6.874, 6.802, 20.390, 20.490, HST.506 Computational Systems Biology Deep Learning in the Life Sciences

Lecture 6: Regulatory genomics Gene regulation, chromatin accessibility,

DNA regulatory code

Prof. Manolis Kellis

Slides credit: 6.047, Anshul Kundaje, David Gifford

Deep Learning for Regulatory Genomics

1. Biological foundations: Building blocks of Gene Regulation

- Gene regulation: Cell diversity, Epigenomics, Regulators (TFs), Motifs, Disease role
- Probing gene regulation: TFs/histones: ChIP-seq, Accessibility: DNase/ATAC-seq

2. Classical methods for Regulatory Genomics and Motif Discovery

- Enrichment-based motif discovery: Expectation Maximization, Gibbs Sampling
- Experimental: PBMs, SELEX. Comparative genomics: Evolutionary conservation.

3. Regulatory Genomics CNNs (Convolutional Neural Networks): Foundations

- Key idea: pixels ⇔ DNA letters. Patches/filters ⇔ Motifs. Higher ⇔ combinations
- Learning convolutional filters ⇔ Motif discovery. Applying them ⇔ Motif matches

4. Regulatory Genomics CNNs/RNNs in Practice: Diverse Architectures

- DeepBind: Learn motifs, use in (shallow) fully-connected layer, mutation impact
- DeepSea: Train model directly on mutational impact prediction
- Basset: Multi-task DNase prediction in 164 cell types, reuse/learn motifs
- ChromPuter: Multi-task prediction of different TFs, reuse partner motifs
- DeepLIFT: Model interpretation based on neuron activation properties
- DanQ: Recurrent Neural Network for sequential data analysis

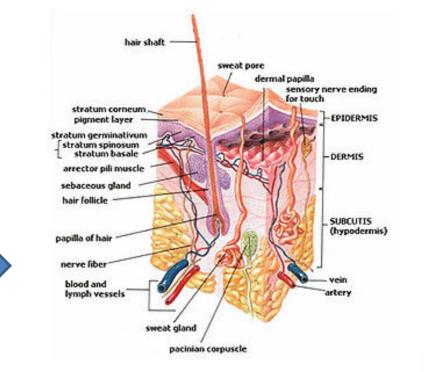
5. Guest Lecture: Anshul Kundaje, Stanford, Deep Learning for Reg. Genomics

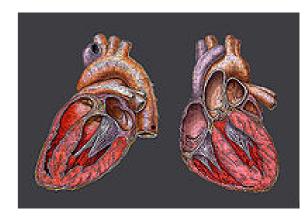
6. Guest Lecture: Avantika Lal, Nvidia, Deep Learning for ATAC/scATAC

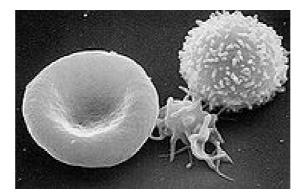
1a. Basics of gene regulation

One Genome – Many Cell Types

ACCAGTTACGACGGTCA GGGTACTGATACCCCAA ACCGTTGACCGCATTTA CAGACGGGGGTTTGGGGTT TTGCCCCACACAGGTAC GTTAGCTACTGGTTTAG CAATTTACCGTTACAAC GTTTACAGGGTTACCAGT TGGGATTTGAAAAAAAG TTTGAGTTGGTTTTTC ACGGTAGAACGTACCGT TACCAGTA







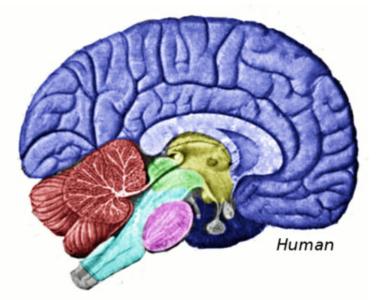


Image Source wikipedia

DNA packaging

- Why packaging
 - DNA is very long
 - Cell is very small

Compression

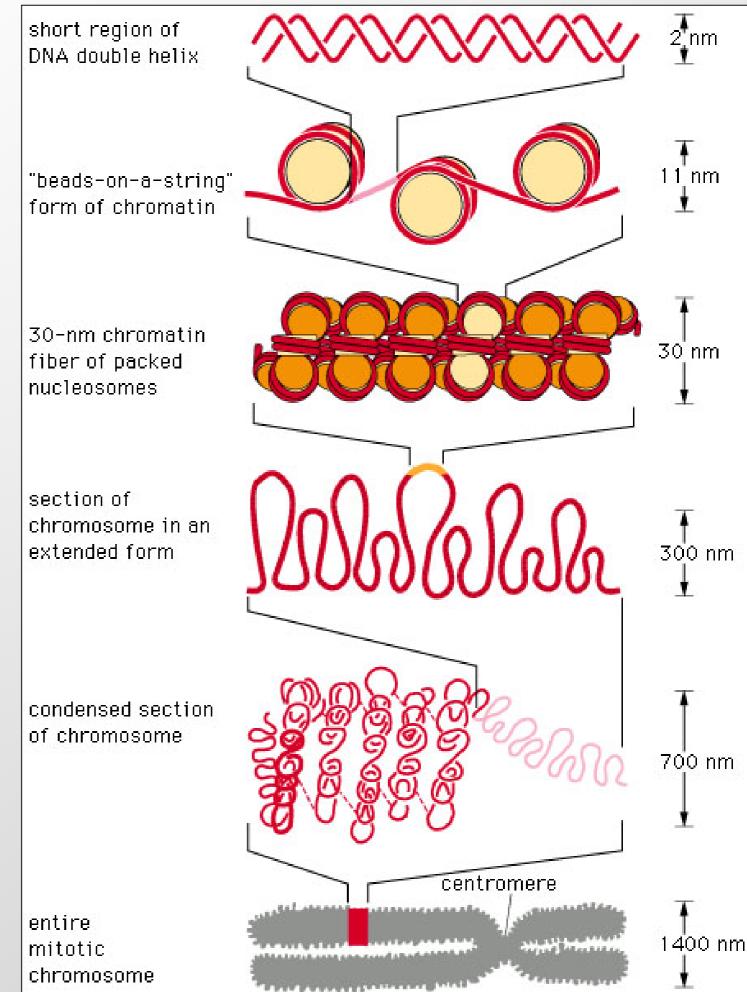
 Chromosome is 50,000 times shorter than extended DNA

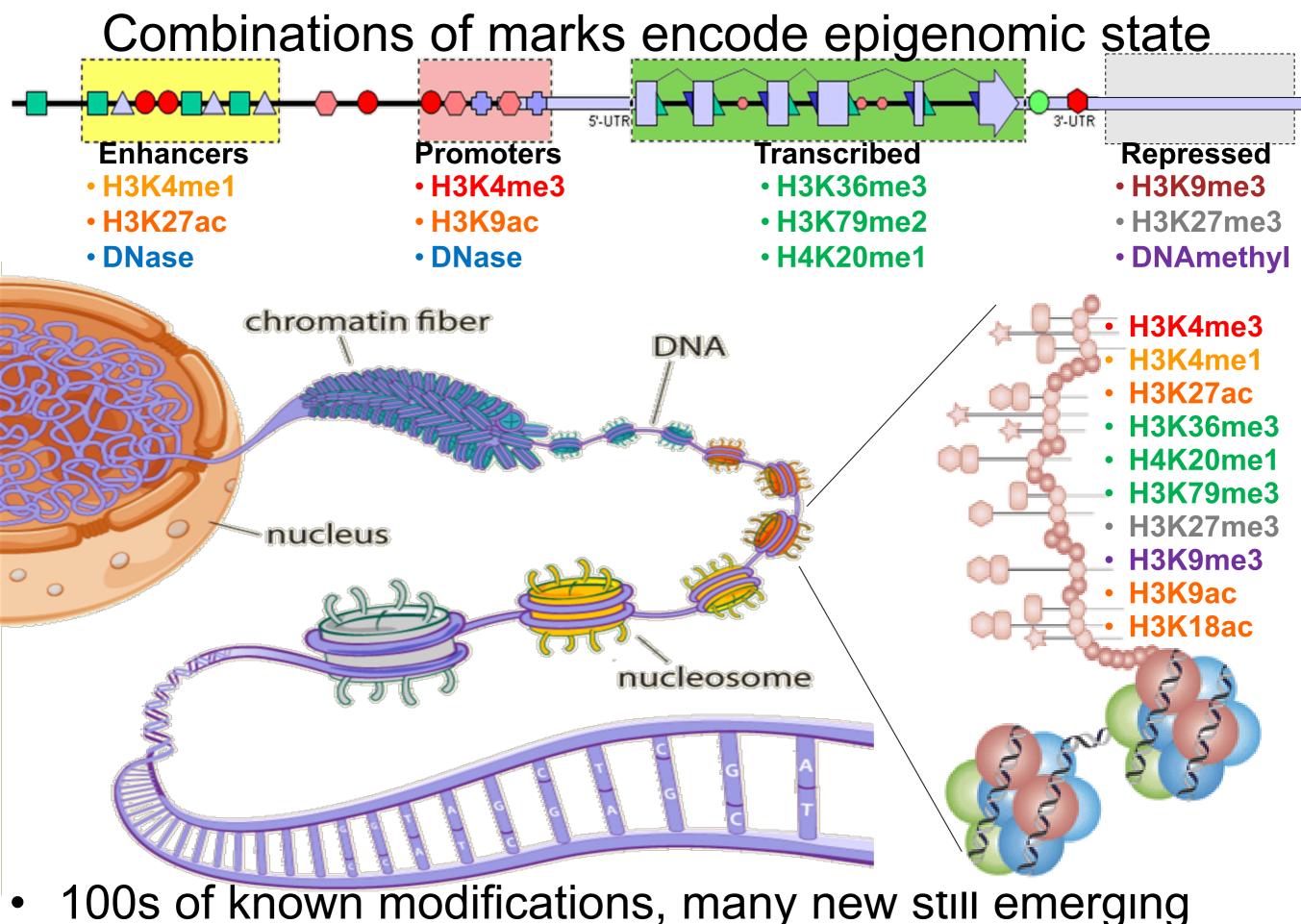
Using the DNA

 Before a piece of DNA is used for anything, this compact structure must open locally

Now emerging:

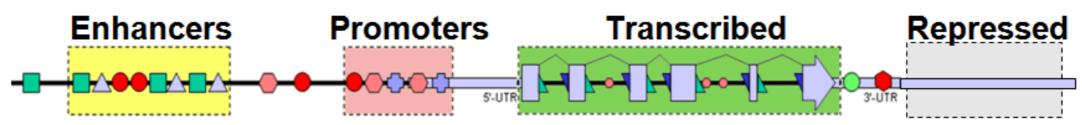
- Role of accessibility
- State in chromatin itself
- Role of 3D interactions



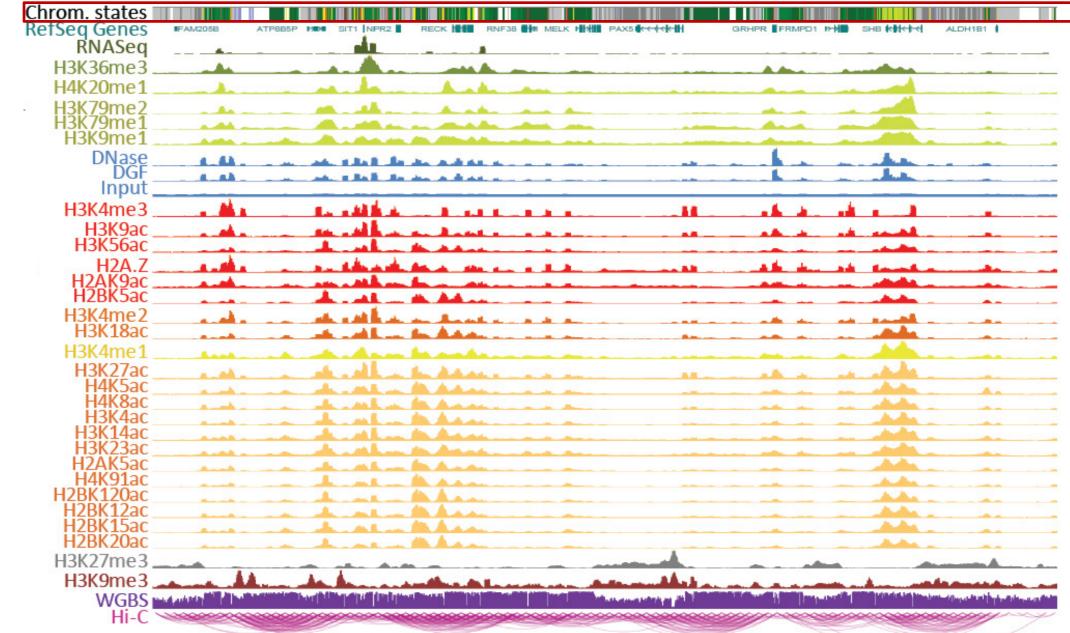


Systematic mapping using ChIP-, Bisulfite-, DNase-Seq

Summarize multiple marks into chromatin states



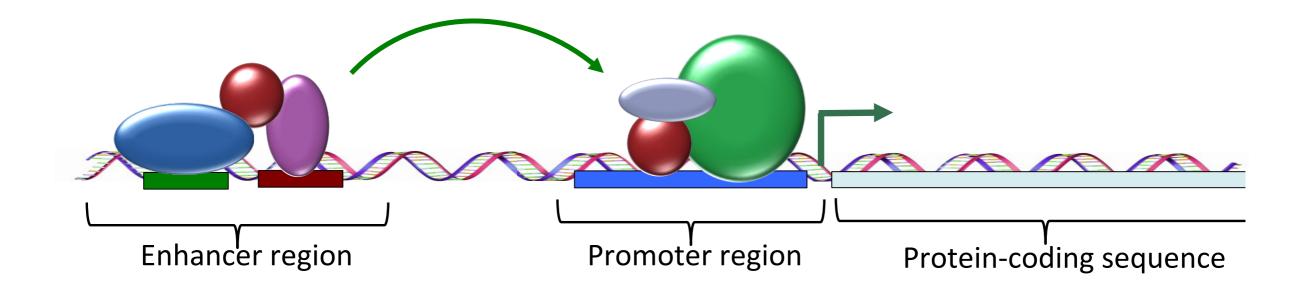
Chromatin state track summary



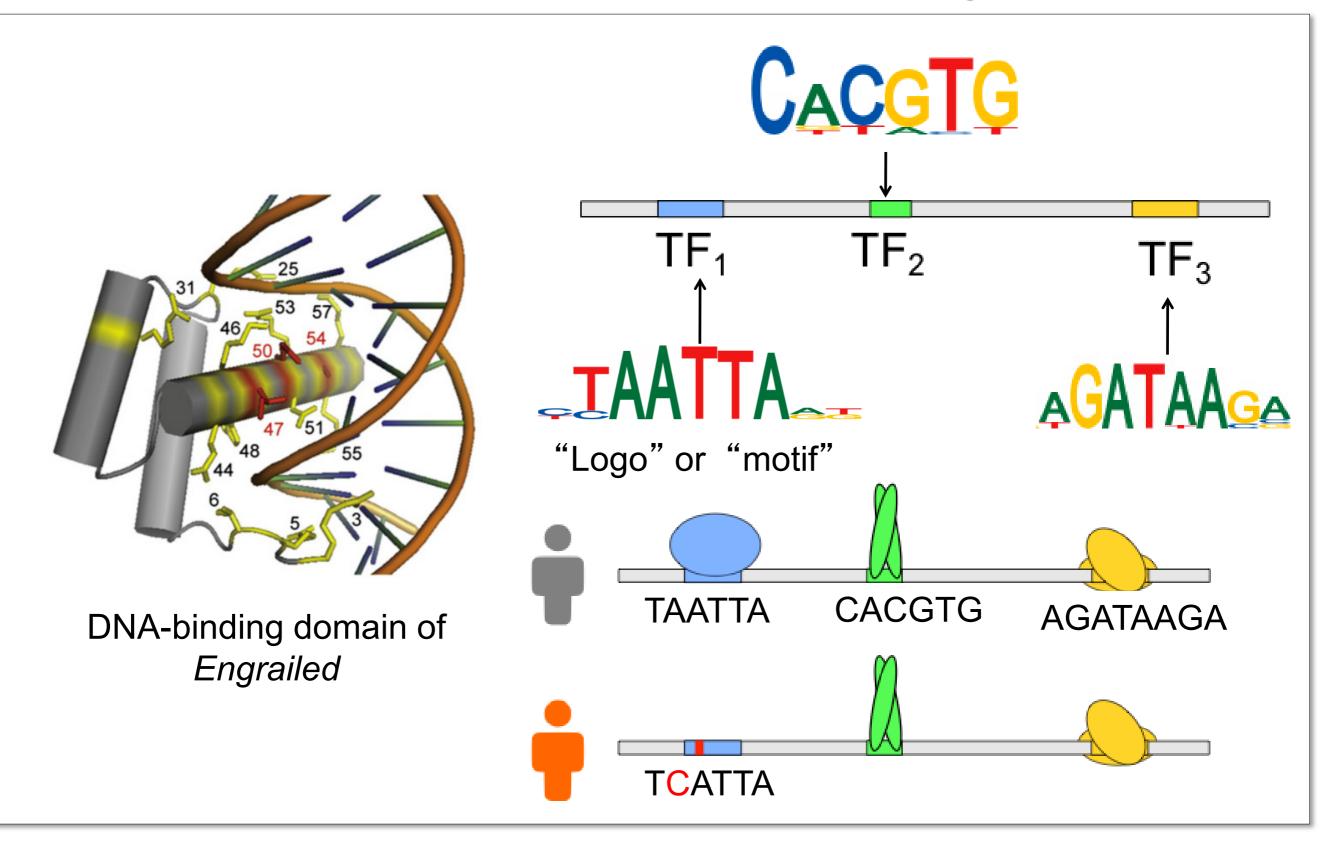
WashU Epigenome Browser

ChromHMM: multi-variate hidden Markov model

Transcription factors control activation of cell-typespecific promoters and enhancers

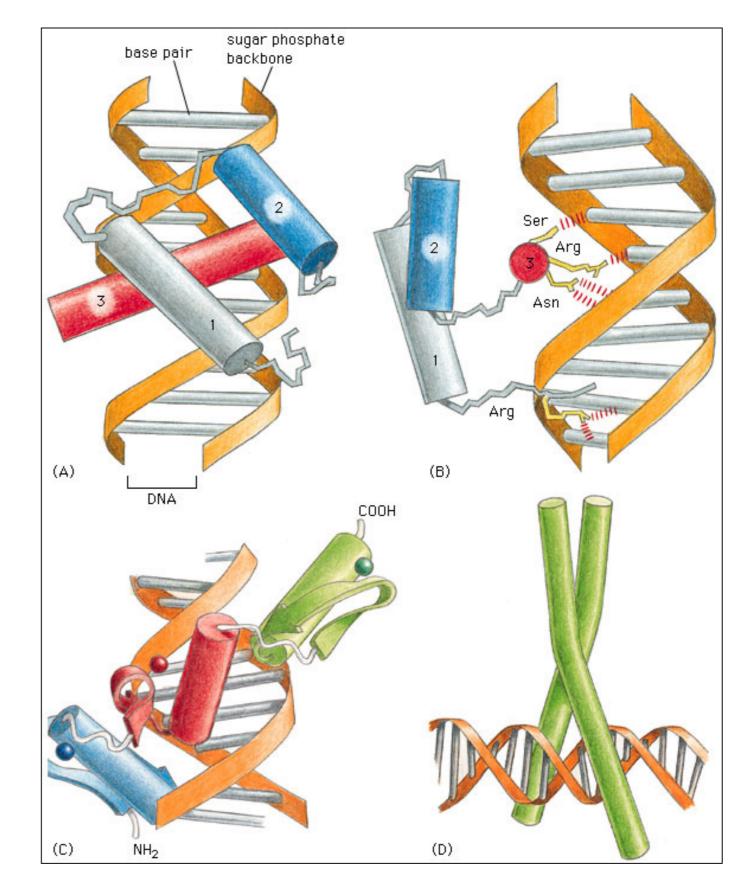


TFs use DNA-binding domains to recognize specific DNA sequences in the genome



Regulator structure \Leftrightarrow recognized motifs

- Proteins 'feel' DNA
 - Read chemical properties of bases
 - Do NOT open DNA (no base complementarity)
- 3D Topology dictates specificity
 - Fully constrained positions:
 → every atom matters
 - "Ambiguous / degenerate" positions
 → loosely contacted
- Other types of recognition
 - MicroRNAs: complementarity
 - Nucleosomes: GC content
 - RNAs: structure/seqn combination



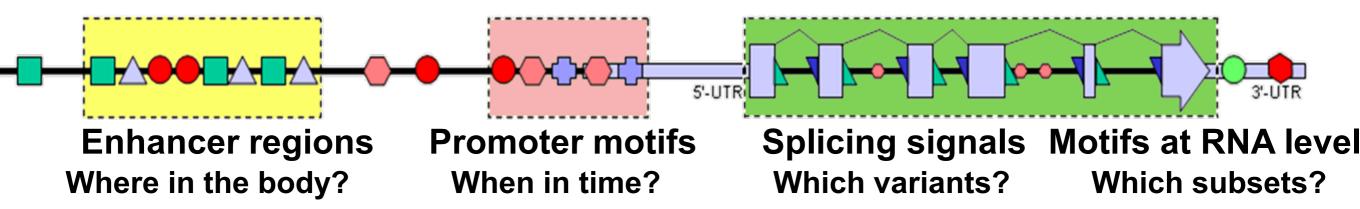
Motifs summarize TF sequence specificity

Target ger	Coord	inates	Genome sequence at bound site					
ACS1	acetyl CoA synthetase	-491	-479	ATCATTCTGGACG				
ACS1	acetyl CoA synthetase	-433	-421	ATCATCTCGGACG				
ACS1	acetyl CoA synthetase	-311	-299	ATCATTTGCCACG				
CHA1	catabolic L-serine dehydratase	-280	-254	A ATCACCGCGAACG GA				
ENO2	Enolase	-470	-461	ggcgttat GTCACTAACGACG tgcacca				
HMR	silencer	-256	-283	ATCAATAC ATCATAAAATACG AACGATC				
LPD1	lipoamide dehydrogenase	-288	-300	gat ATCAAAATTAACG tag				
LPD1	lipoamide dehydrogenase	-301	-313	gat ATCACCGTTGACG tca				
PGK	phosphoglycerate kinase	-523	-496	CAAACAA ATCACGAGCGACG GTAATTTC				
RPC160	RNA pol III/C 160 kDa subunit	-385	-349	ATCACTATATACG TGAA				
RPC40	RNA pol III/C 40 kDa subunit	-137	-116	GTCACTATAAACG				
rpL2	ribosomal protein L2	-185	-167	TAAT aTCAcgtcACACG AC				
SPR3	CDC3/10/11/12 family homolog	-315	-303	ATCACTAAATACG				
YPT1	TUB2	-193	-172	CCTAG GTCACTGTACACG TATA				

- Summarize information
- Integrate many positions
- Measure of information
- Distinguish motif vs. motif instance
- Assumptions:
 - Independence
 - Fixed spacing

