after, missing patch, correct rotation, 

colorization, up-sampling, multimodal
4. Capture parameter distribution (variance): Variational Auto-Encoders
5. Make latent space parameters z meaningful, orthogonal, explicit, tuneable
6. Train using a second network: GANs - Improve quality of output images
7. The Sky is the Limit

x yz
data labelLatent space

representation



Variational AutoEncoders
(VAEs)

68



Sample from 
true prior

Variational Autoencoders

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 69

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data is generated from underlying unobserved (latent) 
representation z

Sample from 
true conditional

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Lecture 11 -

Intuition (remember from autoencoders!): 
x is an image, z is latent factors used to 
generate x: attributes, orientation, etc.



Sample from 
true prior

Variational Autoencoders

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 70

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model.

How should we represent this model?

Choose prior p(z) to be simple, e.g. 
Gaussian.
Conditional p(x|z) is complex (generates 
image) => represent with neural network

Decoder  
network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Lecture 11 -



Sample from 
true prior

Variational Autoencoders

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 71

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model.

How to train the model?

Remember strategy for training generative 
models from FVBNs. Learn model parameters 
to maximize likelihood of training data

Now with latent z

Decoder  
network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Lecture 11 -



Sample from 
true prior

Variational Autoencoders

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 72

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model.

How to train the model?

Remember strategy for training generative 
models from FVBNs. Learn model parameters 
to maximize likelihood of training data

Q: What is the problem with this? 
Intractable!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Lecture 11 -

Decoder  
network



Variational Autoencoders
Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic Mean and 

(diagonal) covariance of z | x Mean and (diagonal) covariance of x | z

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 73

Encoder network Decoder network

(parameters ɸ) (parameters θ)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Lecture 11 -



Variational Autoencoders

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 74

Encoder network

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Decoder network

(parameters ɸ) (parameters θ)

Sample z from Sample x|z from

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Lecture 11 -



Variational Autoencoders

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 75

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Encoder network

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Decoder network

(parameters ɸ) (parameters θ)

Sample z from Sample x|z from

Encoder and decoder networks also called 
“recognition”/“inference” and “generation” networks

Lecture 11 -



Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 76

The expectation wrt. z (using
encoder network) let us write
nice KL terms

Lecture 11 -



Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 77

This KL term (between 
Gaussians for encoder and z

pθ(z|x) intractable (saw 
earlier), can’t compute this KL

Decoder network gives pθ(x|z), can 
compute estimate of this term through

We want to 
maximize the  
data 
likelihood

term :( But we know KL 
divergence always >= 0.

prior) has nice closed-form 
solution!

sampling. (Sampling differentiable 
through reparam. trick, see paper.)

Lecture 11 -



Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

May 9, 2019 78

Tractable lower bound which we can take 
gradient of and optimize! (pθ(x|z) differentiable,

We want to 
maximize the  
data 
likelihood

KL term differentiable)

Slides: Fei-Fei Li, Justin Johnson, Serena 
Yeung

Lecture 11 -



Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 79

Reconstruct 
the input data

Make approximate 
posterior distribution 
close to prior

Training: Maximize lower boundVariational lower bound (“ELBO”)

Lecture 11 -



Decoder network

Sample z from

Sample x|z from

Input Data

Variational Autoencoders

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 80

Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Encoder network

Maximize
likelihood of 
original input 
being 
reconstructed

For every minibatch of input 
data: compute this forward 
pass, and then backprop!

Lecture 11 -



Decoder network

Sample x|z from

Variational Autoencoders: Generating Data!

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung

Sample z from

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Use decoder network. Now sample z from prior! Data manifold for 2-d z

Vary z1

Vary z2

Lecture 11 - 94



Variational Autoencoders: Generating Data!

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 82

Vary z1

Vary z 2

Degree of smile

Head pose

Diagonal prior on z
=> independent 
latent variables

Different 
dimensions of z 
encode 
interpretable factors 
of variation

Also good feature representation that 
can be computed using qɸ(z|x)!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Lecture 11 -



Variational Autoencoders: Generating Data!

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 83

32x32 CIFAR-10

Lecture 11 -

Labeled Faces in the Wild

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.