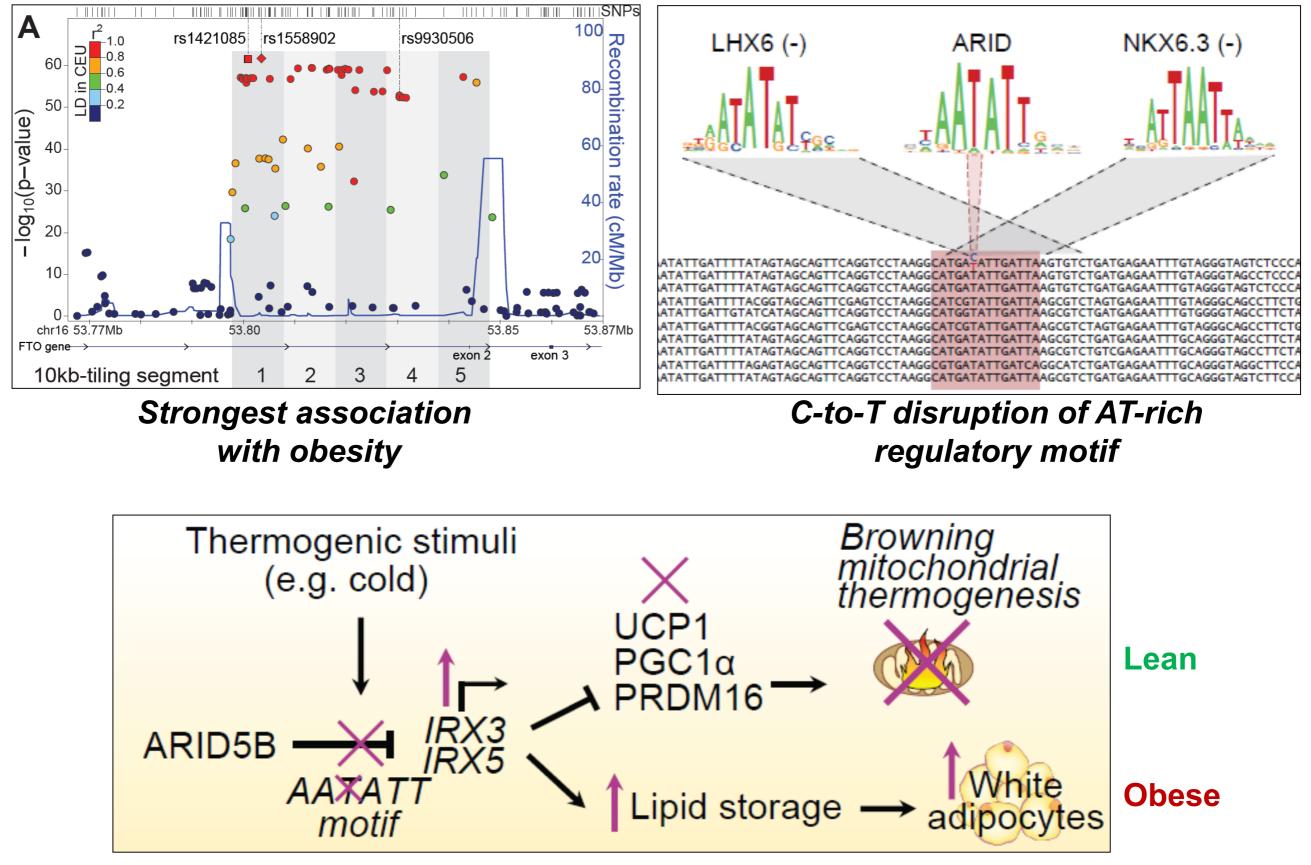
Position		1	2	3	4	5	6	7	8	9	10	11	12	13	14
Position	А	56	4	4	81	4	23	15	27	31	31	89	23	4	58
Weight Matrix (PWM)	G	32	4	4	12	4	31	23	4	19	23	4	4	89	35
	С	4	4	89	4	58	12	23	19	19	23	4	69	4	4
	Т	4	89	4	4	35	35	39	50	31	23	4	4	4	4
Motif Logo		AG		C	A	Ç			Ĩ			A	Č	G	A
Consensus		R	Т	С	A	Y	N	N	Н	N	N	A	С	G	R

Regulatory motifs at all levels of pre/post-tx regulation



- The parts list: ~20-30k genes
 - Protein-coding genes, RNA genes (tRNA, microRNA, snRNA)
- The circuitry: constructs controlling gene usage
 - Enhancers, promoters, splicing, post-transcriptional motifs
- The regulatory code, complications:
 - Combinatorial coding of 'unique tags'
 - Data-centric encoding of addresses
 - Overlaid with 'memory' marks
 - Large-scale on/off states
 - Modulation of the large-scale coding
 - Post-transcriptional and post-translational information
- Today: discovering motifs in co-regulated promoters and *de novo* motif discovery & target identification

Disrupted motif at the heart of FTO obesity locus

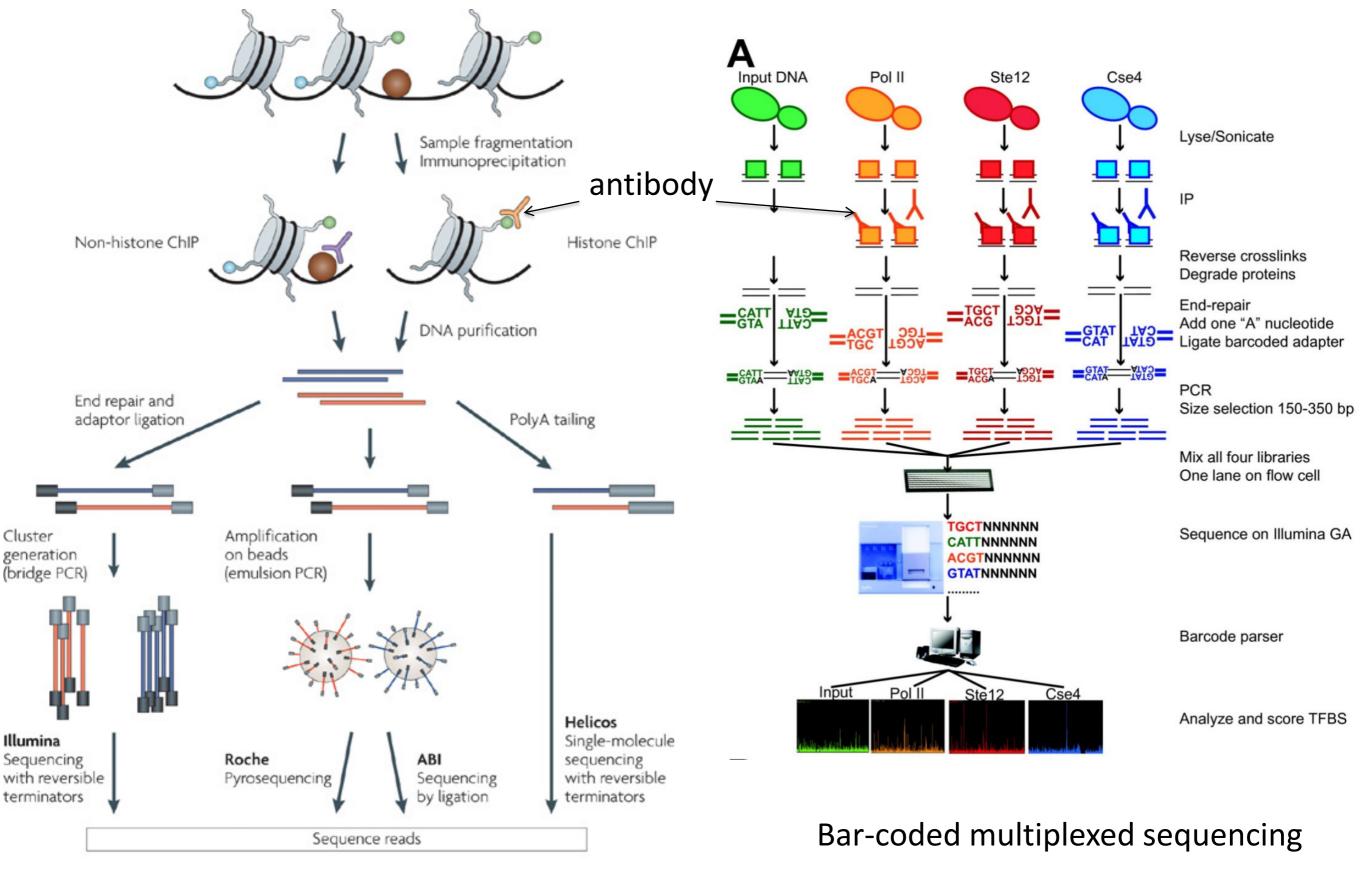


Restoring motif restores thermogenesis

1b. Technologies for probing gene regulation

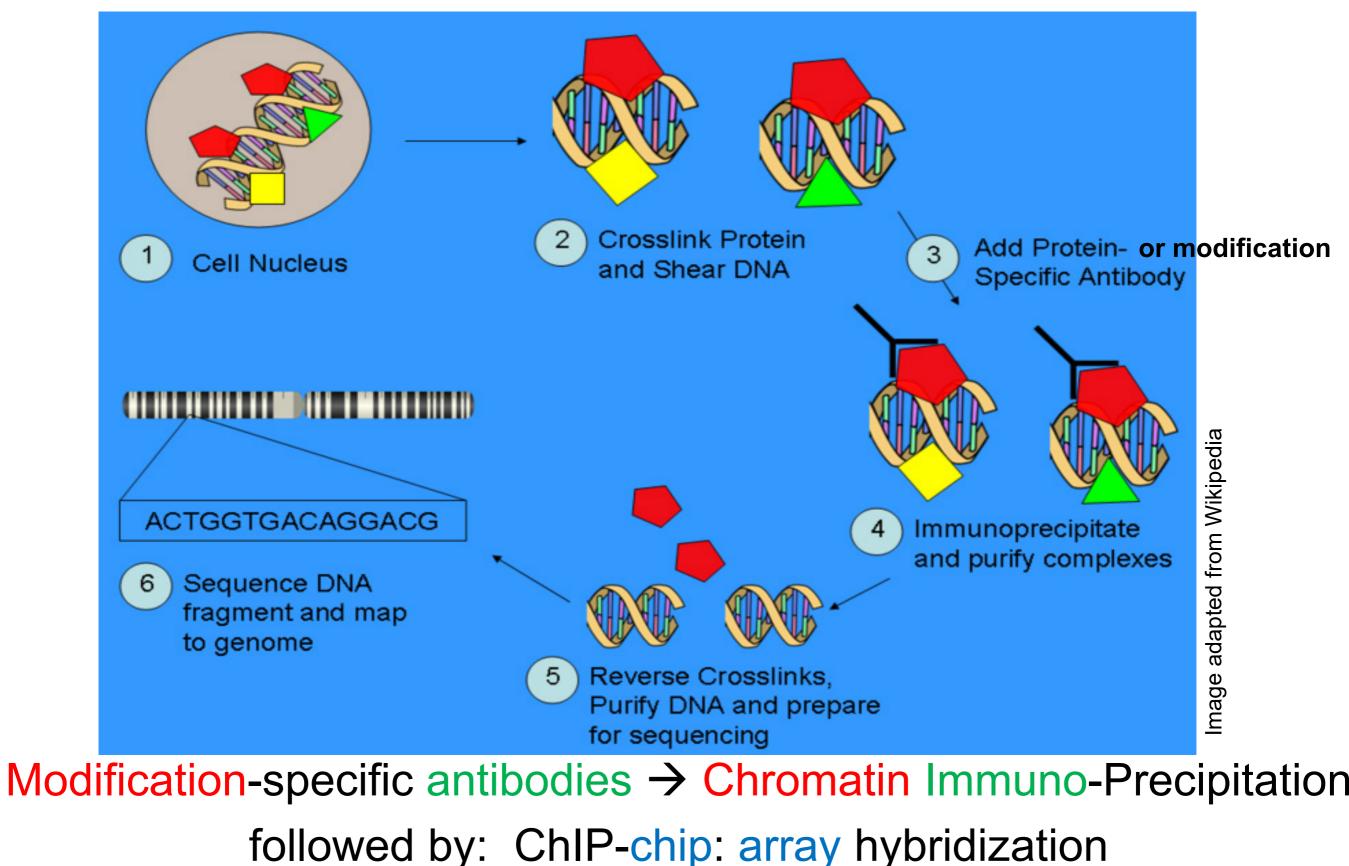
Mapping regulator binding: ChIP-seq

(Chromatin immunoprecipitation followed by sequencing) TF=transcription factor



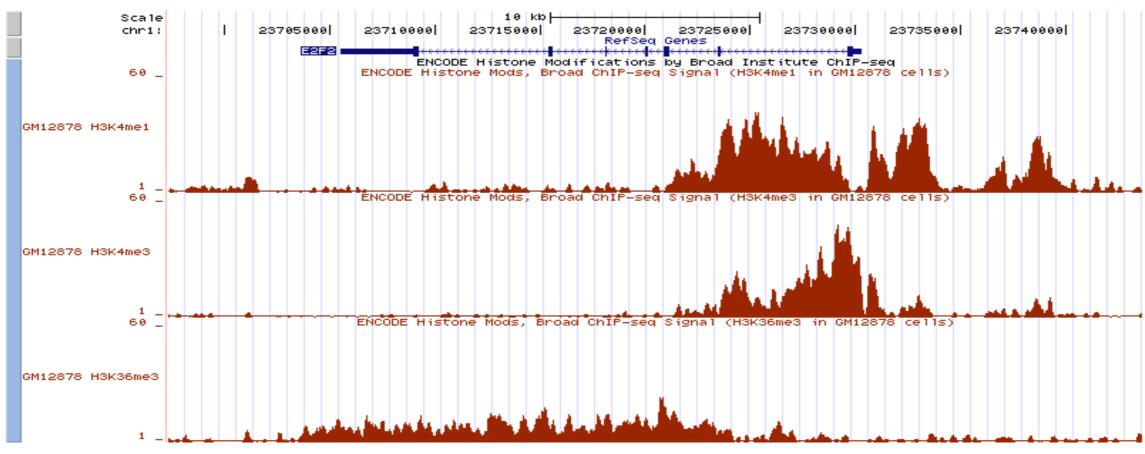
Nature Reviews | Genetics

ChIP-chip and ChIP-Seq technology overview



ChIP-Seq: Massively Parallel Next-gen Sequencing

ChIP-Seq Histone Modifications: What the raw data looks like

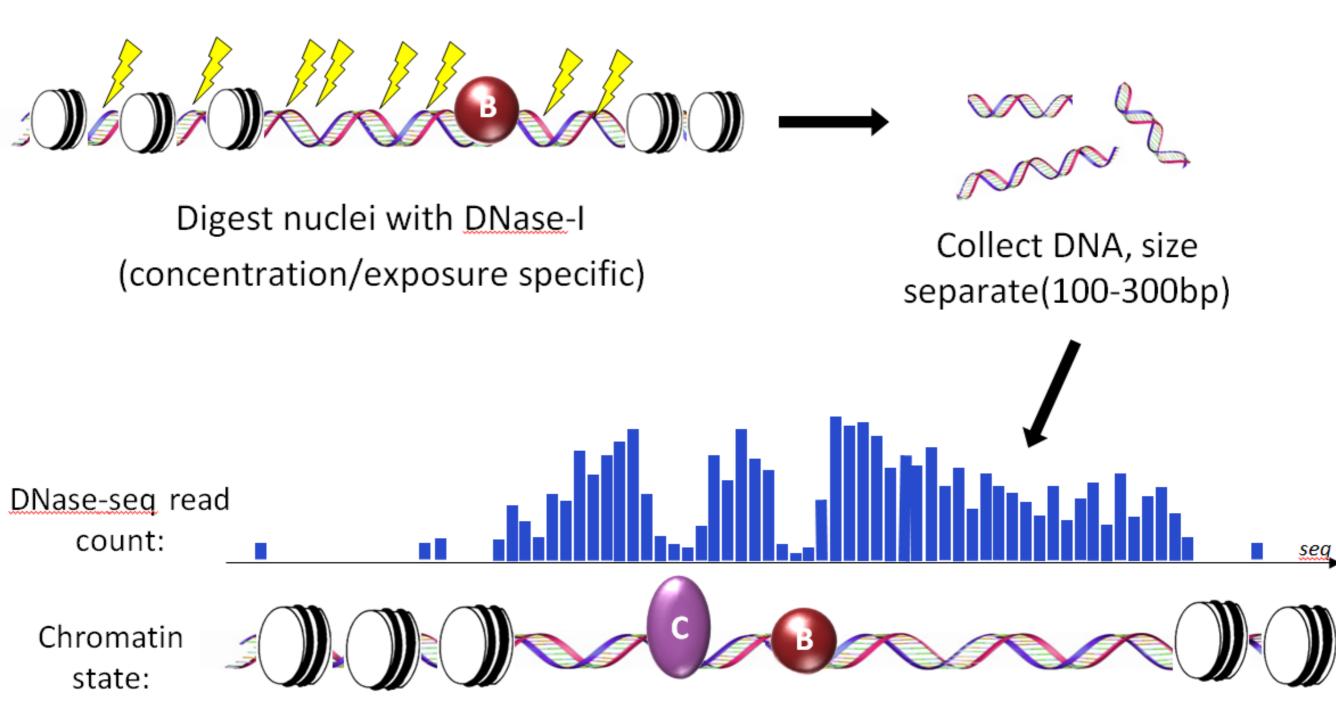


- Each sequence tag is 30 base pairs long
- Tags are mapped to unique positions in the ~3 billion base reference genome
- Number of reads depends on sequencing depth.
 Typically on the order of 10 million mapped reads.

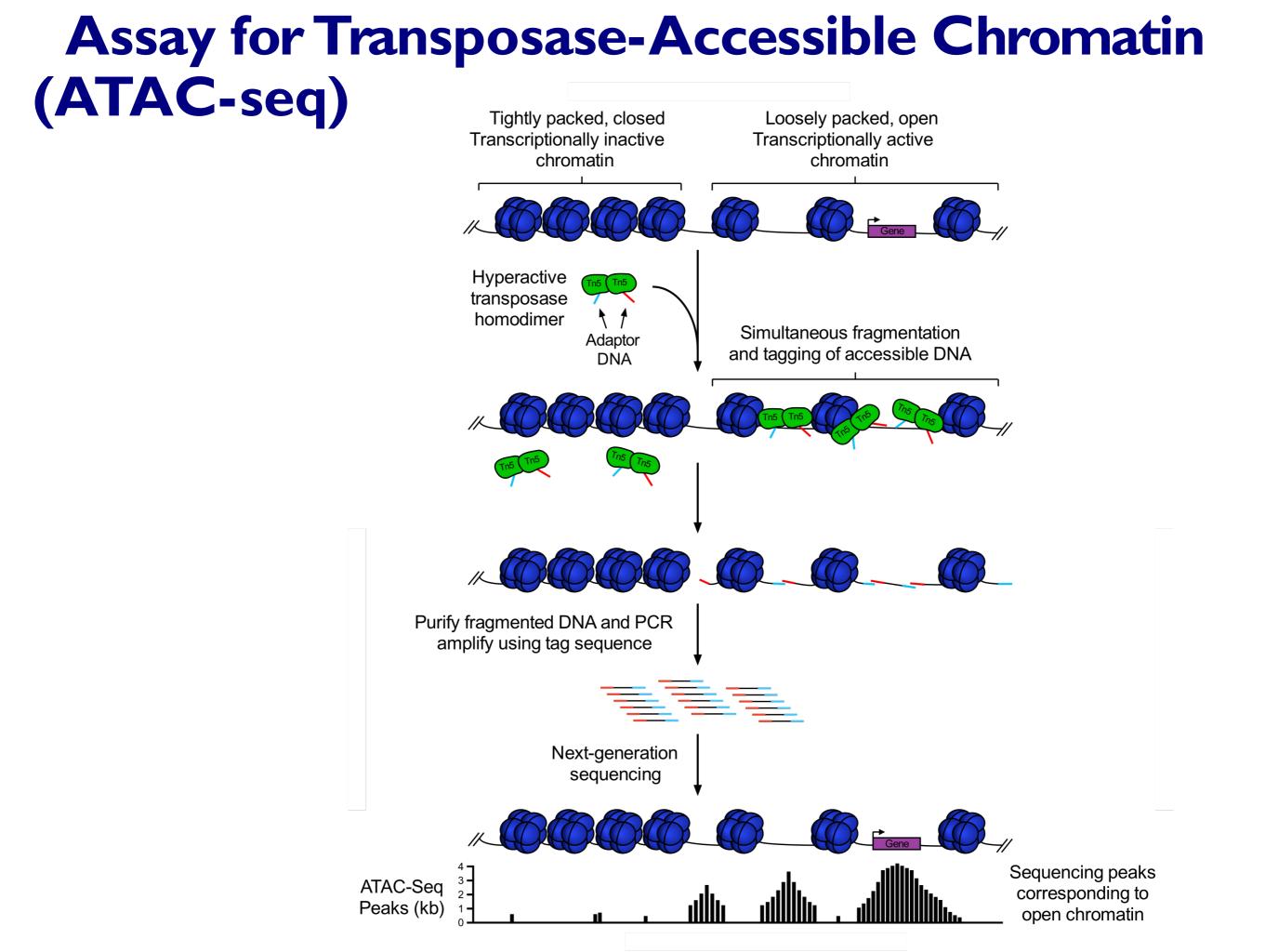
Chromatin accessibility can reveal TF binding

Sherwood, RI, et al. "Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape" Nat. Biotech 2014.

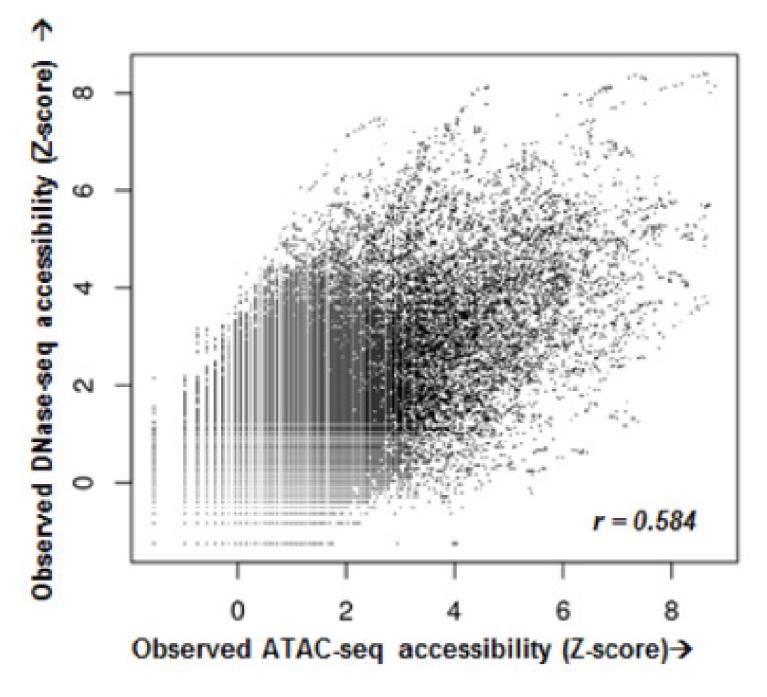
DNase-seq reveals genome protection profiles



Sequence (60-100M reads)

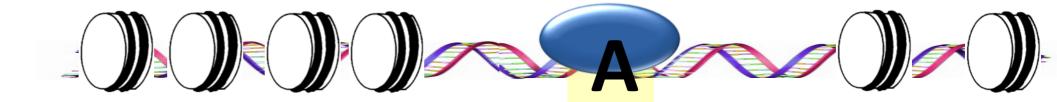


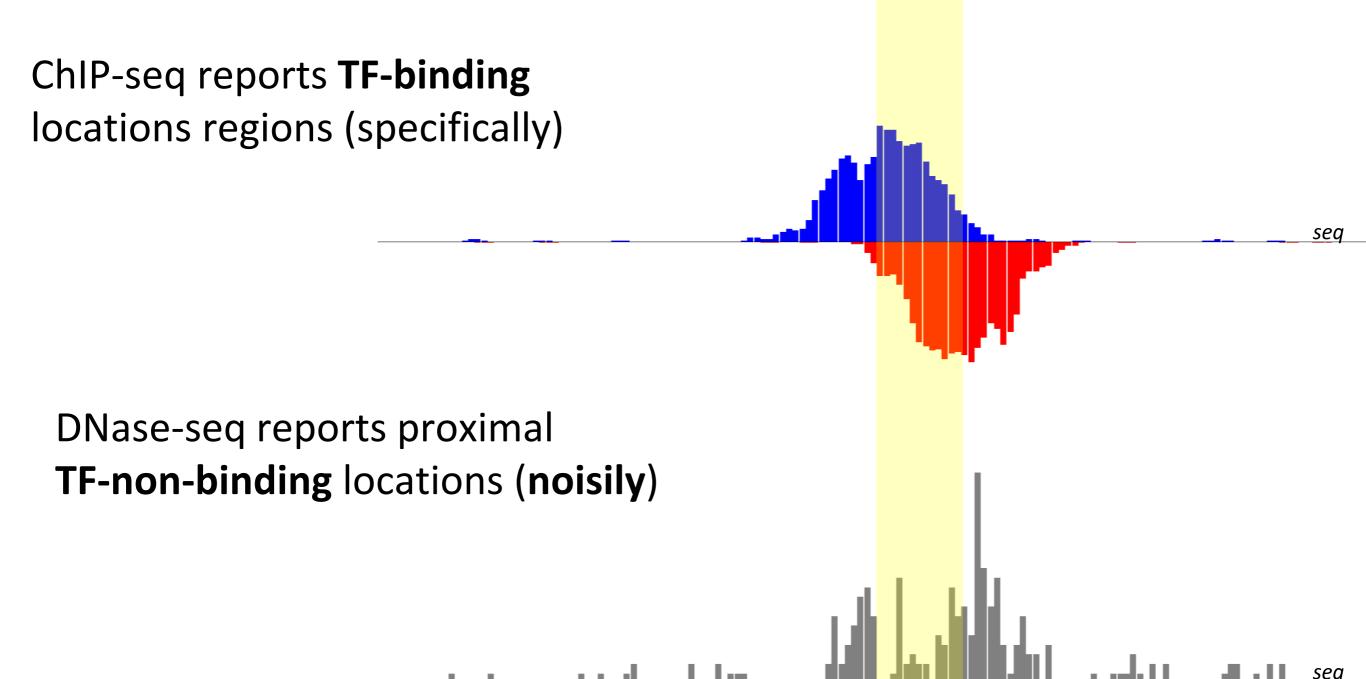
ATAC-seq and DNase-seq are not identical



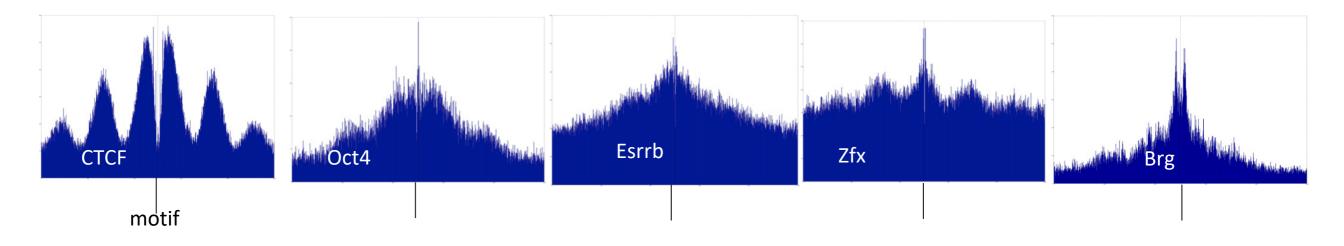
Hashimoto TB, et al. "A Synergistic DNA Logic Predicts Genome-wide Chromatin Accessibility" Genome Research 2016

DNase-seq is less defined evidence than ChIP-seq



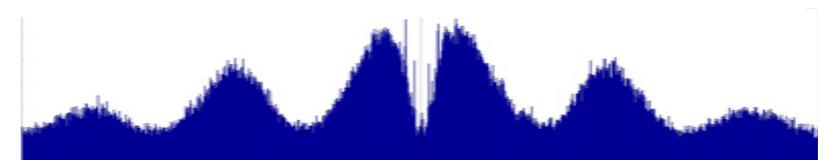


Bound factors leave distinct DNase-seq profiles



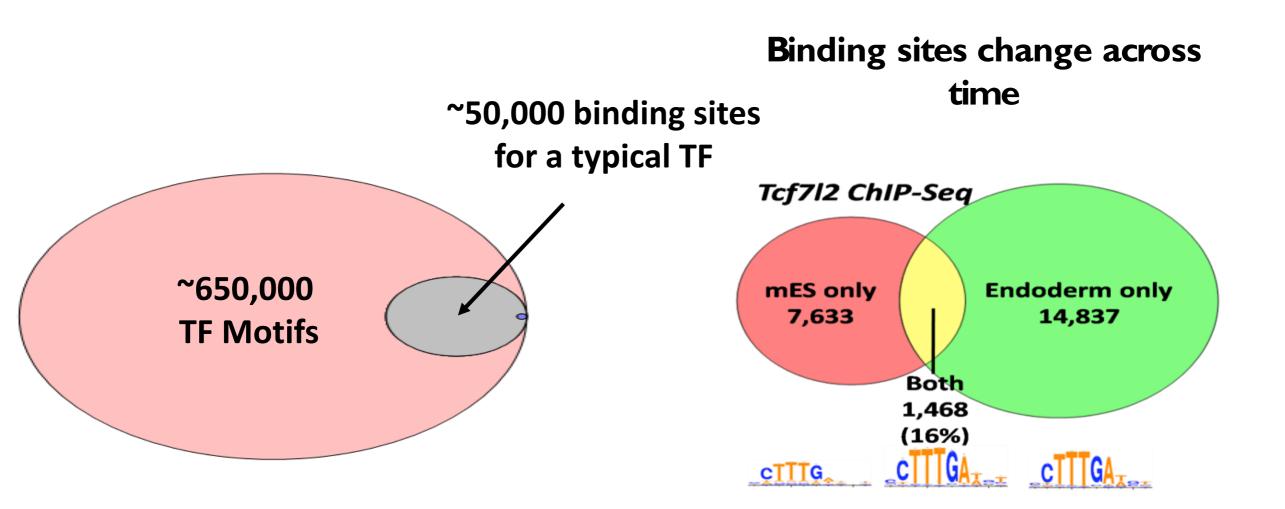
Individual binding site prediction is difficult

Individual CTCF:



Aggregate CTCF:

Motifs can predict TF binding



Chromatin accessibly influences transcription factor binding

- Modeling accessibility profiles yields binding predictions and pioneer factor discovery
- Asymmetric accessibility is induced by directional pioneers
- The binding of settler factors can be enabled by proximal pioneer factor binding

Sherwood, RI, et al. "Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape" Nat. Biotech 2014.

Deep Learning for Regulatory Genomics

1. Biological foundations: Building blocks of Gene Regulation

- Gene regulation: Cell diversity, Epigenomics, Regulators (TFs), Motifs, Disease role
- Probing gene regulation: TFs/histones: ChIP-seq, Accessibility: DNase/ATAC-seq

2. Classical methods for Regulatory Genomics and Motif Discovery

- Enrichment-based motif discovery: Expectation Maximization, Gibbs Sampling
- Experimental: PBMs, SELEX. Comparative genomics: Evolutionary conservation.

3. Regulatory Genomics CNNs (Convolutional Neural Networks): Foundations

- Key idea: pixels ⇔ DNA letters. Patches/filters ⇔ Motifs. Higher ⇔ combinations
- Learning convolutional filters 🗇 Motif discovery. Applying them 🗇 Motif matches

4. Regulatory Genomics CNNs/RNNs in Practice: Diverse Architectures

- DeepBind: Learn motifs, use in (shallow) fully-connected layer, mutation impact
- DeepSea: Train model directly on mutational impact prediction
- Basset: Multi-task DNase prediction in 164 cell types, reuse/learn motifs
- ChromPuter: Multi-task prediction of different TFs, reuse partner motifs
- DeepLIFT: Model interpretation based on neuron activation properties
- DanQ: Recurrent Neural Network for sequential data analysis

5. Guest Lecture: Anshul Kundaje, Stanford, Deep Learning for Reg. Genomics

6. Guest Lecture: Avantika Lal, Nvidia, Deep Learning for ATAC/scATAC

2. Classical regulatory genomics (before Deep Learning)

Enrichment-based discovery methods

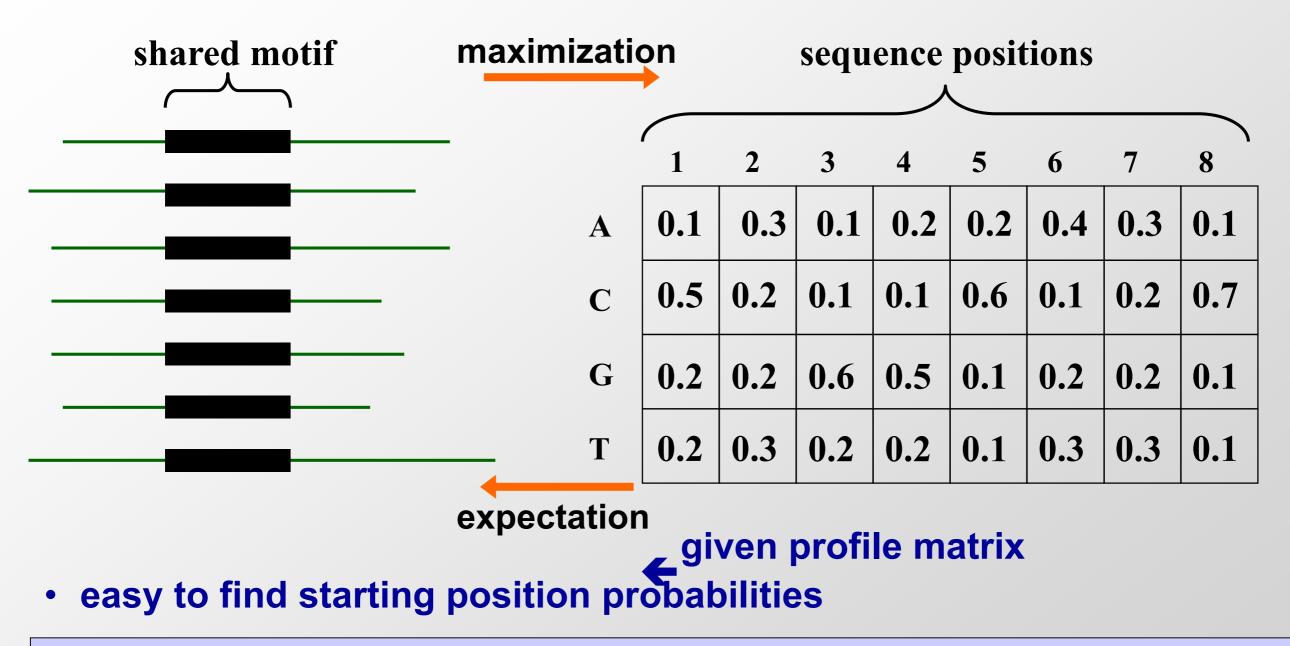
Given a set of co-regulated/functionally related genes, find common motifs in their promoter regions



- Align the promoters to each other using local alignment
- Use expert knowledge for what motifs should look like
- Find 'median' string by enumeration (motif/sample driven)
- Start with conserved blocks in the upstream regions

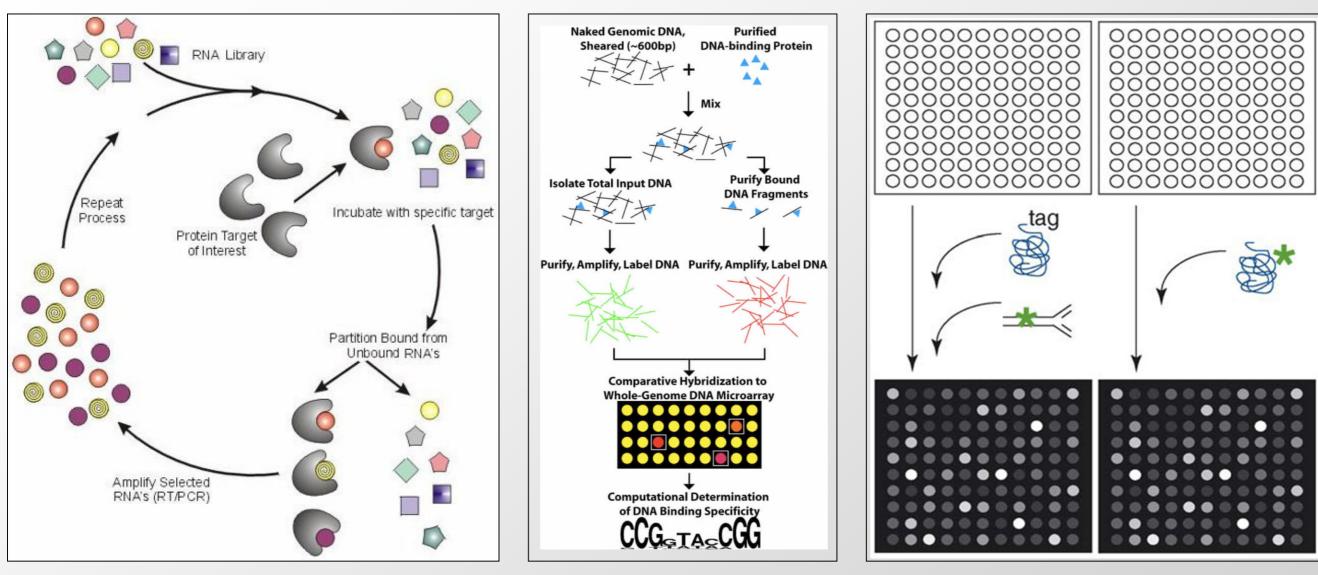
Starting positions \Leftrightarrow Motif matrix

given <u>aligned</u> sequences → easy to compute profile matrix



Key idea: Iterative procedure for estimating both, given uncertainty (learning problem with hidden variables: the starting positions)

Experimental factor-centric discovery of motifs



SELEX (Systematic Evolution of Ligands by Exponential Enrichment; Klug & Famulok, 1994). DIP-Chip (DNAimmunoprecipitation with microarray detection; Liu et al., 2005) PBMs (Protein binding microarrays; Mukherjee, 2004) Double stranded DNA arrays

Approaches to regulatory motif discovery

- **Expectation Maximization (e.g. MEME)** - Iteratively refine positions / motif profile **Region-based** Gibbs Sampling (e.g. AlignACE) Iteratively sample positions / motif profile
 - Enumeration with wildcards (e.g. Weeder) Allows global enrichment/background score
 - Peak-height correlation (e.g. MatrixREDUCE) Alternative to cutoff-based approach

Genome-wide

motif

discovery

Conservation-based discovery (e.g. MCS) - Genome-wide score, up-/down-stream bias

In vitro / trans

Protein Domains (e.g. PBMs, SELEX) In vitro motif identification, seq-/array-based

Deep Learning for Regulatory Genomics

1. Biological foundations: Building blocks of Gene Regulation

- Gene regulation: Cell diversity, Epigenomics, Regulators (TFs), Motifs, Disease role
- Probing gene regulation: TFs/histones: ChIP-seq, Accessibility: DNase/ATAC-seq

2. Classical methods for Regulatory Genomics and Motif Discovery

- Enrichment-based motif discovery: Expectation Maximization, Gibbs Sampling
- Experimental: PBMs, SELEX. Comparative genomics: Evolutionary conservation.

3. Regulatory Genomics CNNs (Convolutional Neural Networks): Foundations

- Key idea: pixels ⇔ DNA letters. Patches/filters ⇔ Motifs. Higher ⇔ combinations
- Learning convolutional filters <> Motif discovery. Applying them <> Motif matches

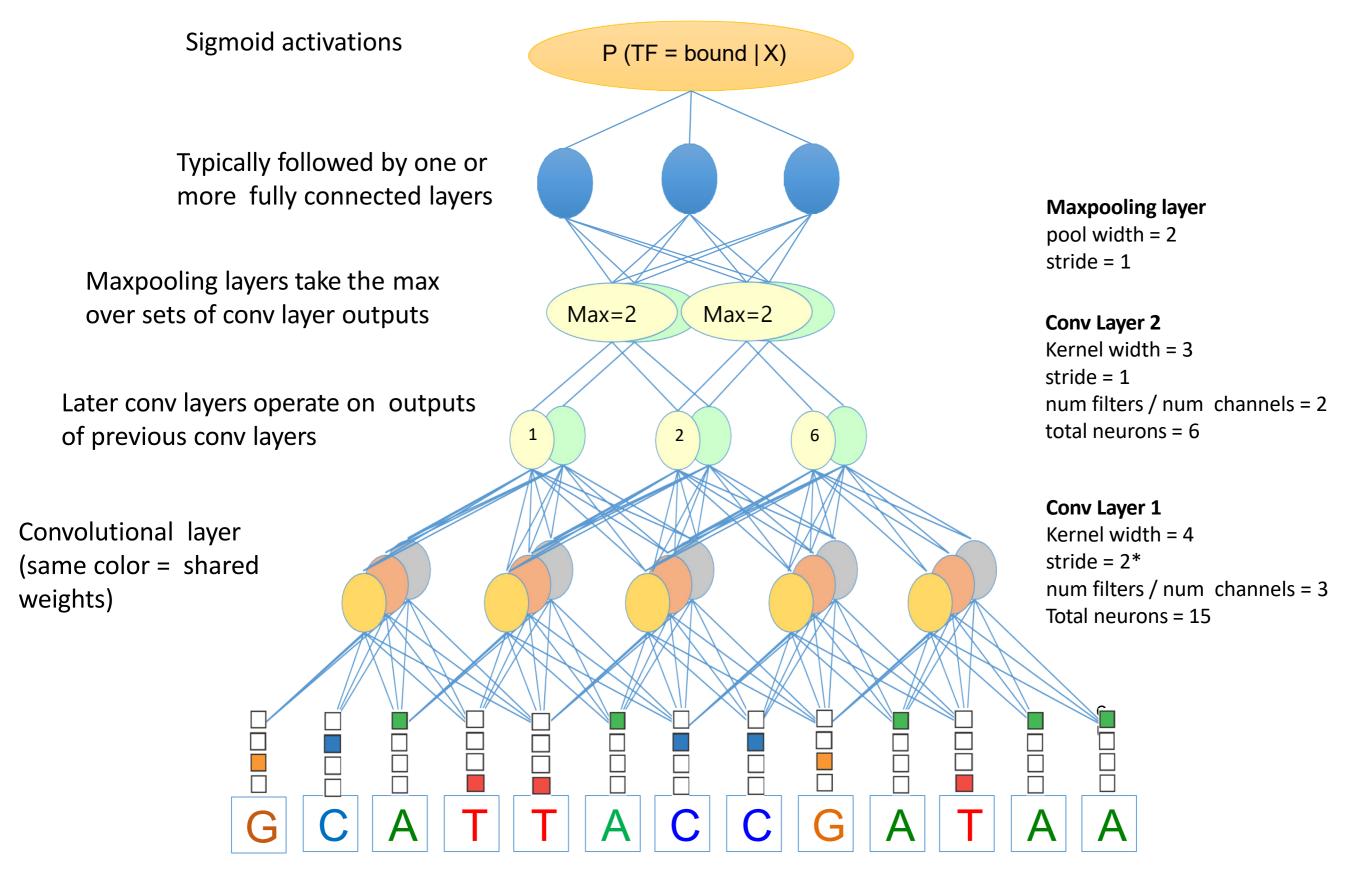
4. Regulatory Genomics CNNs/RNNs in Practice: Diverse Architectures

- DeepBind: Learn motifs, use in (shallow) fully-connected layer, mutation impact
- DeepSea: Train model directly on mutational impact prediction
- Basset: Multi-task DNase prediction in 164 cell types, reuse/learn motifs
- ChromPuter: Multi-task prediction of different TFs, reuse partner motifs
- DeepLIFT: Model interpretation based on neuron activation properties
- DanQ: Recurrent Neural Network for sequential data analysis

5. Guest Lecture: Anshul Kundaje, Stanford, Deep Learning for Reg. Genomics

6. Guest Lecture: Avantika Lal, Nvidia, Deep Learning for ATAC/scATAC

Deep convolutional neural network

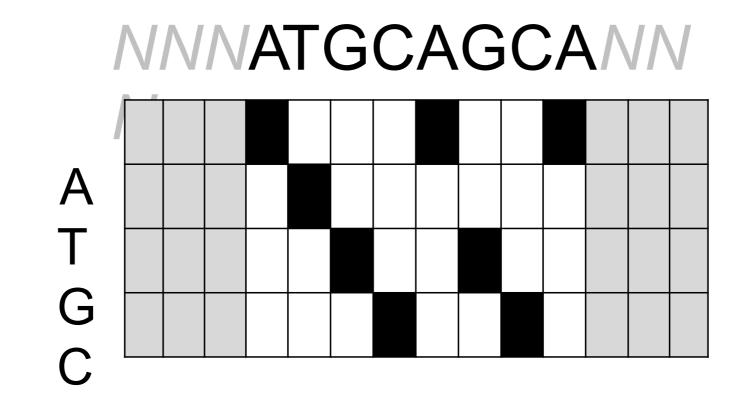


*for genomics, a stride of 1 for conv layers is recommended

3a. CNNs for Regulatory Genomics Foundations (Low-level features)

An example of using CNN to model DNA sequence

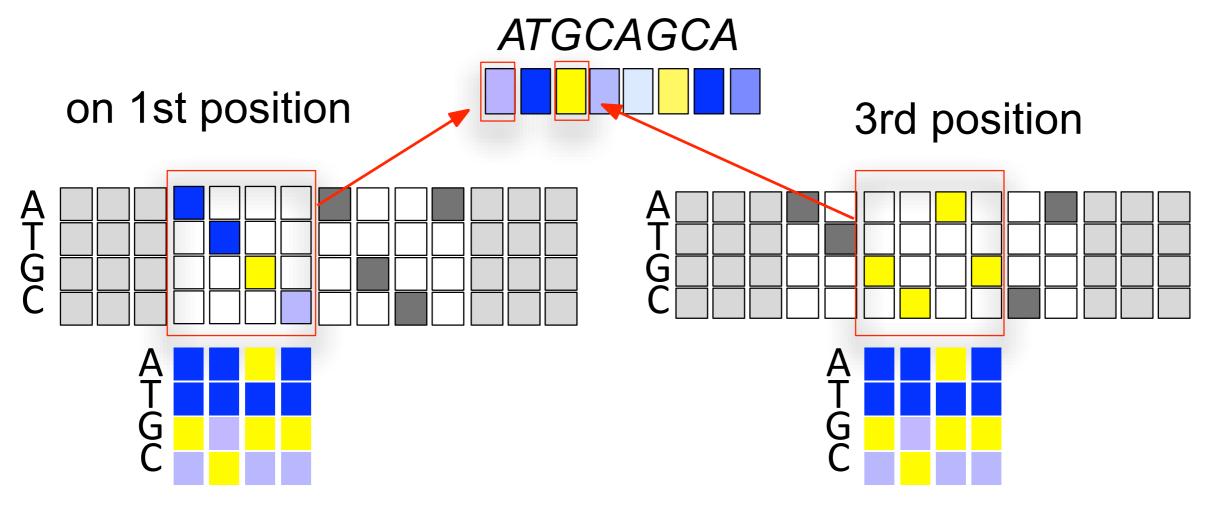
Representing DNA sequence as 2D matrix:



Matrix representation of DNA sequence (darker = stronger)

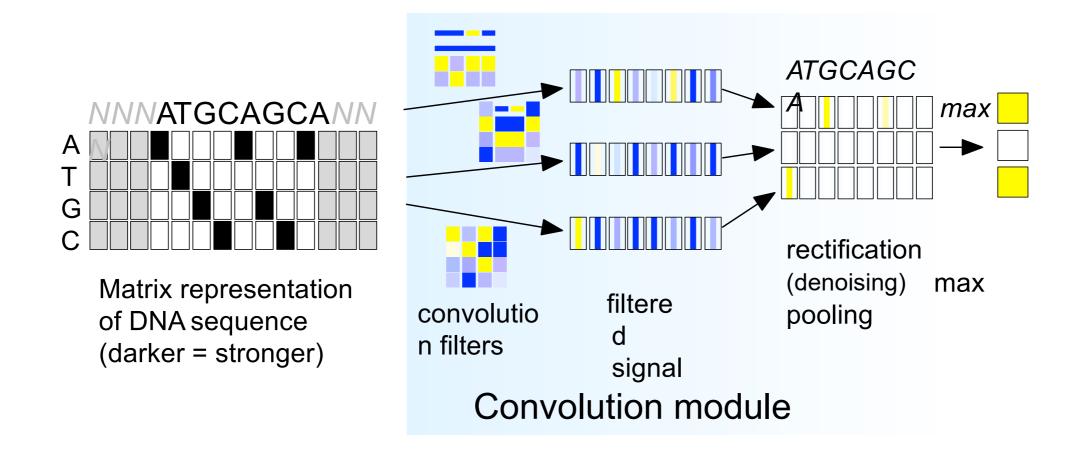
Convolution – extracting invariant feature

Applying 4 bp sequence filter along the DNA matrix:



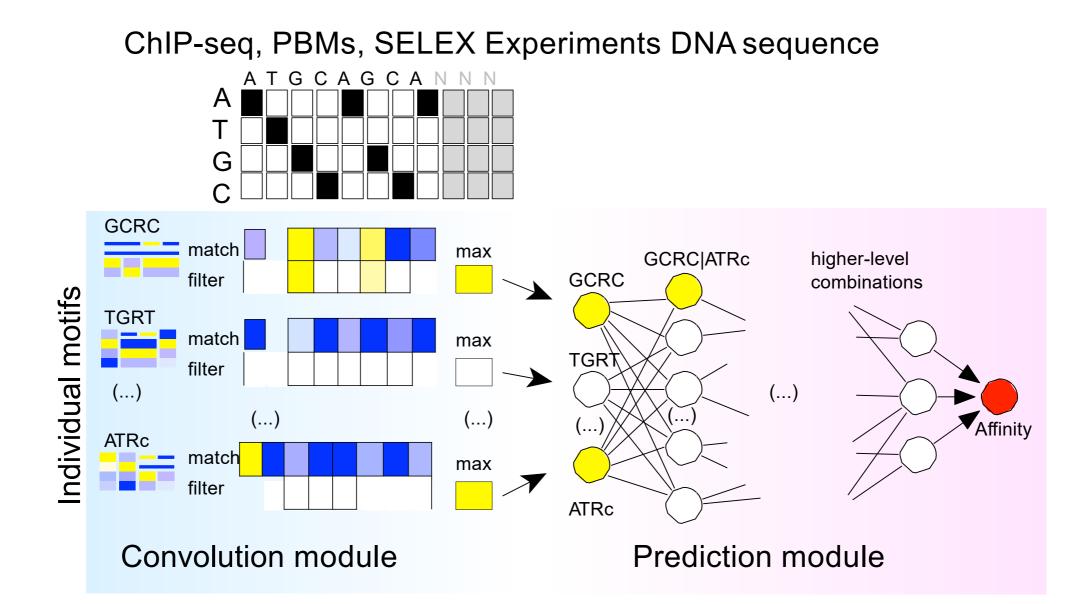
Yellow = high activity; blue = low activity

Convolution – extracting invariant feature

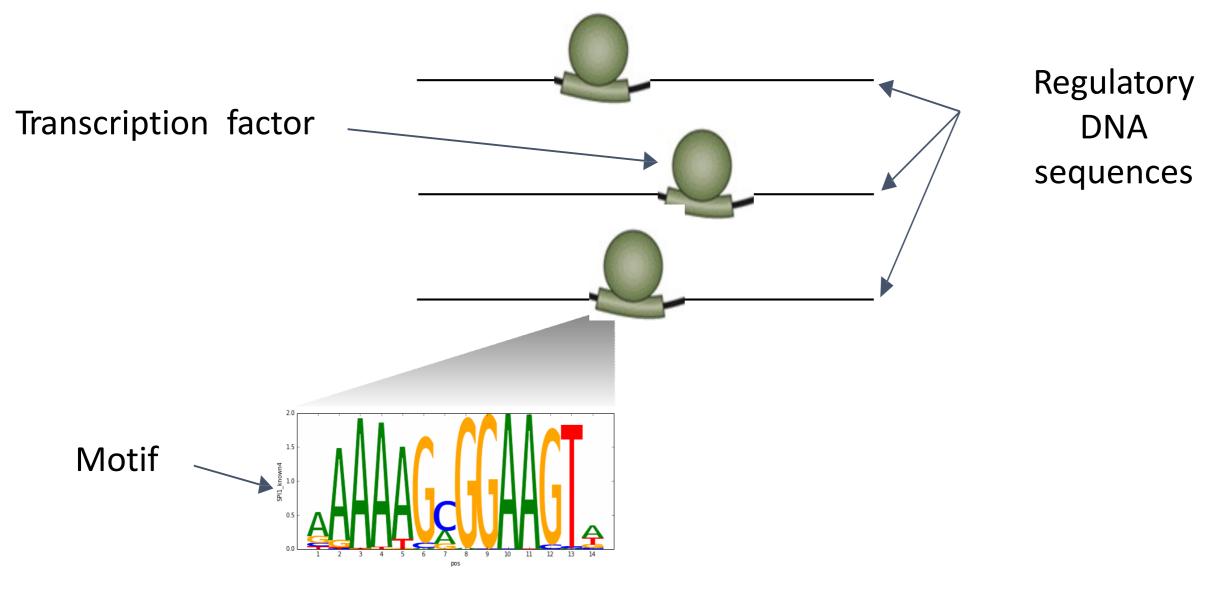


Rectification = ignore signals below some threshold. Pooling = summary of each channel by max or average.

Prediction using extracted features map



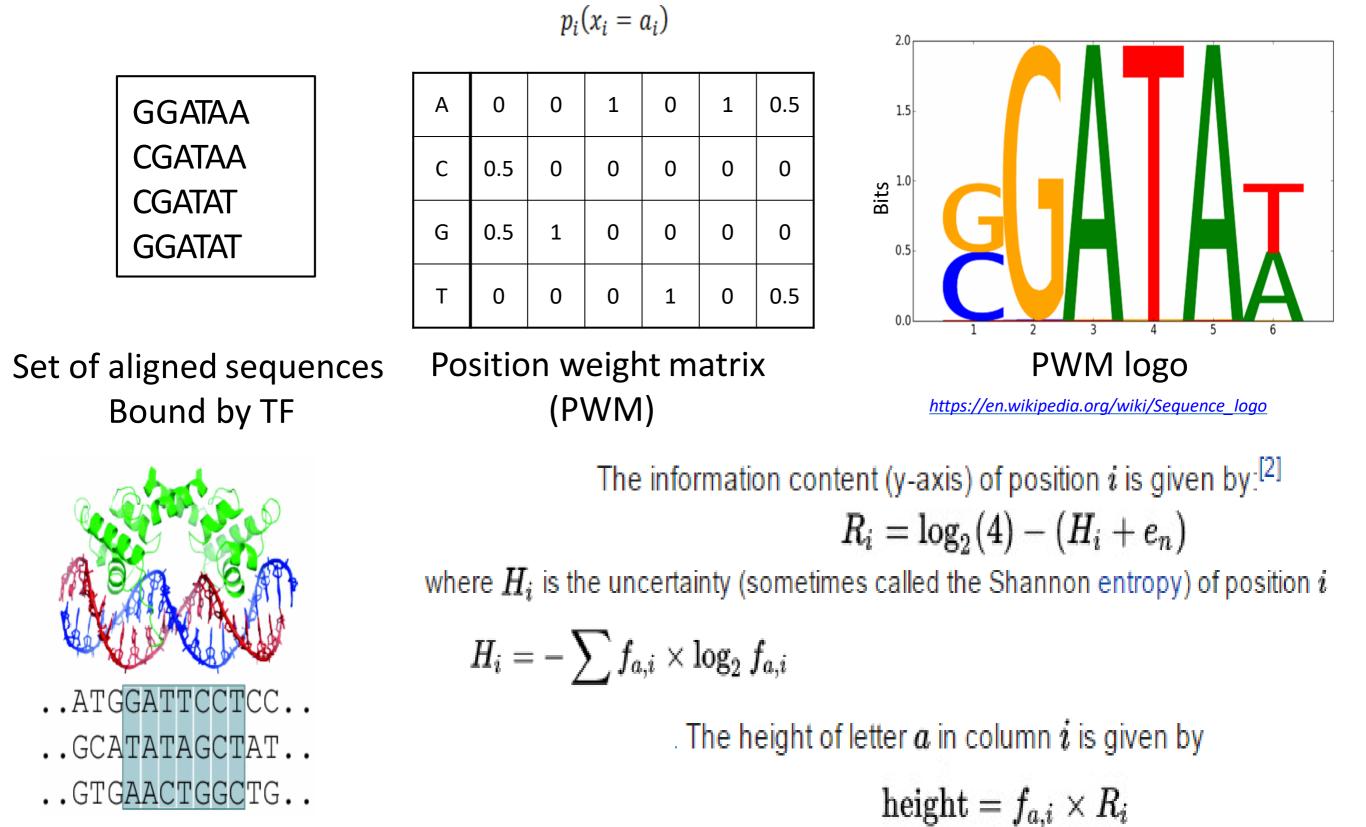
[Park and Kellis, 2015]



TRANSCRIPTION FACTOR BINDING

Regulatory proteins called <u>transcription factors (TFs)</u> bind to high affinity sequence patterns (<u>motifs</u>) in regulatory DNA

Sequence motifs: PWM



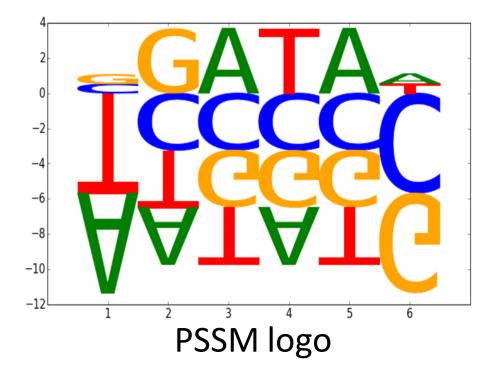
Sequence motifs: PSSM

Accounting for genomic background nucleotide distribution

Position-specific scoring matrix (PSSM)

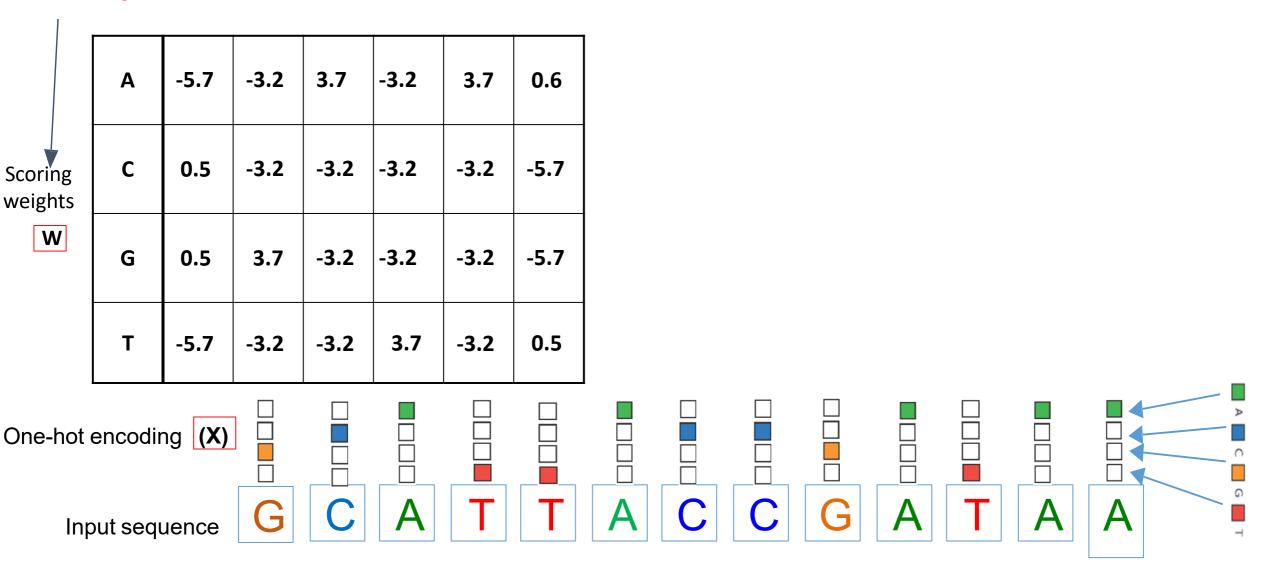
$$\log_2\left(\frac{p_i(x_i=a_i)}{p_{bg}(x_i=a_i)}\right)$$

А	-5.7	-3.2	3.7	-3.2	3.7	0.6
с	0.5	-3.2	-3.2	-3.2	-3.2	-5.7
G	0.5	3.7	-3.2	-3.2	-3.2	-5.7
т	-5.7	-3.2	-3.2	3.7	-3.2	0.5

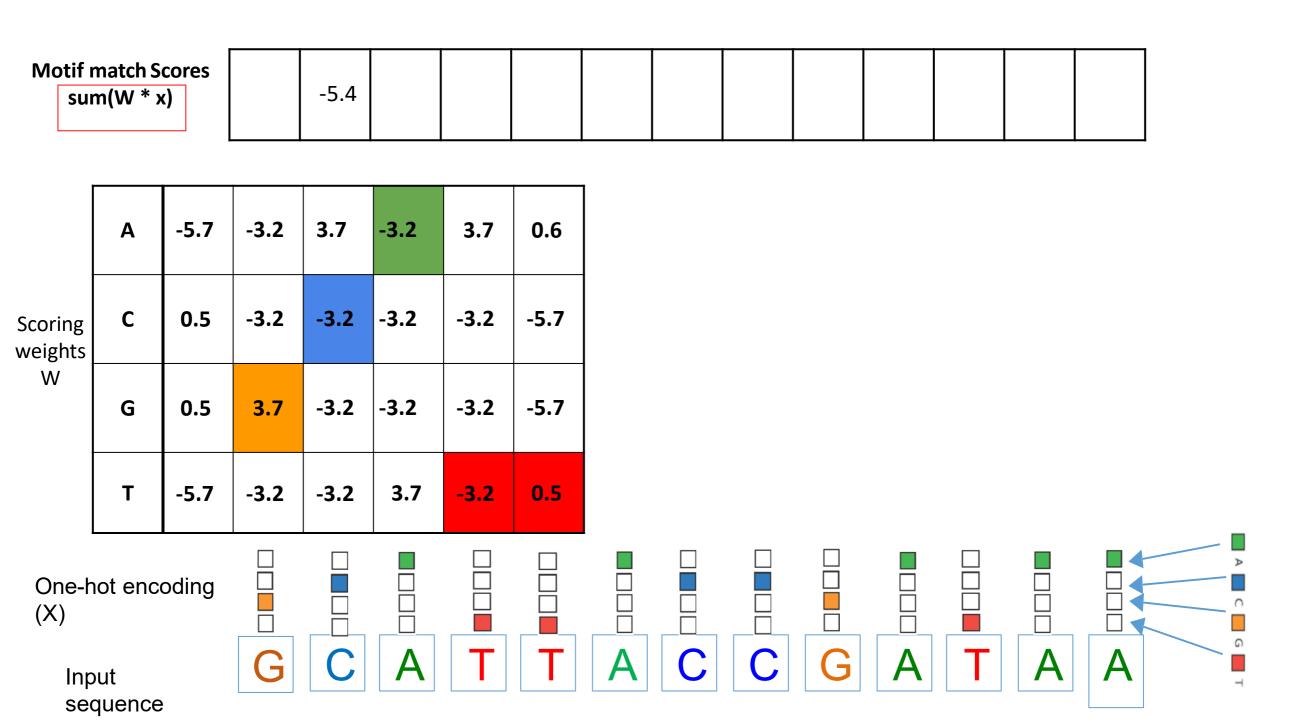


Scoring a sequence with a motif PSSM

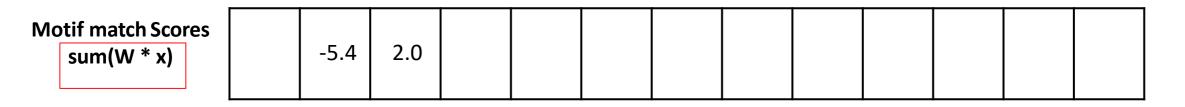
PSSM parameters

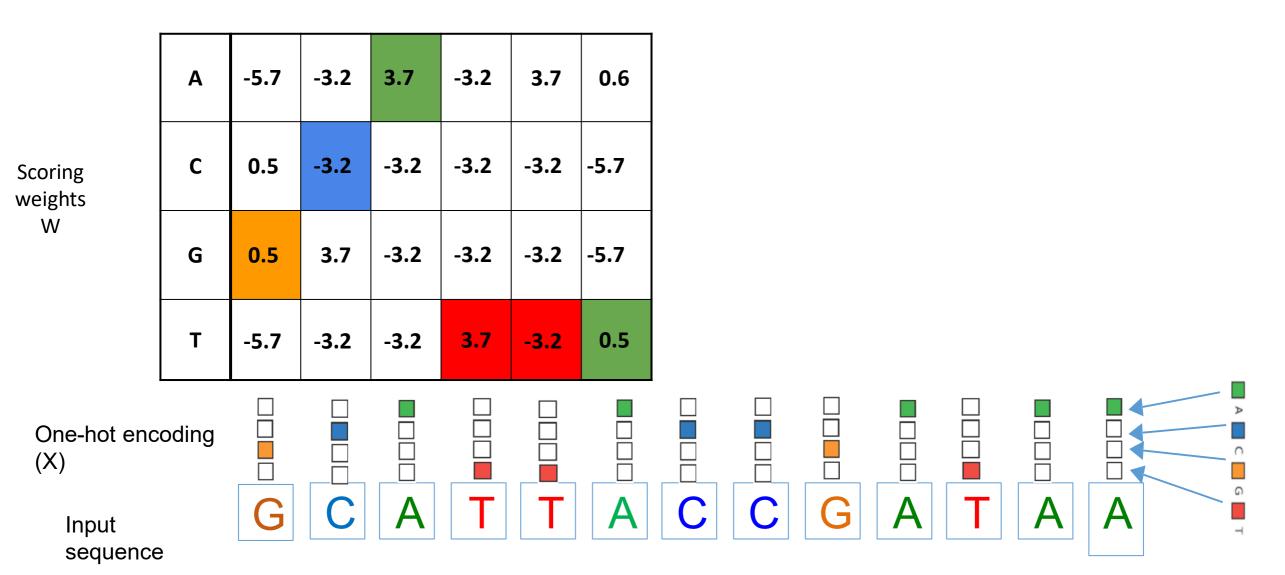


Convolution: Scoring a sequence with a PSSM

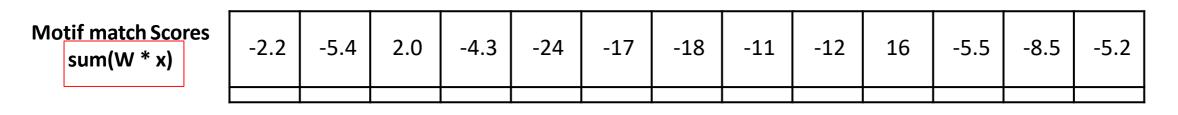


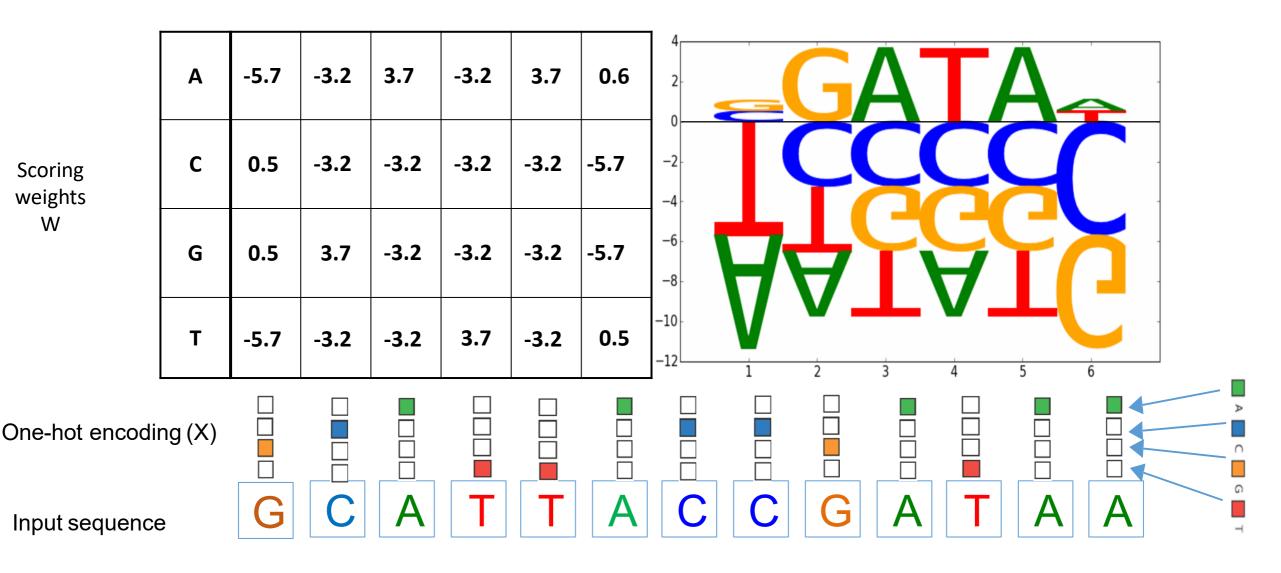
Convolution





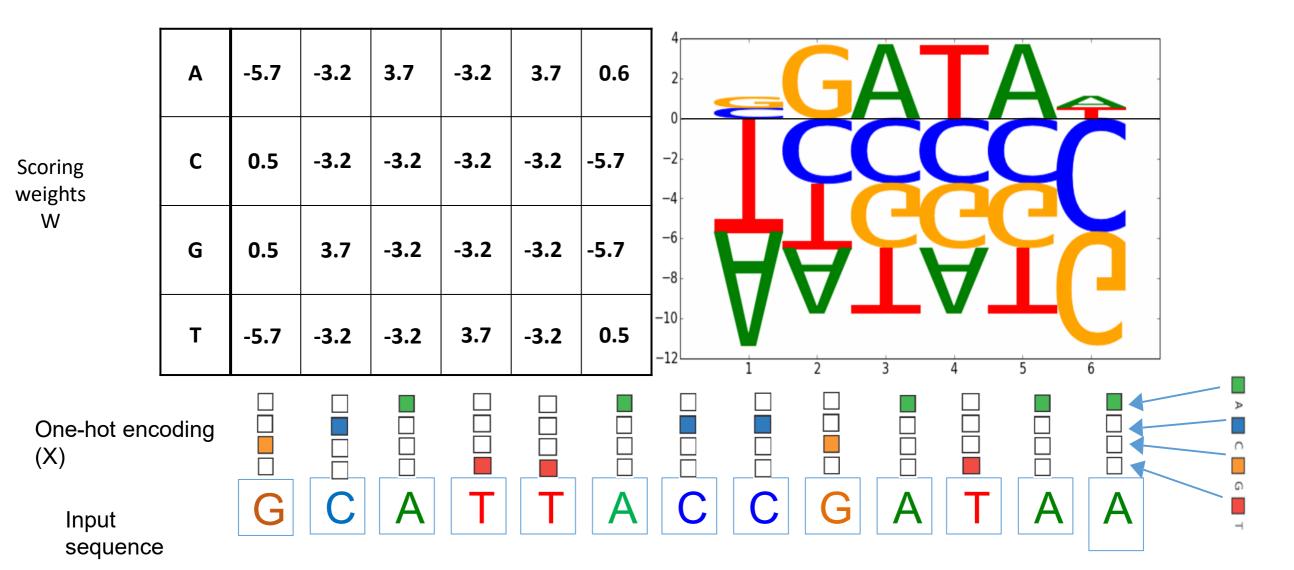
Convolution





Thresholding scores

Thresholded Motif Scores max(0, W*x)	0	0	2.0	0	0	0	0	0	0	16	0	0	0
Motif match Scores W*x	-2.2	-5.4	2.0	-4.3	-24	-17	-18	-11	-12	16	-5.5	-8.5	-5.2