Variational Autoencoders

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 84Lecture 11 -

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as 

PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal 

Gaussian, e.g., Gaussian Mixture Models (GMMs)
- Incorporating structure in latent variables, e.g., Categorical Distributions



Representation learning without annotations? 

‘Modern’ Deep learning: 
Hierarchical Representation Learning

Feature extraction

‘Classical’ Fully-connected
Neural Networks

Classification

Many ideas are possible (and yours could be even better!): 
1. Predict the future: RNNs, Video
2. Compression: Autoencoder (predict self, through clamp), representation z
3. Pretext tasks: predict self, before/after, missing patch, correct rotation, 

colorization, up-sampling, multimodal
4. Capture parameter distribution (variance): Variational Auto-Encoders
5. Make latent space parameters z meaningful, orthogonal, explicit, tuneable
6. Train using a second network: GANs - Improve quality of output images
7. The Sky is the Limit

x yz
data labelLatent space

representation



GANs: 
Generative Adversarial Networks

86



Problem: Want to sample from complex, high-dimensional training distribution. No direct 
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to 
training distribution.

Generative Adversarial Networks

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung

zInput: Random noise

Generator  
Network

Output: Sample from 
training distribution

Lecture 11 - 87

Q: What can we use to
represent this complex
transformation?

A: A neural network!

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014



Training GANs: Two-player game

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

zRandom noise

Generator Network

Discriminator Network

Fake Images 
(from generator)

Real Images 
(from training set)

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Lecture 11 - 88
Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.



Training GANs: Two-player game

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game
Discriminator outputs likelihood in (0,1) of real image

Minimax objective function:

Discriminator output 
for real data x

Discriminator output for 
generated fake data G(z)

Lecture 11 - 89

- Discriminator (θd) wants to maximize objective such that D(x) is close to 1 (real) and 
D(G(z)) is close to 0 (fake)

- Generator (θg) wants to minimize objective such that D(G(z)) is close to 1 
(discriminator is fooled into thinking generated G(z) is real)

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014



Training GANs: Two-player game

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2. Gradient descent on generator

In practice, optimizing this generator objective 
does not work well!

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

When sample is likely 
fake, want to learn 
from it to improve 
generator. But 
gradient in this region 
is relatively flat!

Gradient signal 
dominated by region 
where sample is 
already good

Lecture 11 - 90



Training GANs: Two-player game

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2. Instead: Gradient ascent on generator, different objective

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Aside: Jointly training two 
networks is challenging, 
can be unstable. Choosing 
objectives with better loss 
landscapes helps training, 
is an active area of 
research.

Instead of minimizing likelihood of discriminator being correct, now 
maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient 
signal for bad samples => works much better! Standard in practice.

High gradient signal

Low gradient signal

Lecture 11 - 91



Training GANs: Two-player game

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung

Putting it together: GAN training algorithm

Some find k=1 
more stable, 
others use k > 1, 
no best rule.

Recent work (e.g. 
Wasserstein GAN) 
alleviates this 
problem, better 
stability!

Lecture 11 - 92

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014



Training GANs: Two-player game

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

z

Generator Network

Discriminator Network

Fake Images 
(from generator)

Random noise

Real Images 
(from training set)

After training, use generator network to 
generate new images

Lecture 11 - 93

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
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Generative Adversarial Nets
Generated samples

Nearest neighbor from training set
Slides: Fei-Fei Li, Justin Johnson, Serena 
Yeung

Figures copyright Ian Goodfellow et al., 2014. Reproduced with permission.

Lecture 11 - 96

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014



Generative Adversarial Nets
Generated samples (CIFAR-10)

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Nearest neighbor from training set
Slides: Fei-Fei Li, Justin Johnson, Serena 
Yeung

Figures copyright Ian Goodfellow et al., 2014. Reproduced with permission.

Lecture 11 - 97



GANs + CNNs: 
Convolutional Architectures for

Generative Adversarial Networks

98



Generative Adversarial Nets: Convolutional Architectures

Generator is an upsampling network with fractionally-strided convolutions 
Discriminator is a convolutional network

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Lecture 11 -
Slides: Fei-Fei Li, 
Justin Johnson, 
Serena Yeung

99



Generator
Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Lecture 11 -
Slides: Fei-Fei Li, 
Justin Johnson, 
Serena Yeung

100

Generative Adversarial Nets: Convolutional Architectures



Samples 
from the 
model look 
much 
better!