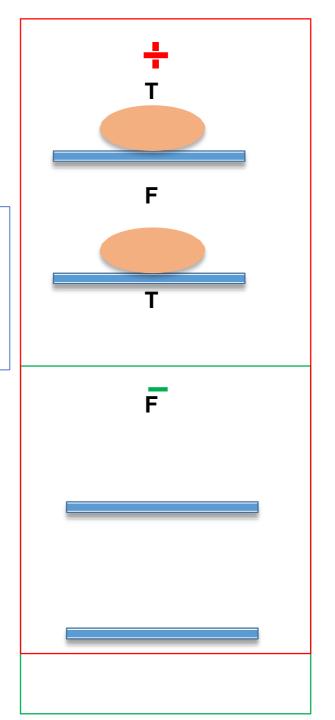
3b. CNNs for Regulatory Genomics Foundations (Higher-level learning)

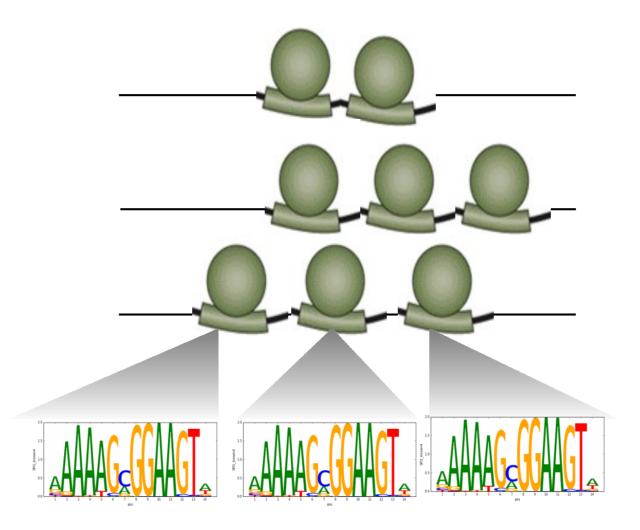
Learning patterns in regulatory DNA sequence

 Positive class of genomic sequences bound a transcription factor of interest

Can we learn patterns in the DNA sequence that distinguish these 2 classes of genomic sequences?

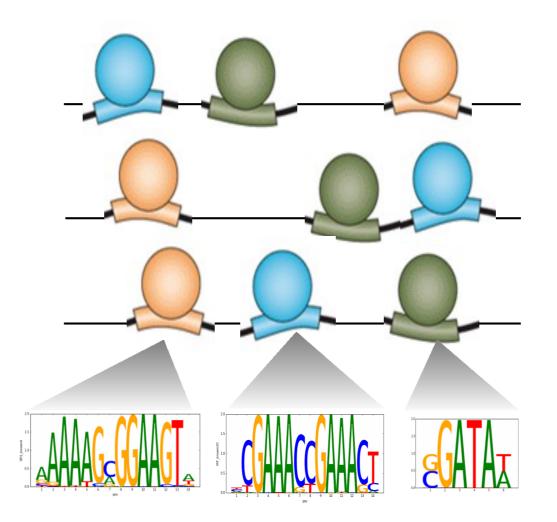
 Negative class of genomic sequences not bound by a transcription factor of interest





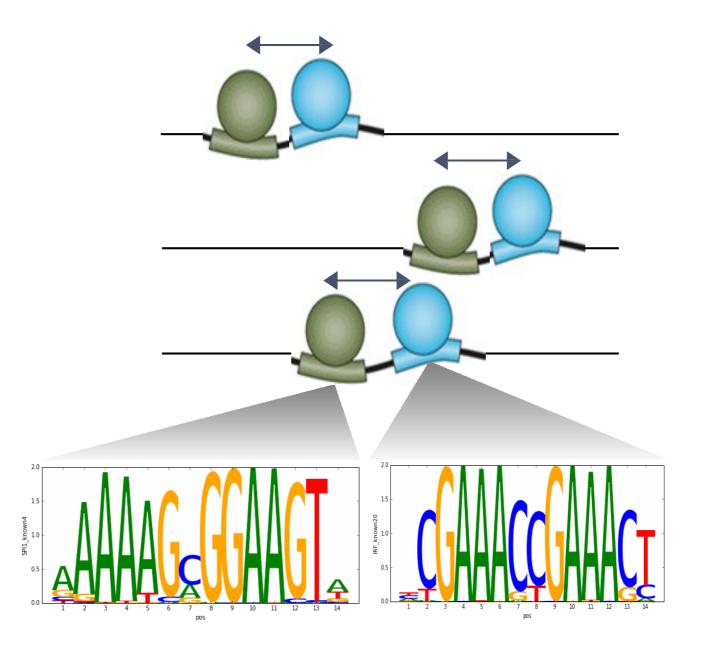
HOMOTYPIC MOTIF DENSITY

Regulatory sequences often contain <u>more than one</u> <u>binding instance</u> of a TF resulting in <u>homotypic</u> <u>clusters of motifs of the same TF</u>



HETEROTYPIC MOTIF COMBINATIONS

Regulatory sequences often bound by <u>combinations of TFs</u> resulting in <u>heterotypic clusters of motifs of different TFs</u>



SPATIAL GRAMMARS OF HETEROTYPIC MOTIF COMBINATIONS

Regulatory sequences are often bound by <u>combinations of TFs</u> with specific <u>spatial and positional constraints</u> resulting in distinct <u>motif grammars</u>

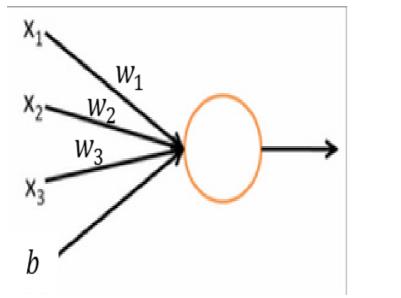
A simple classifier (An artificial neuron)

$$Y = F(x_1, x_2, x_3)$$
parameters

$$Z = w_1 \cdot x_1 + w_2 \cdot x_2 + w_3 \cdot x_3 + b$$

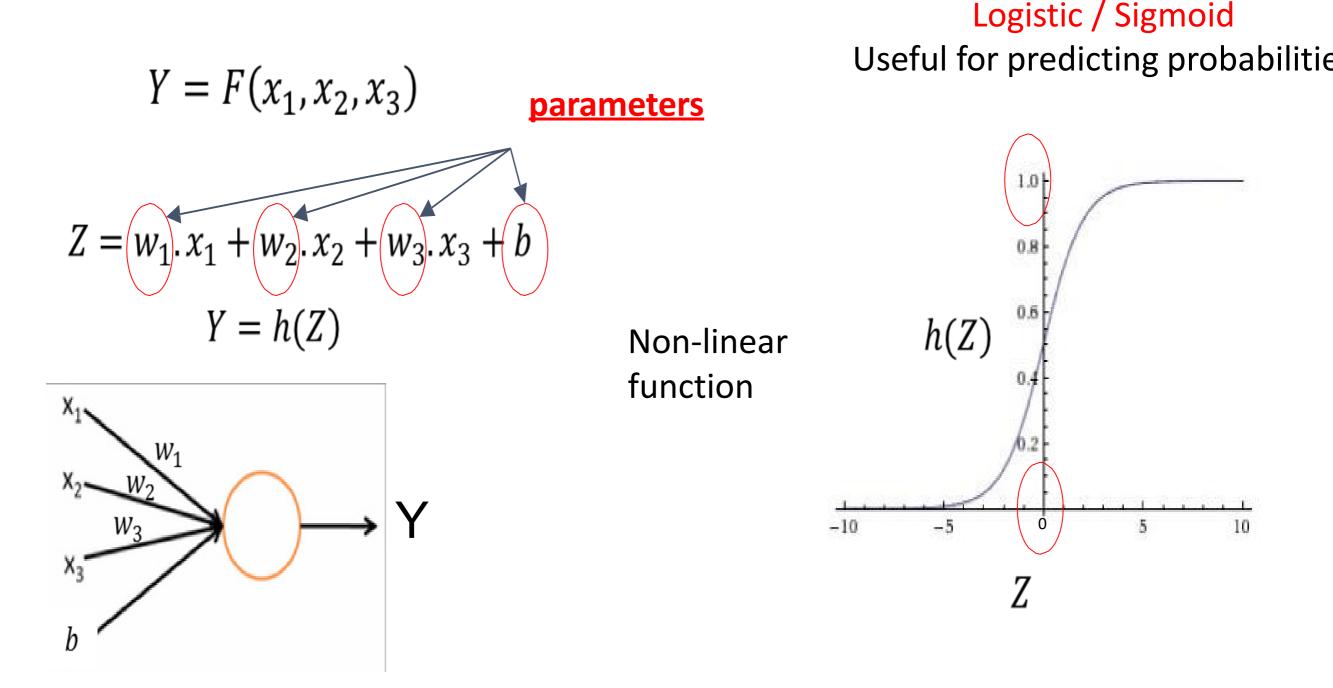
Ζ

Linear function



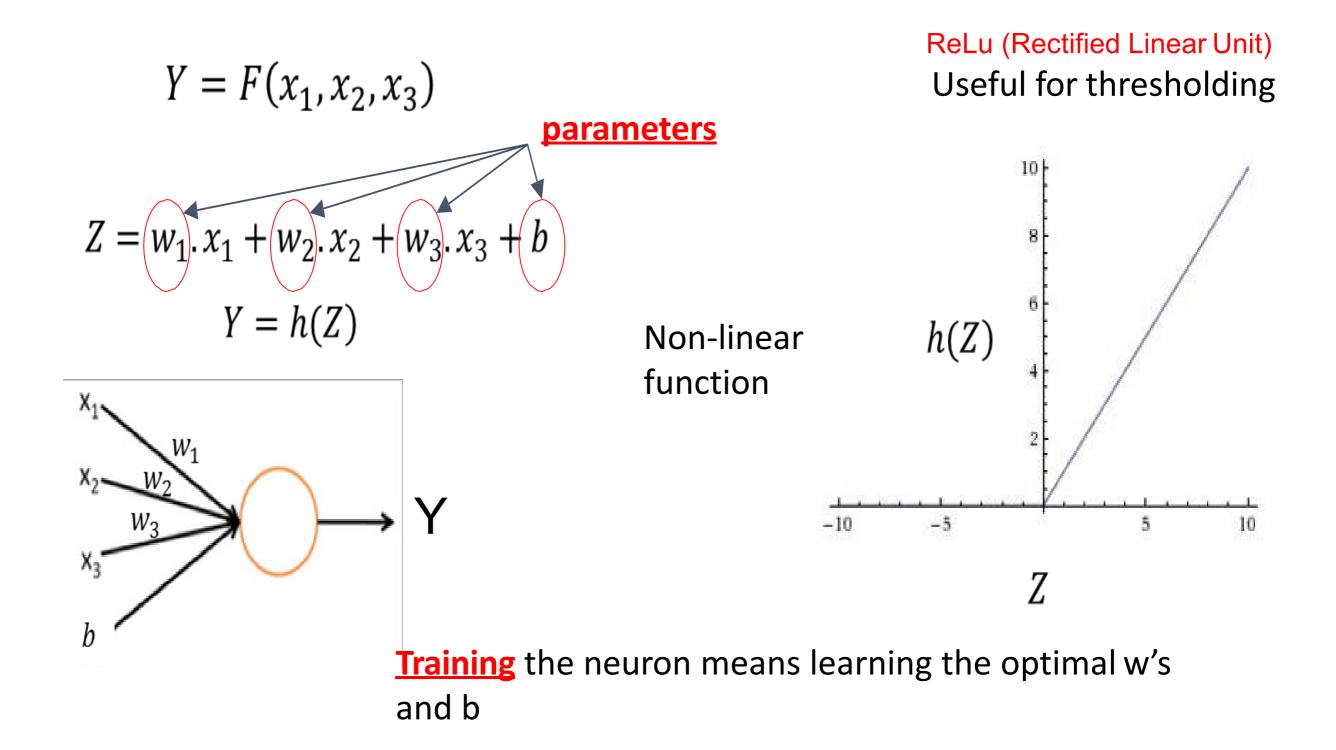
Training the neuron means learning the optimal w's and b

A simple classifier (An artificial neuron)

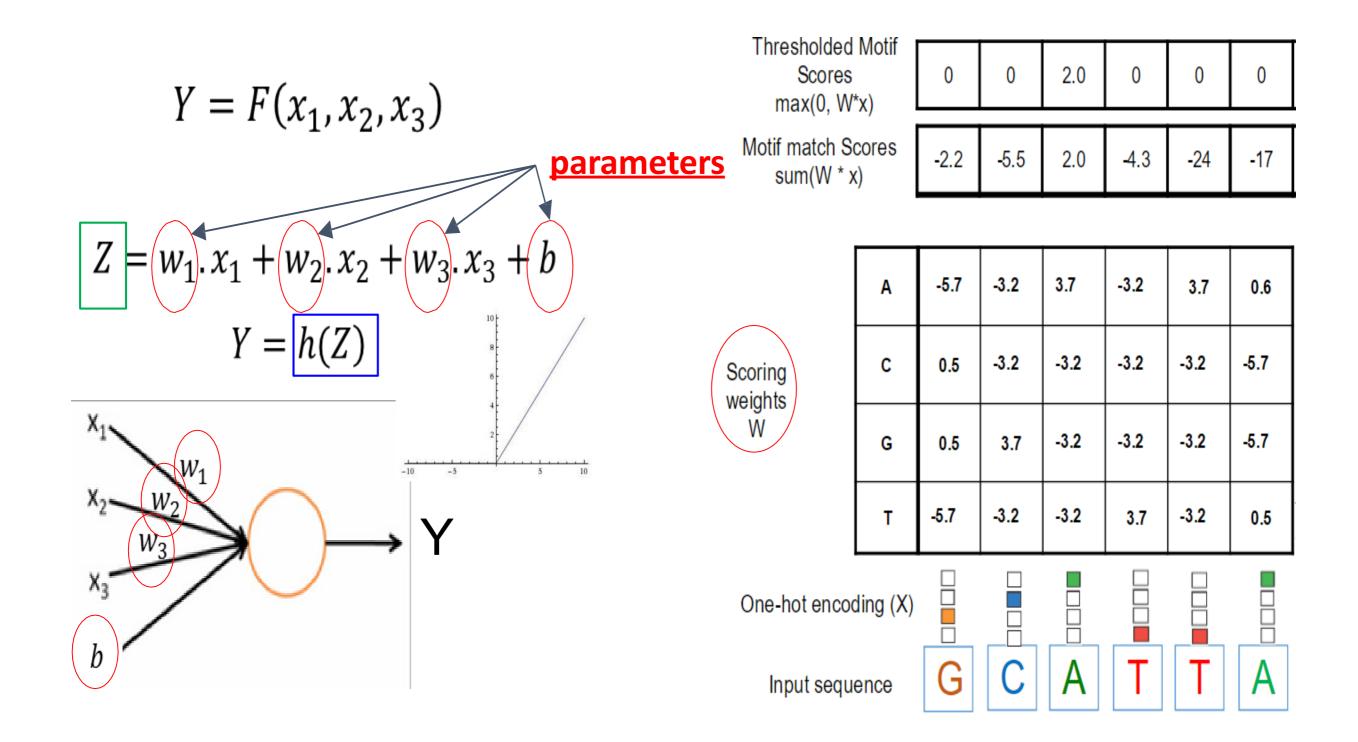


Training the neuron means learning the optimal w's and b

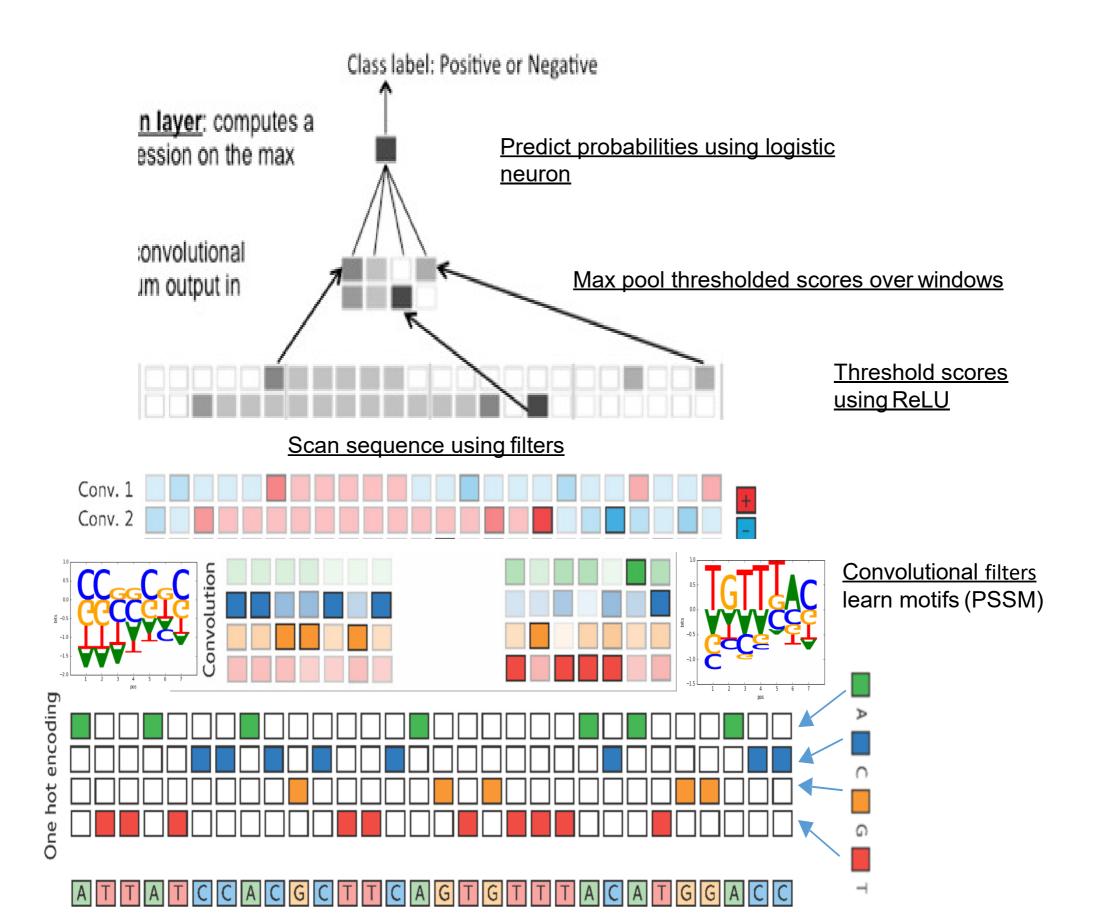
A simple classifier (An artificial neuron)



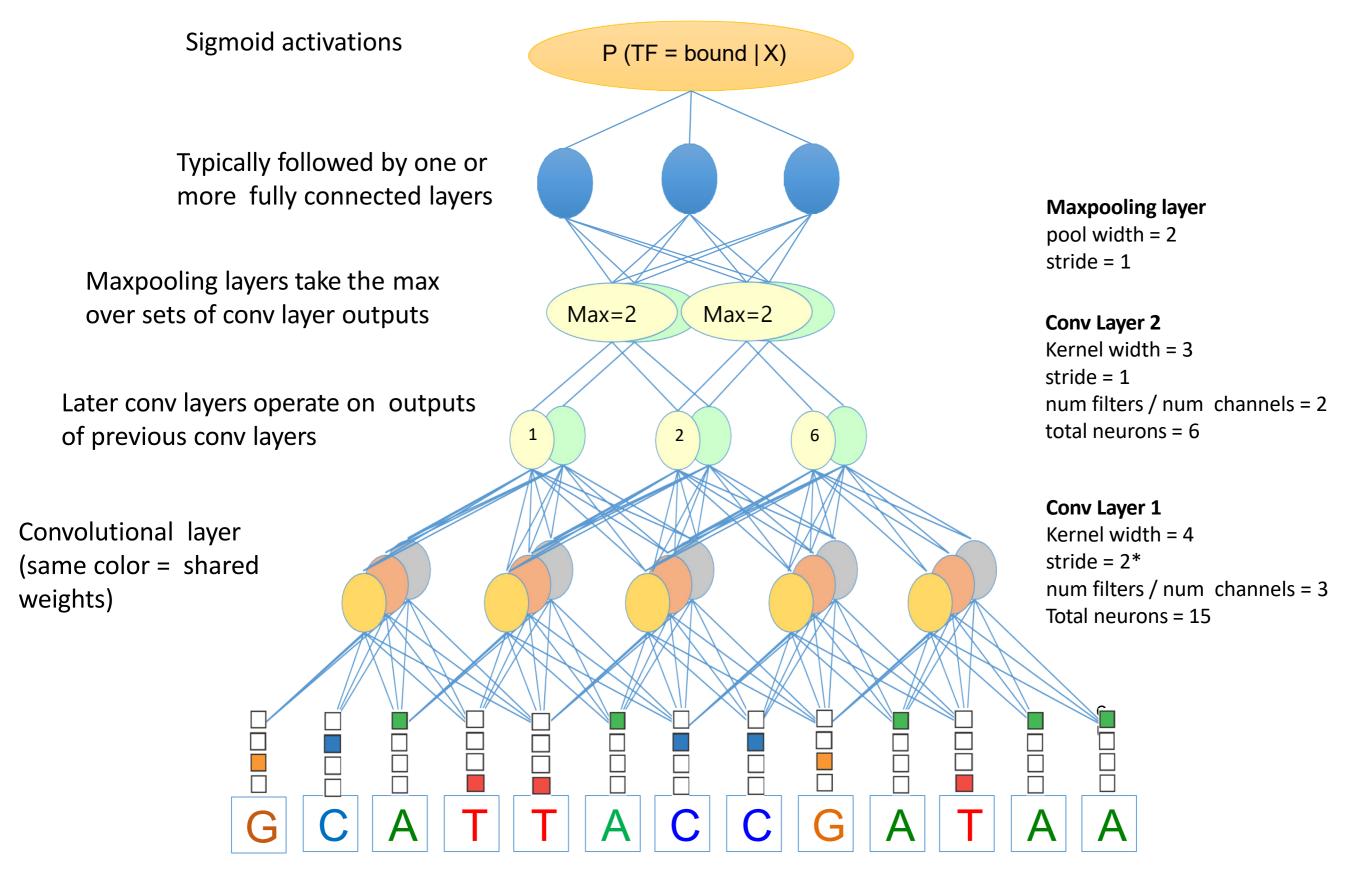
Artificial neuron can represent a motif



Biological motivation of Deep CNN

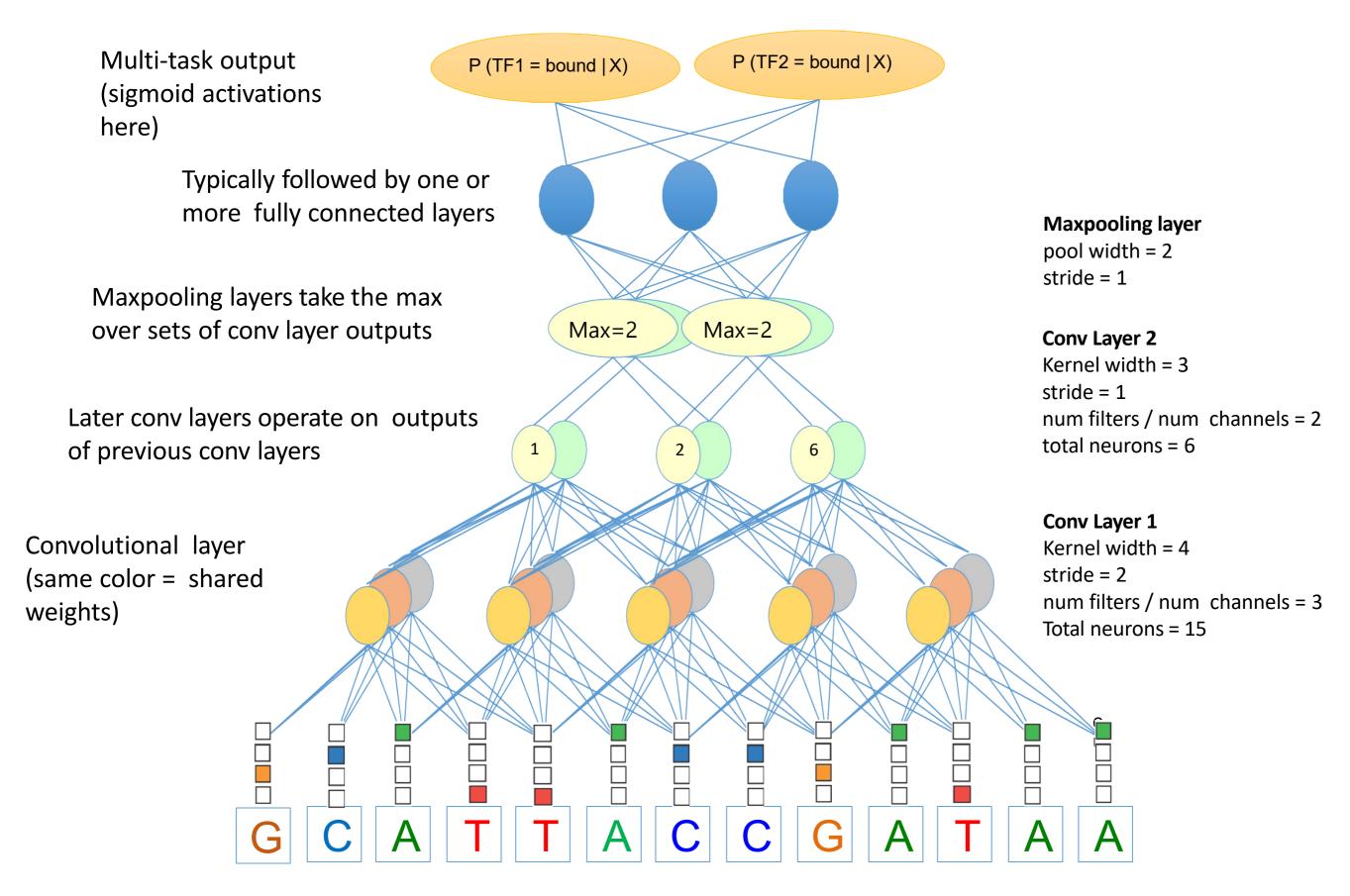


Deep convolutional neural network

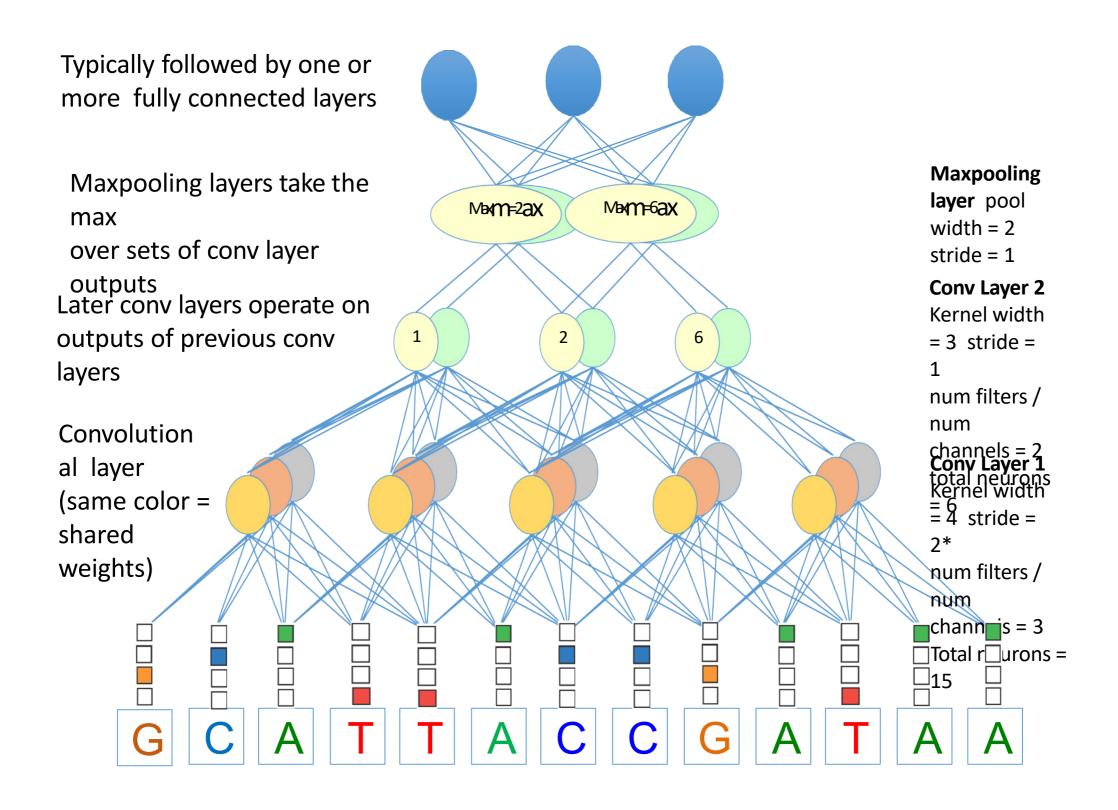


*for genomics, a stride of 1 for conv layers is recommended

Multi-task CNN



Multi-task CNN



Deep Learning for Regulatory Genomics

1. Biological foundations: Building blocks of Gene Regulation

- Gene regulation: Cell diversity, Epigenomics, Regulators (TFs), Motifs, Disease role
- Probing gene regulation: TFs/histones: ChIP-seq, Accessibility: DNase/ATAC-seq

2. Classical methods for Regulatory Genomics and Motif Discovery

- Enrichment-based motif discovery: Expectation Maximization, Gibbs Sampling
- Experimental: PBMs, SELEX. Comparative genomics: Evolutionary conservation.

3. Regulatory Genomics CNNs (Convolutional Neural Networks): Foundations

- Key idea: pixels ⇔ DNA letters. Patches/filters ⇔ Motifs. Higher ⇔ combinations
- Learning convolutional filters ⇔ Motif discovery. Applying them ⇔ Motif matches

4. Regulatory Genomics CNNs/RNNs in Practice: Diverse Architectures

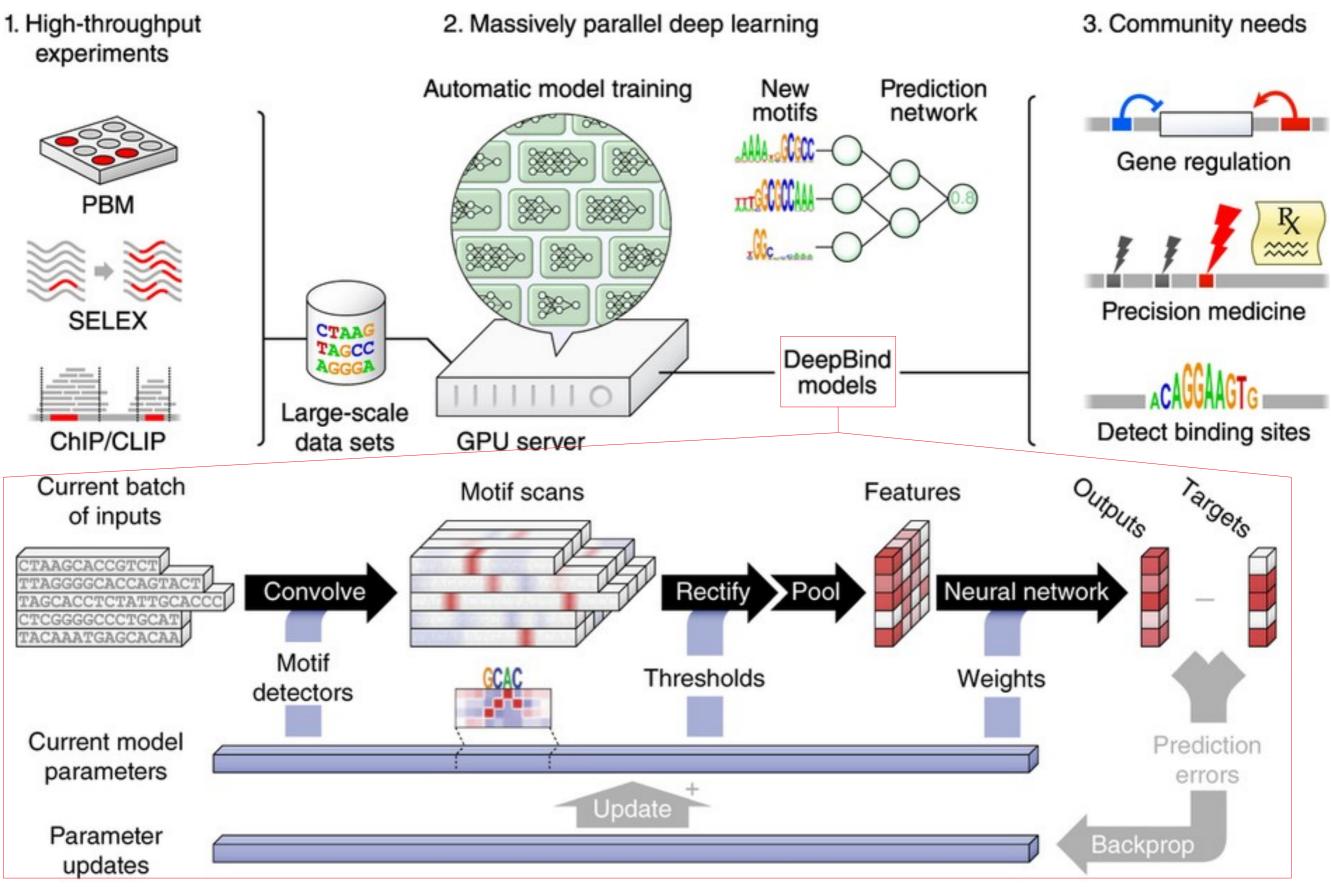
- DeepBind: Learn motifs, use in (shallow) fully-connected layer, mutation impact
- DeepSea: Train model directly on mutational impact prediction
- Basset: Multi-task DNase prediction in 164 cell types, reuse/learn motifs
- ChromPuter: Multi-task prediction of different TFs, reuse partner motifs
- DeepLIFT: Model interpretation based on neuron activation properties
- DanQ: Recurrent Neural Network for sequential data analysis

5. Guest Lecture: Anshul Kundaje, Stanford, Deep Learning for Reg. Genomics

6. Guest Lecture: Avantika Lal, Nvidia, Deep Learning for ATAC/scATAC

4. Regulatory Genomics CNNs in Practice:(a) DeepBind

DeepBind



[Alipanahi et al., 2015]

日本語要約

Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning

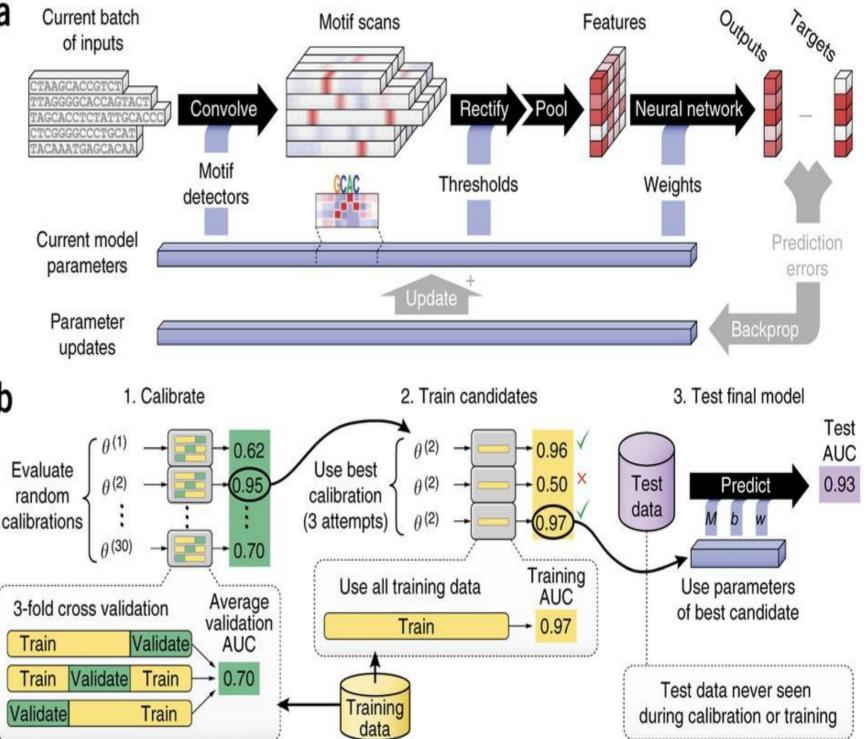
Babak Alipanahi, Andrew Delong, Matthew T Weirauch & Brendan J Frey

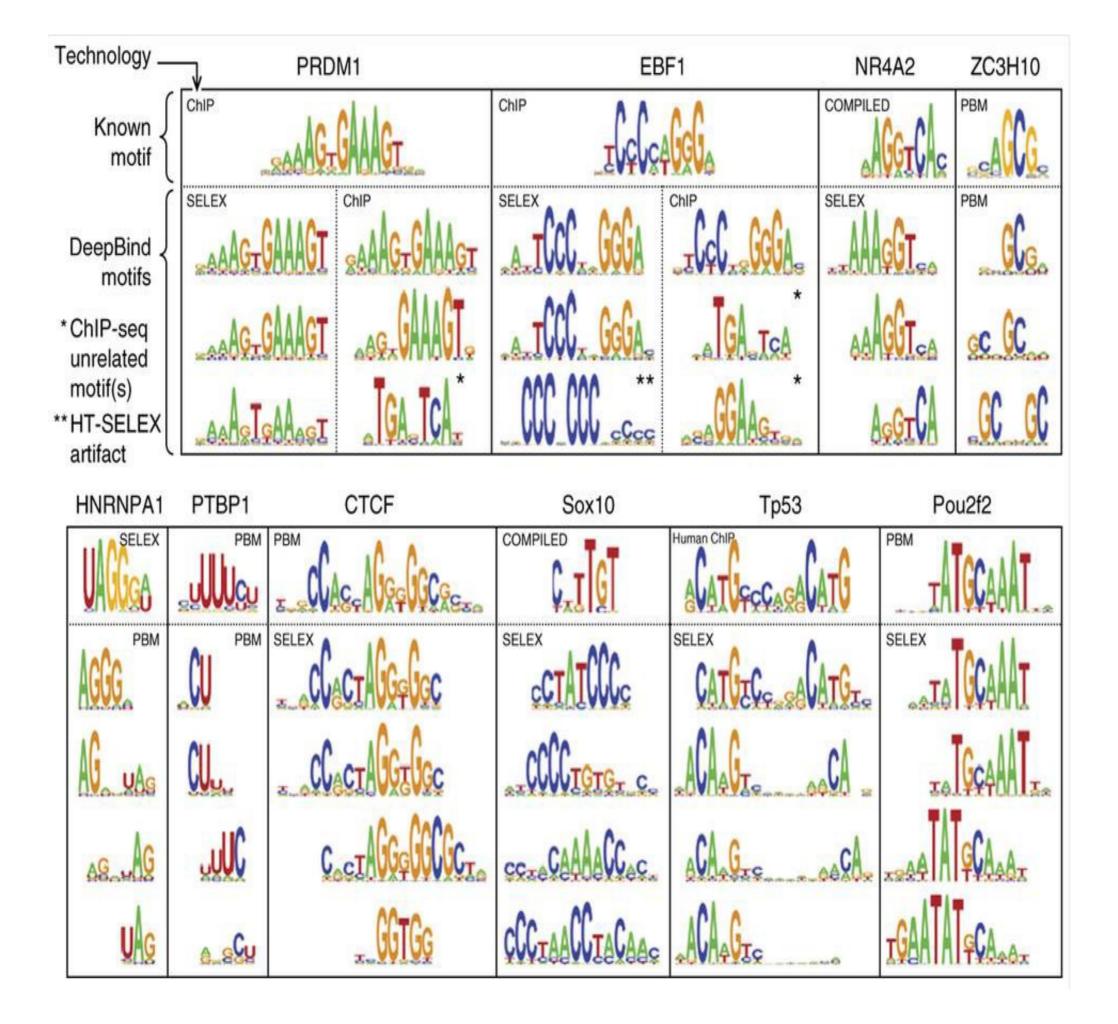
Affiliations | Contributions | Corresponding author

Nature Biotechnology 33, 831-838 (2015) | doi:10.1038/nbt.3300

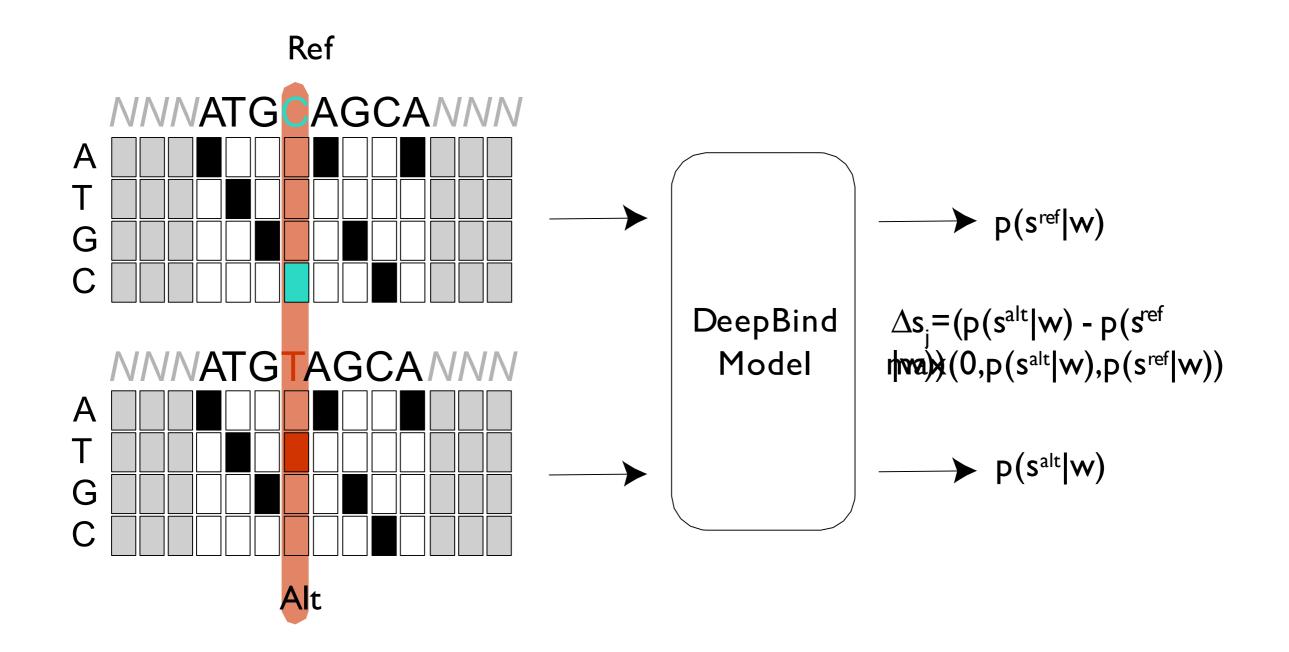
Received 28 November 2014 | Accepted 25 June 2015 | Published online 27 July 2015 a Current batch of inputs TAAGCACCGT TAGGGGCACCAGTAC Convolve AGCACCTCTATTGCA ACAAATGAGCACAA Motif b DREAM5 ChIP AUC detectors 0.5 0.6 0.7 Current model DeepBind parameters BEEML-PBM_sec BEEML-PBM Parameter BEEML-PBM_dinuc updates FeatureREDUCE_dinuc FeatureREDUCE_PWM b 1. Calibrate FeatureREDUCE Team_E θ(1) 0.62 PWM_align Evaluate $\theta(2)$ FeatureREDUCE_sec 0.95 random MatrixREDUCE calibrations Team D θ (30) 0.70