Radford et al, 
ICLR 2016

Lecture 11 -

Generative Adversarial Nets: Convolutional Architectures

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 101



nt

Interpolating 
between 
random 
points in late 
space

Generative Adversarial Nets: Convolutional Architectures

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung

Radford et al, 
ICLR 2016

Lecture 11 - 102



Generative Adversarial Nets: Interpretable Vector Math

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung

Smiling woman Neutral woman Neutral man

Lecture 11 - 103

Samples
from the
model

Radford et al, ICLR 2016



Smiling woman Neutral woman Neutral man

Average Z
vectors, do 
arithmetic

Lecture 11 -

Generative Adversarial Nets: Interpretable Vector Math

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 104

Samples
from the
model

Radford et al, ICLR 2016



Smiling woman Neutral woman Neutral man

Smiling ManSamples
from the
model

Average Z
vectors, do 
arithmetic

Lecture 11 -

Generative Adversarial Nets: Interpretable Vector Math

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 105

Radford et al, ICLR 2016



Radford et al, 
ICLR 2016

Lecture 11 -
Slides: Fei-Fei Li, 
Justin Johnson, 
Serena Yeung

106

Glasses man No glasses man No glasses woman

Generative Adversarial Nets: Interpretable Vector Math



Glasses man No glasses man No glasses woman

Lecture 11 -

Generative Adversarial Nets: Interpretable Vector Math

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 107

Woman with glasses

Radford et al, 
ICLR 2016



Next-Generation GANs

10
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“The GAN Zoo”

2017: Explosion of GANs
“The GAN Zoo”

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung

https://github.com/hindupuravinash/the-gan-zoo

Lecture 11 - 109



and tricks for trainings GANs

https://github.com/hindupuravinash/the-gan-zoo

Lecture 11 -

2017: Explosion of GANs See also: https://github.com/soumith/ganhacks for tips

Slides: Fei-Fei Li, 
Justin Johnson, 
Serena Yeung

110

“The GAN Zoo”

https://github.com/soumith/ganhacks


Better training and generation

LSGAN, Zhu 2017.

Lecture 11 -

2017: Explosion of GANs

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung 111

Wasserstein GAN, 
Arjovsky 2017.
Improved Wasserstein 
GAN, Gulrajani 2017.

Progressive GAN, Karras 2018.



2017: Explosion of GANs
Source->Target domain transfer

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung

CycleGAN. Zhu et al. 2017.
Pix2pix. Isola 2017. Many examples at 
https://phillipi.github.io/pix2pix/

Reed et al. 2017.
Many GAN applications

Lecture 11 - 112

Text -> Image Synthesis



2019: BigGAN

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung

Brock et al., 2019

Lecture 11 - 113



Style GANs



Representation learning without annotations? 

‘Modern’ Deep learning: 
Hierarchical Representation Learning

Feature extraction

‘Classical’ Fully-connected
Neural Networks

Classification

Many ideas are possible (and yours could be even better!): 
1. Predict the future: RNNs, Video
2. Compression: Autoencoder (predict self, through clamp), representation z
3. Pretext tasks: predict self, before/after, missing patch, correct rotation, 

colorization, up-sampling, multimodal
4. Capture parameter distribution (variance): Variational Auto-Encoders
5. Make latent space parameters z meaningful, orthogonal, explicit, tuneable
6. Train using a second network: GANs - Improve quality of output images
7. The Sky is the Limit

x yz
data labelLatent space

representation



Taxonomy of Generative Models

May 9, 2019Slides: Fei-Fei Li, Justin Johnson, Serena Yeung

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain
Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Lecture 11 - 116

Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN
- NICE / RealNVP
- Glow
- Ffjord



GANs  VAEs

11
7



118

From Eric Xing’s slides for CMU 10-708
Based on “On Unifying Deep Generative Models”

Let’s look at VAE and GAN more closely…

https://arxiv.org/pdf/1706.00550.pdf
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Discriminative vs. Generative: 
Blurring the Distinction
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