<

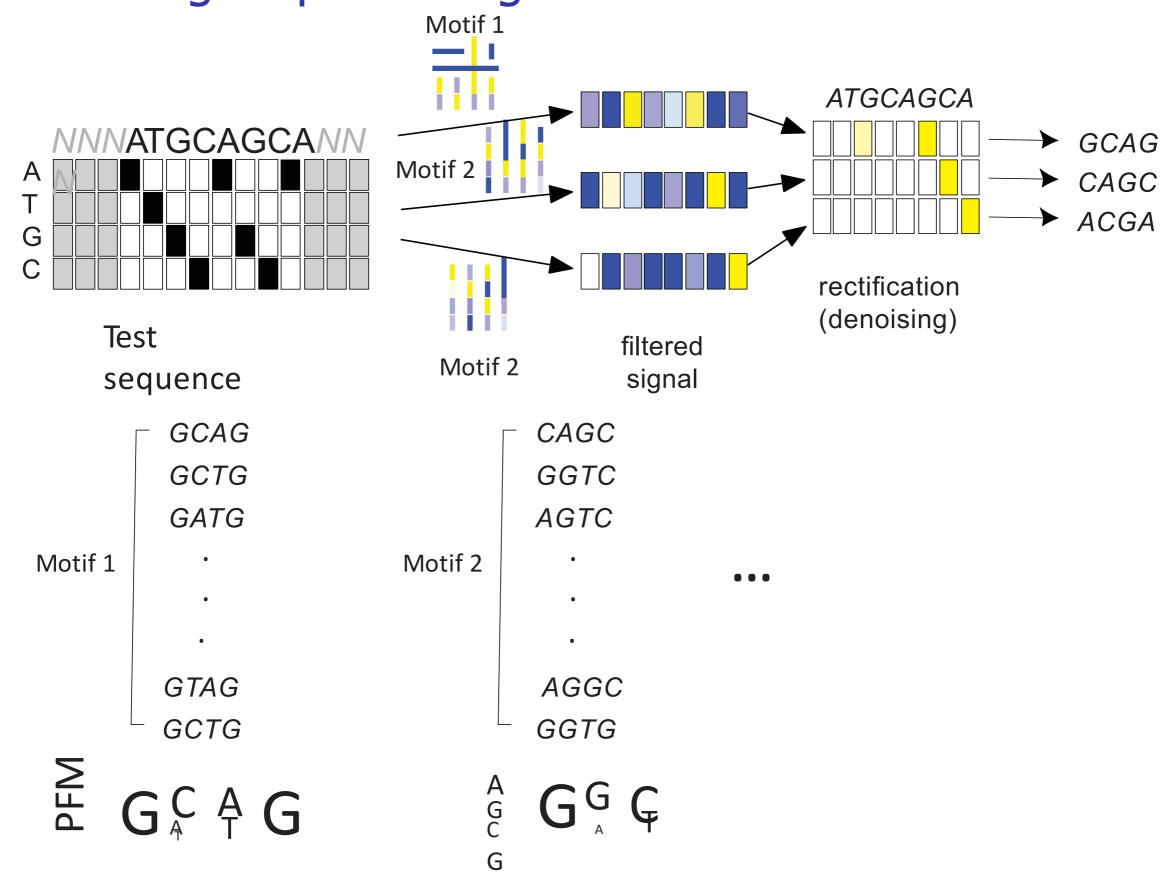




Constructing mutation map



Constructing sequence logo



Predicting disease mutations



[Alipanahi et al., 2015]

DeepBind summary

The key deep learning techniques:

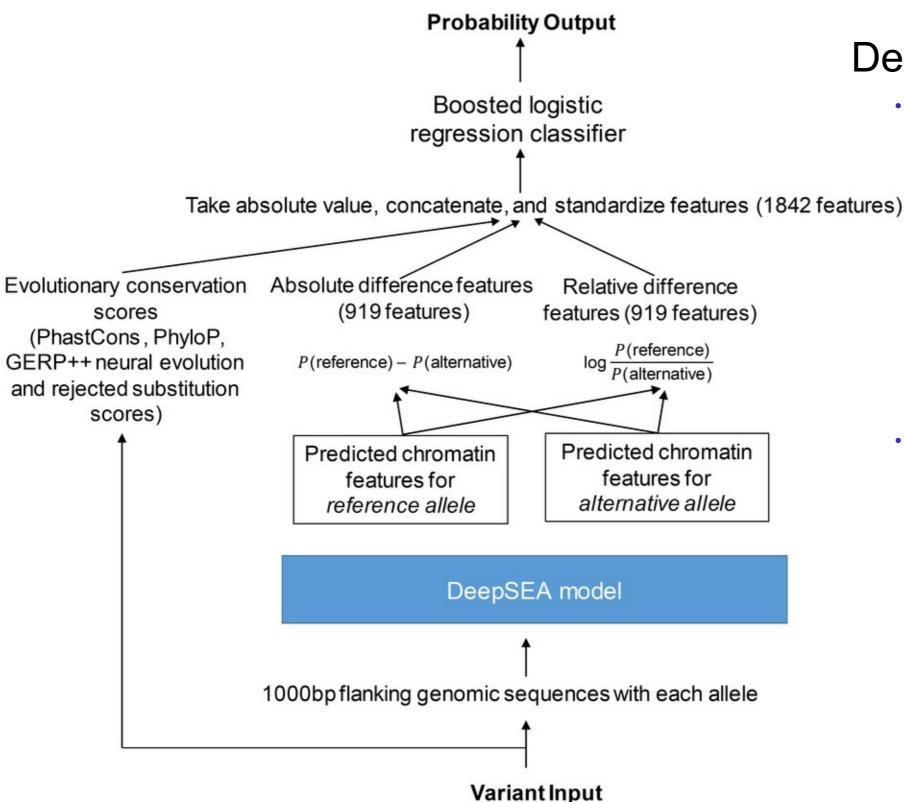
- Convolutional learning
- Representational learning
- Back-propagation and stochastic gradient
- Regularization and dropout
- Parallel GPU computing especially useful for hyperparameter search

Limitations in DeepBind:

- Require defining negative training examples, which is often arbitrary
- Using observed mutation data only as post-hoc evaluation
- Modeling each regulatory dataset separately

Regulatory Genomics CNNs in Practice: (b) DeepSEA

DeepSea



DeepSea:

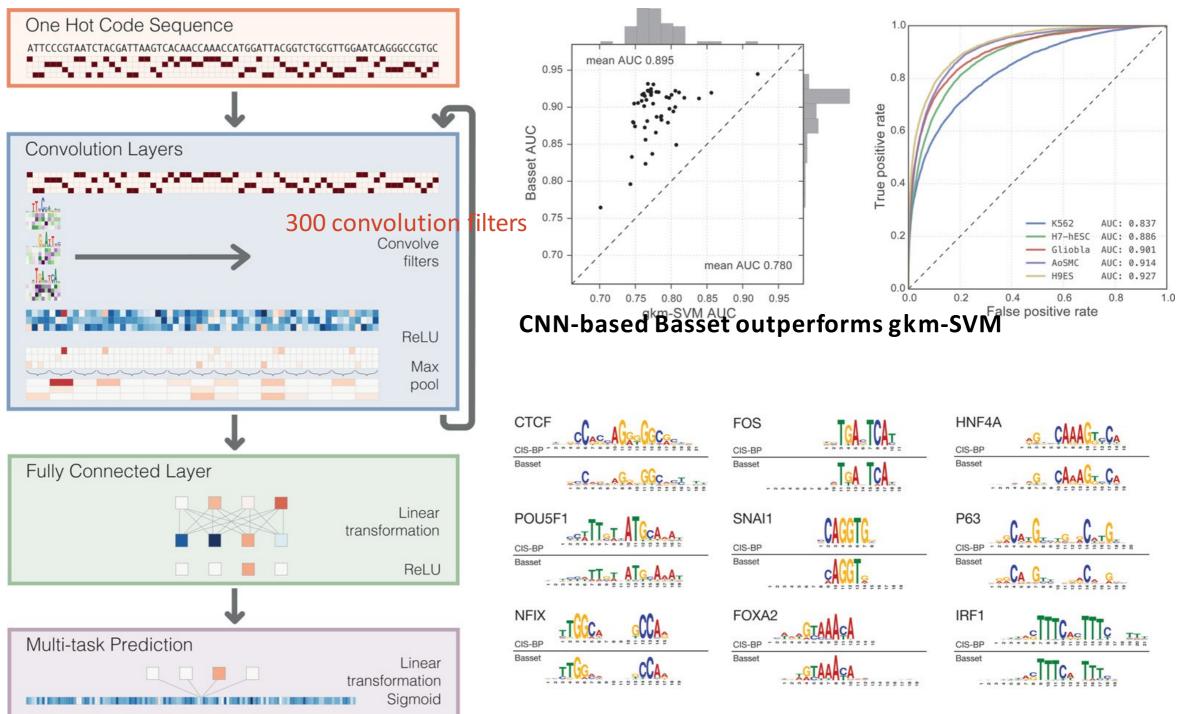
- Similar as DeepBind but trained a separate CNN on each of the ENCODE/Roadmap Epigenomic chromatin profiles 919 chromatin features (125 DNase features, 690 TF features, 104 histone features).
- It uses the ∆s mutation score as input to train a linear logistic regression to predict GWAS and eQTL SNPs defined from the GRASP database with a Pvalue cutoff of 1E-10 and GWAS SNPs from the NHGRI GWAS Catalog

[Zhou and Troyanskaya, 2015]

Regulatory Genomics CNNs in Practice: (c) Basset

Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks. David R. Kelley Jasper Snoek John L. Rinn Genome Research, March 2016

Basset



Prediction Actual

predicting DNase sites in

Simultaneously

164 cell types

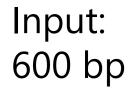
1111

11 I.

Convolutional filters connected to the input sequence recapitulate some known TF motifs

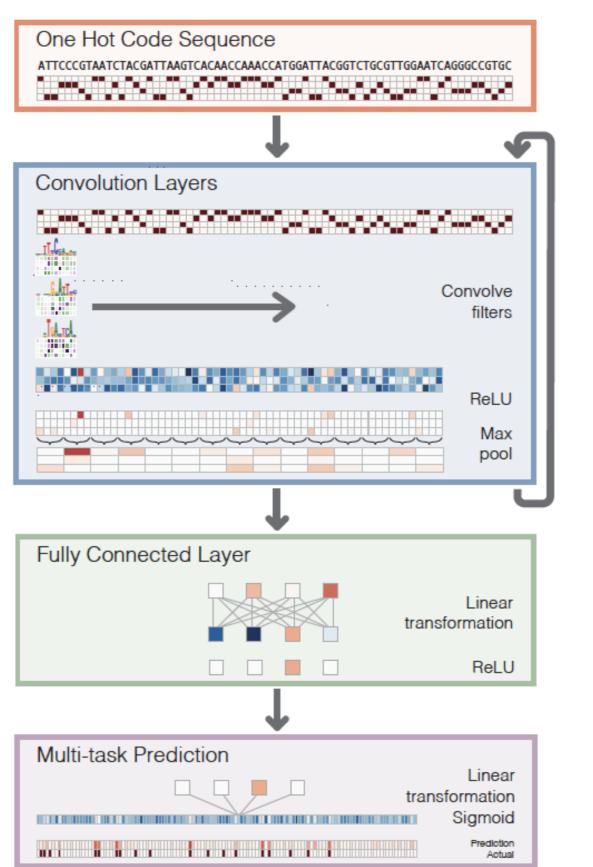
[Kelley et al., 2016]

Bassett architecture for accessibility prediction



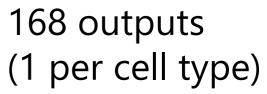
1.9 million training examples

Output: 168 bits

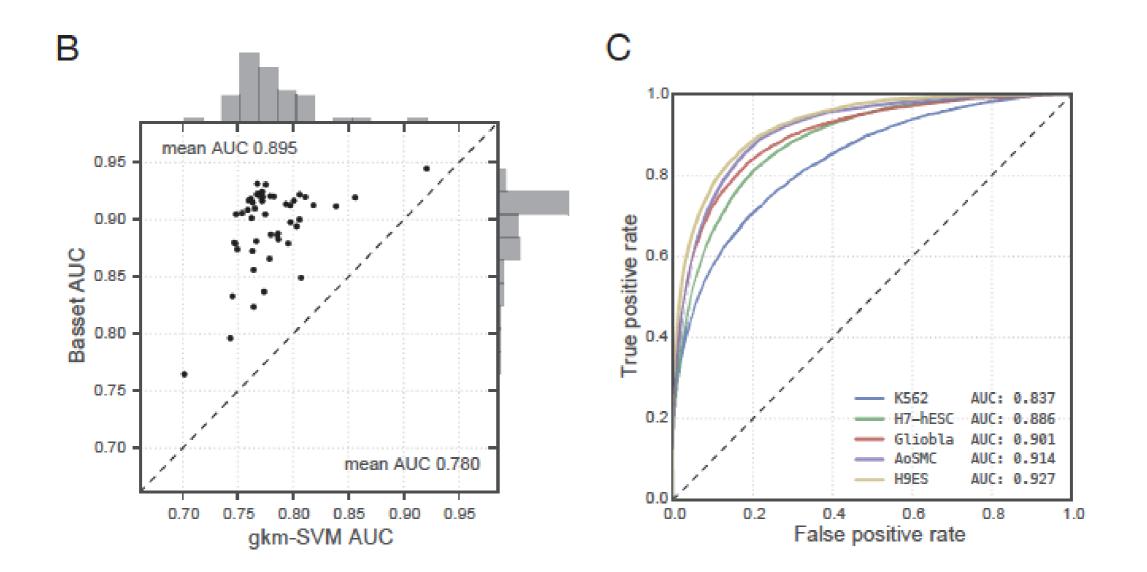


300 filters3 conv layers3 FC layers

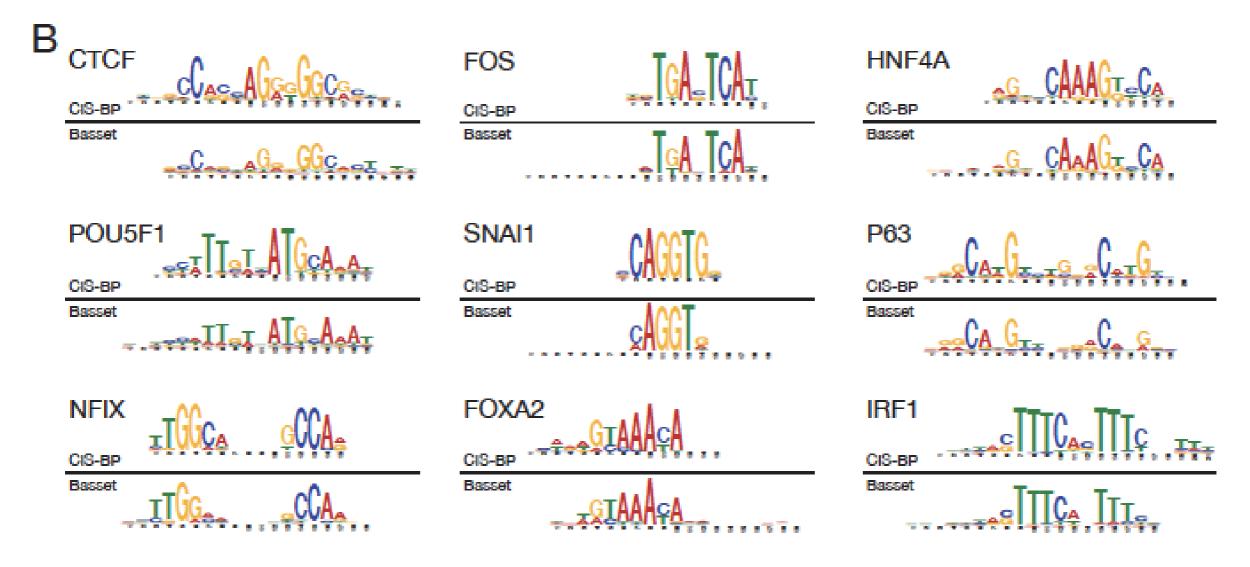
3 fully connected layers



Bassett AUC performance vs. gkm-SVM

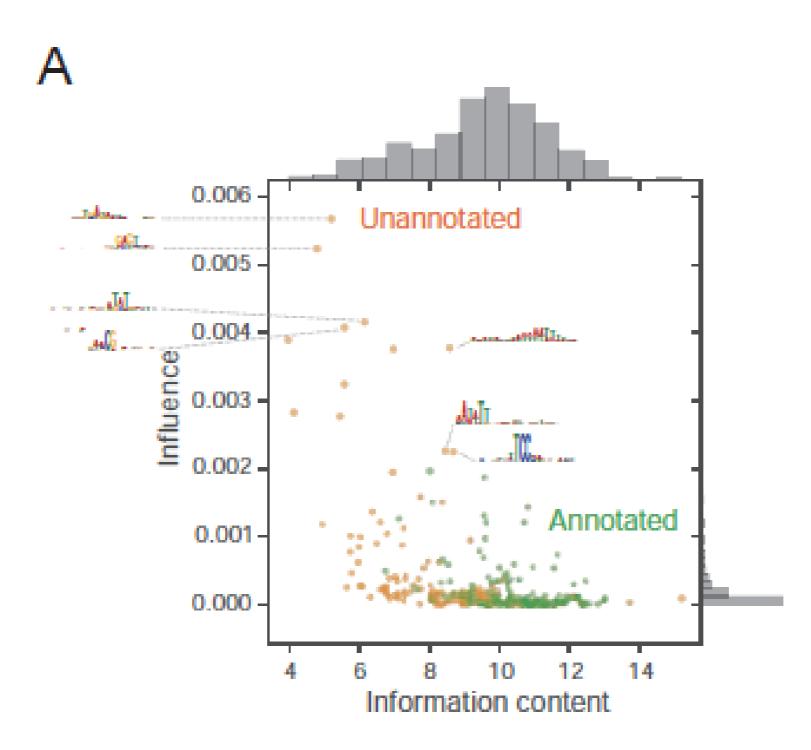


45% of filter derived motifs are found in the CIS-BP database

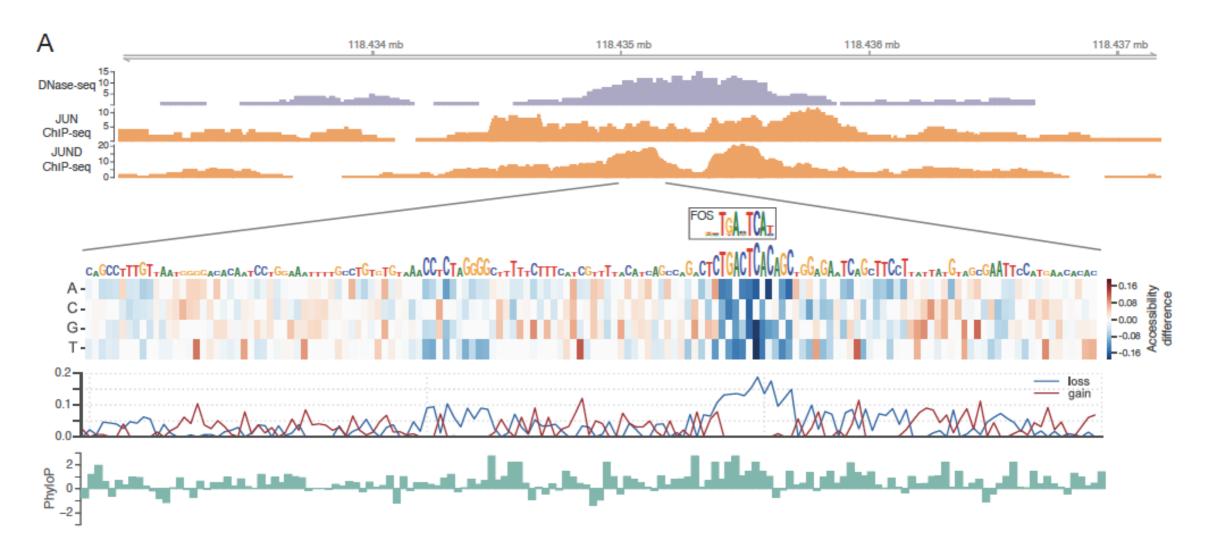


Motifs created by clustering matching input sequences and computing PWM

Motif derived from filters with more information tend to be annotated

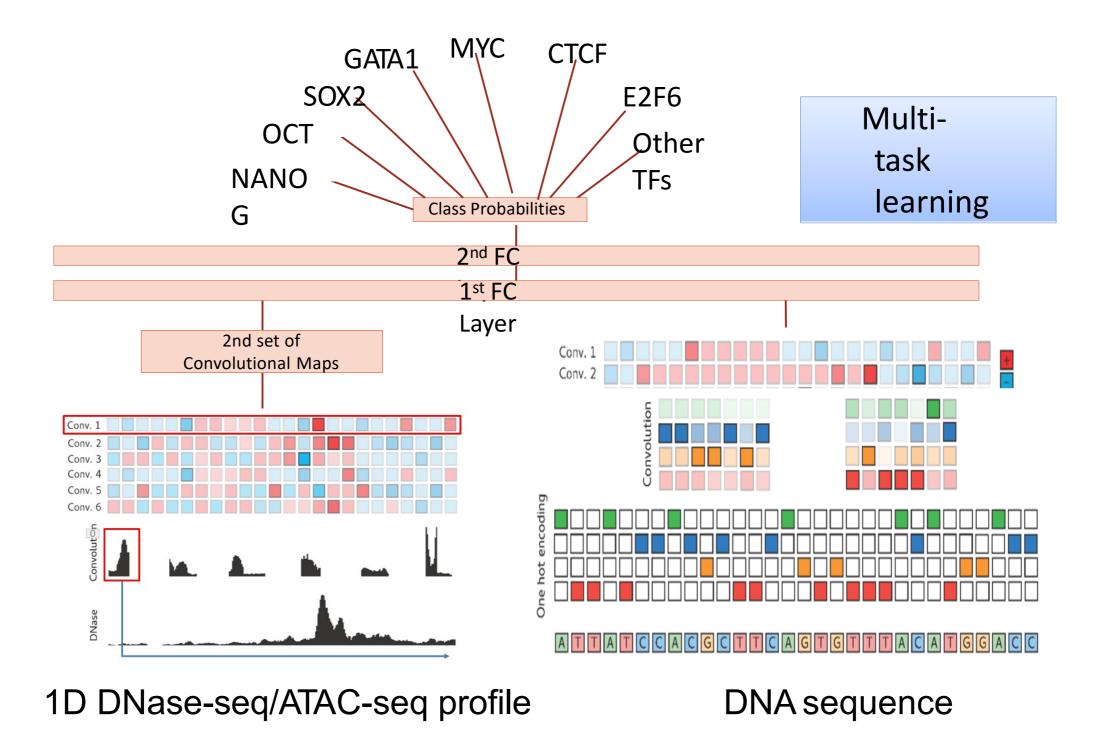


Computational saturation mutagenesis of an AP-1 site reveals loss of accessibility



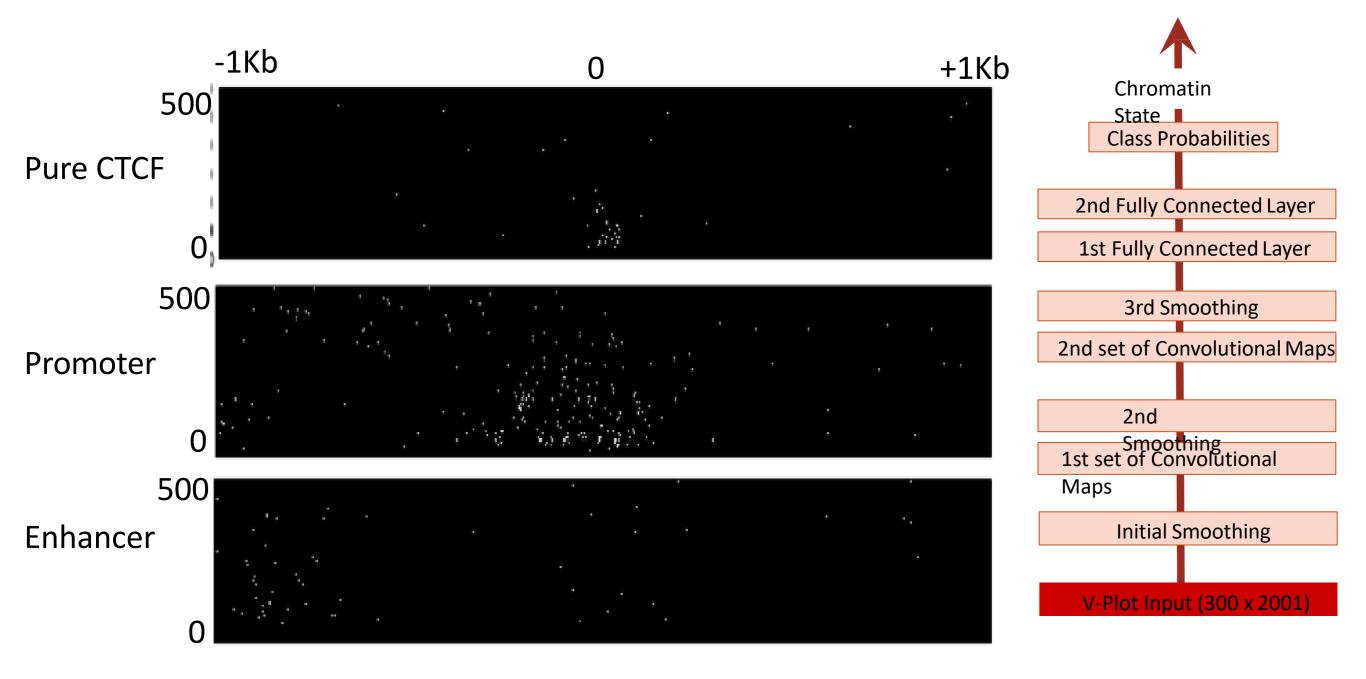
Regulatory Genomics CNNs in Practice: (d) Chromputer

ChromPuter

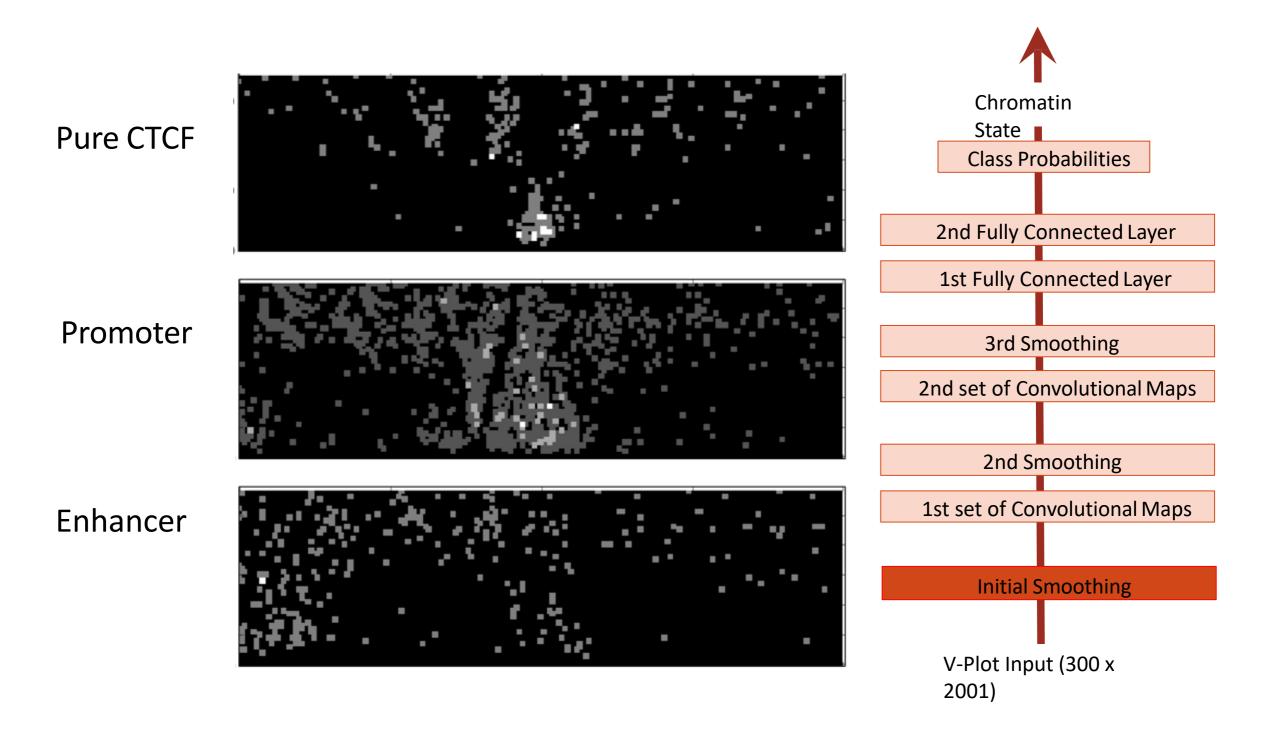


(Anshul Kundaje's group from Stanford)

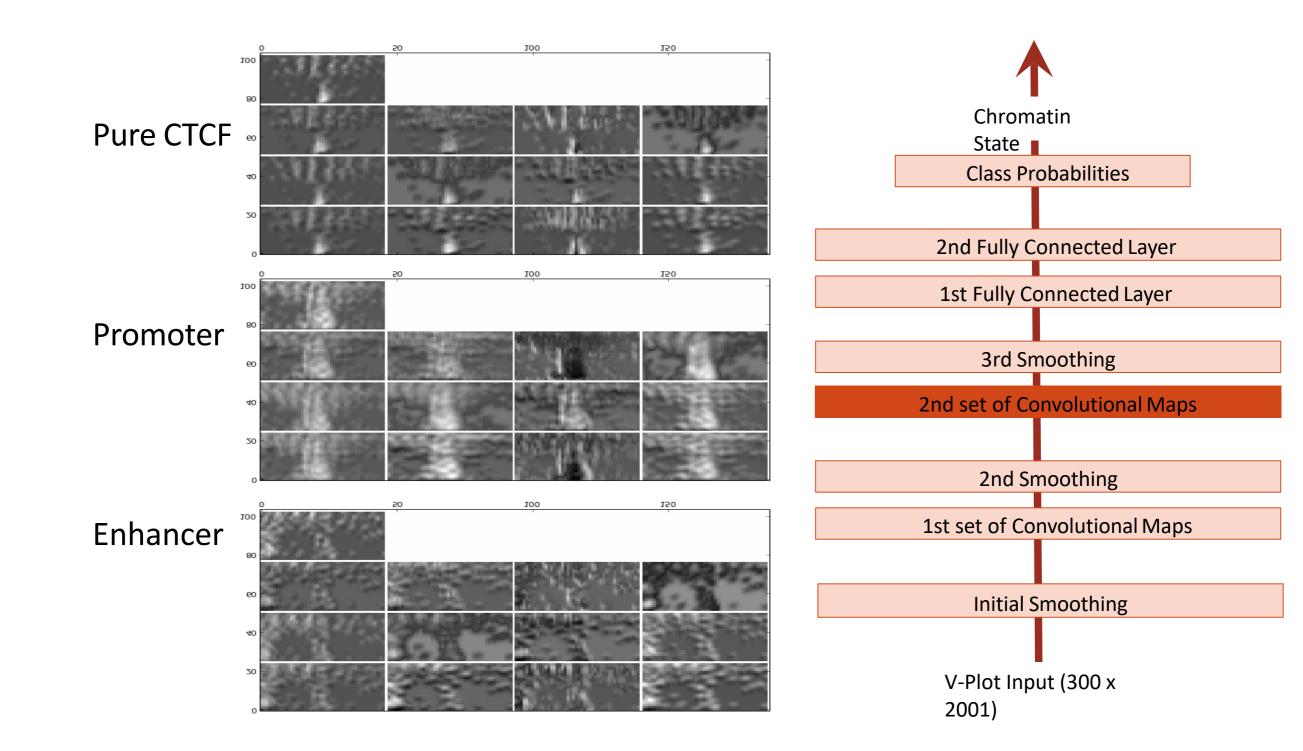
How does a deep conv. neural network transform the raw V-plot input at each layer



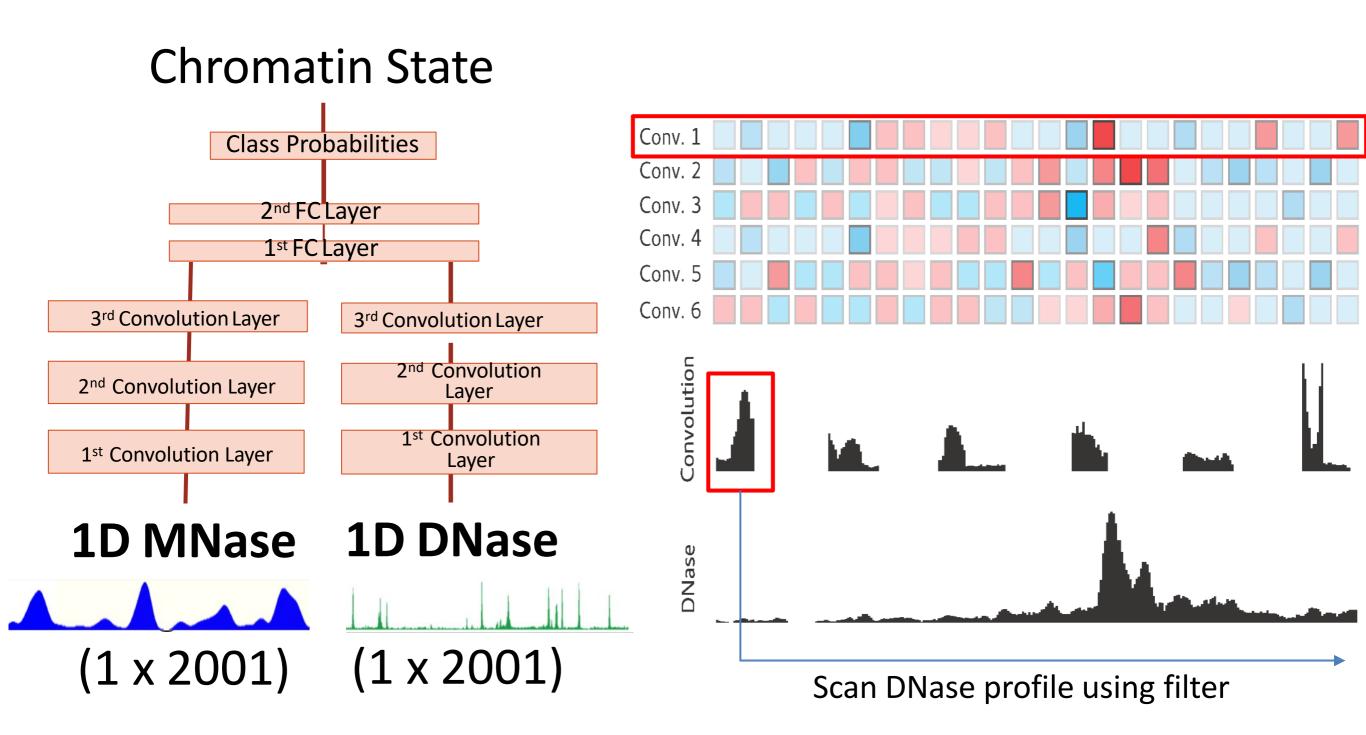
After initial pooling (smoothing)



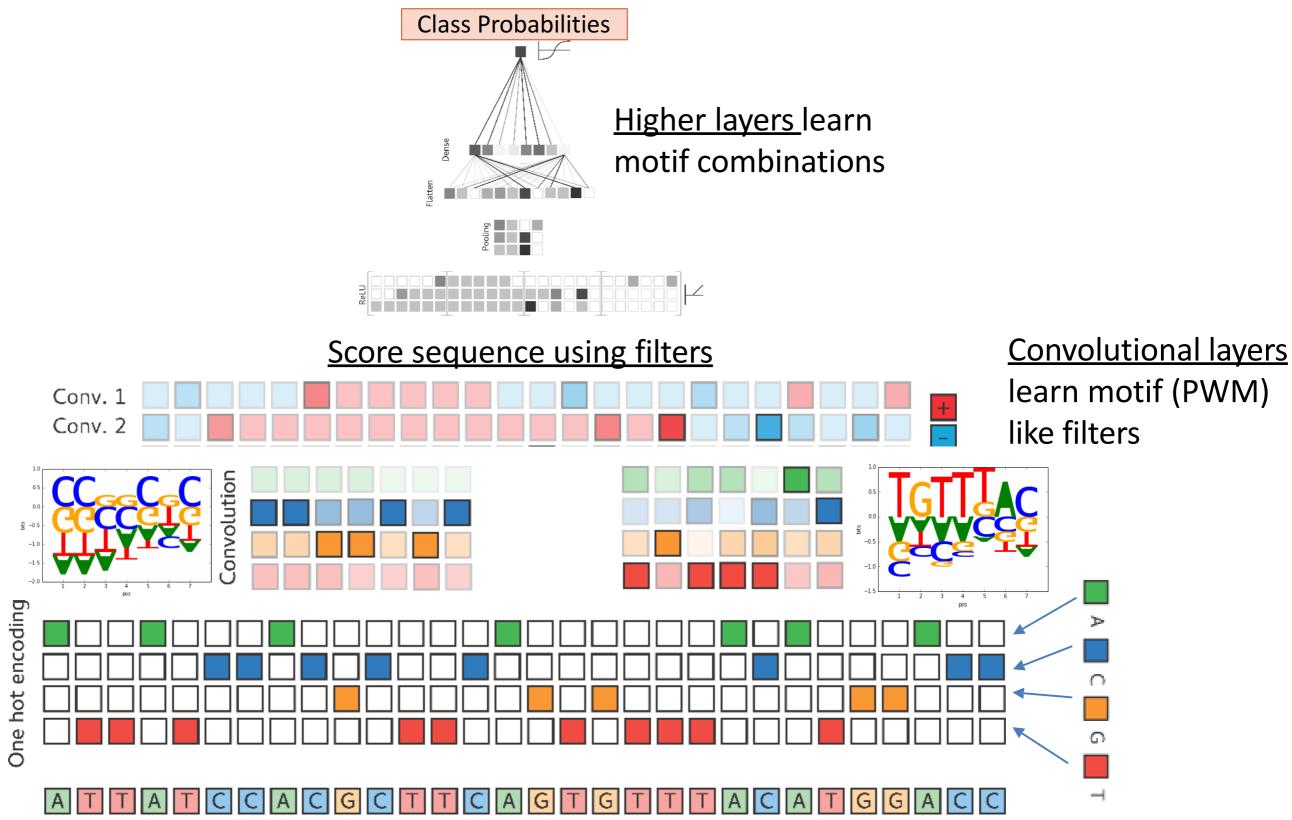
Second set of convolutional maps



Learning from <u>multiple 1D functional</u> <u>data</u> (e.g. DNase, MNase)

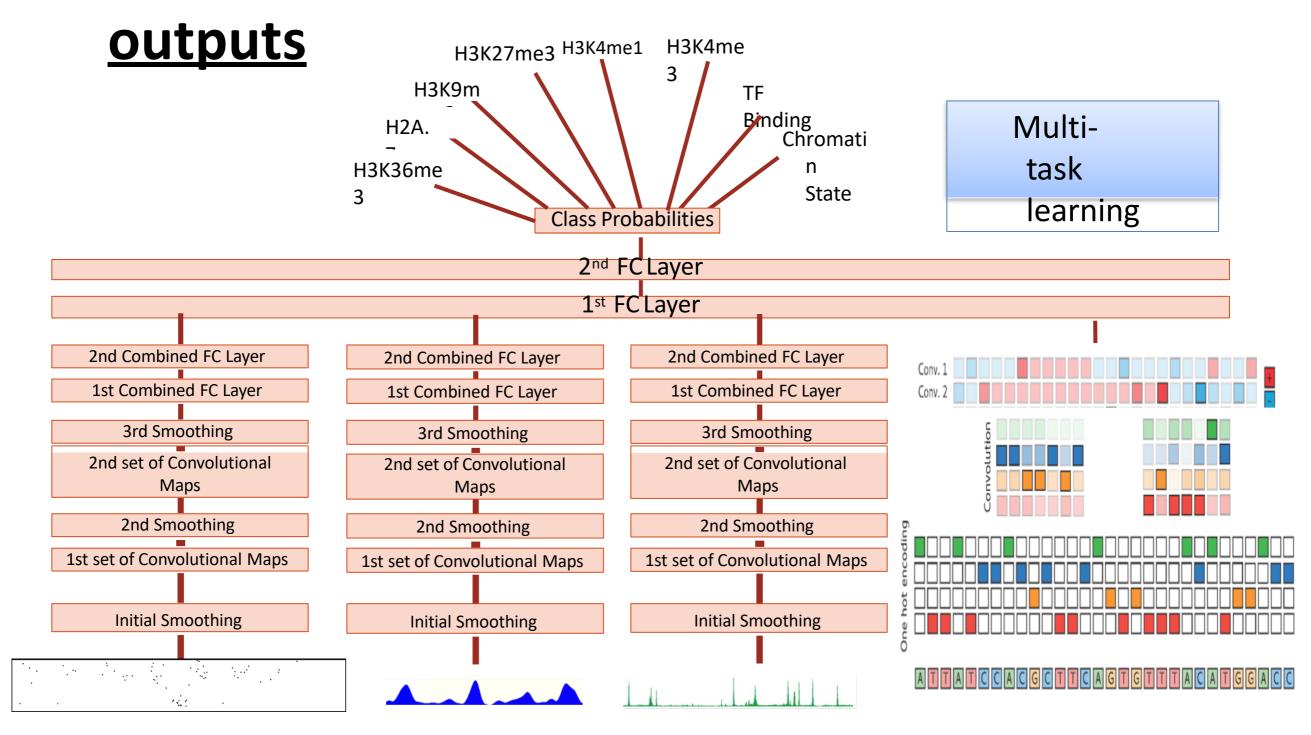


Learning from raw DNA sequence



THE CHROMPUTER

Integrating multiple inputs (1D, 2D signals, sequence) to simulatenously **predict multiple**



Chromatin architecture can predict <u>chromatin state</u> in held out chromosome

(same	cell	type)

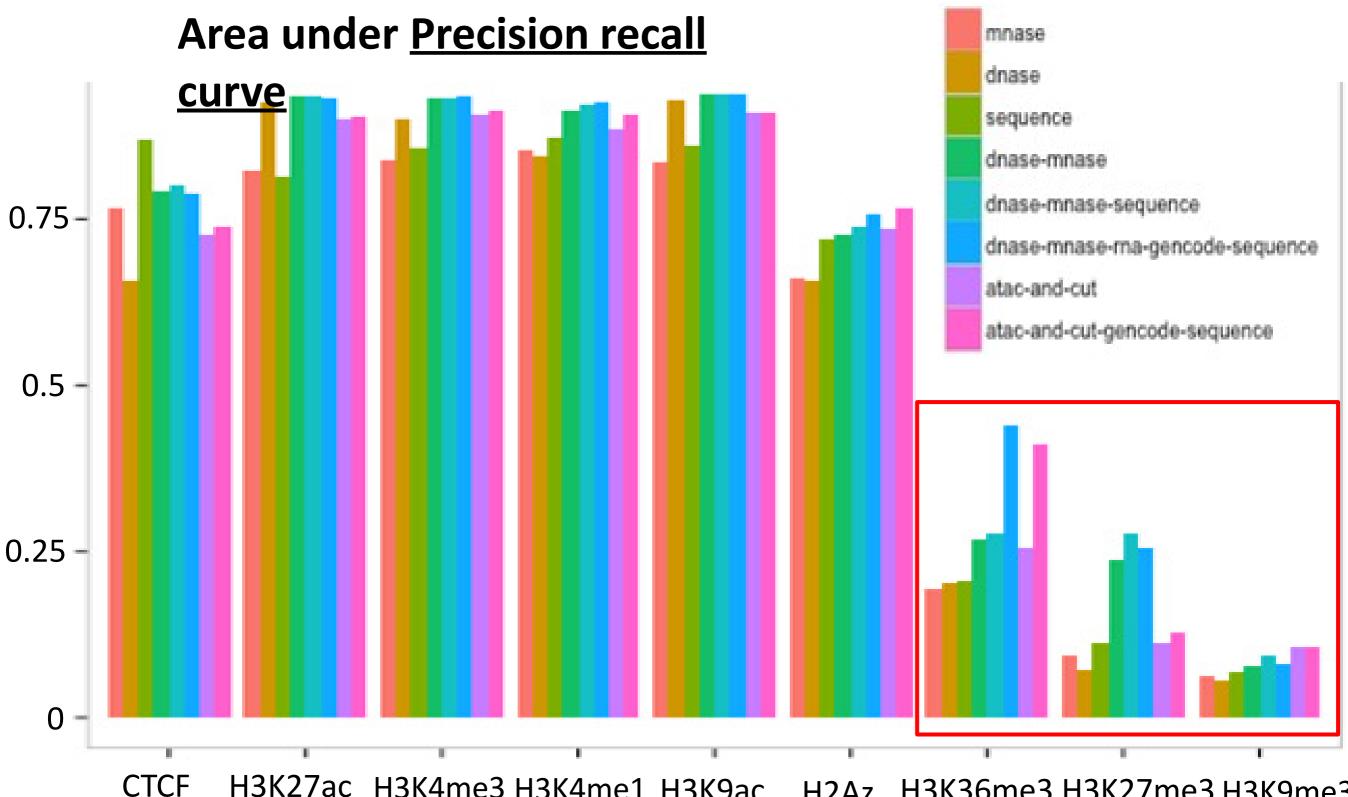
Model + Input data types	8-class chromatin state accuracy (%)
Majority class (baseline)	42%
Gene proximity	59%
Random Forest: ATAC-seq (150M reads)	61%
Chromputer: DNase (60M reads)	68.1%
Chromputer: Mnase (1.5B reads)	69.3%
Chromputer: ATAC-seq (150M reads)	75.9%
Chromputer: DNase + MNase	81.6%
Chromputer: ATAC-seq + sequence	83.5%
Chromputer: DNase + MNase + sequence	86.2%
Label accuracy across replicates (upper bound)	88%

High cross cell-type chromatin state prediction

- Learn model on **DNase and MNase only**
- Learn on GM12878, predict on K562 (and vice versa)
- **<u>Requires local normalization</u>** to make signal comparable

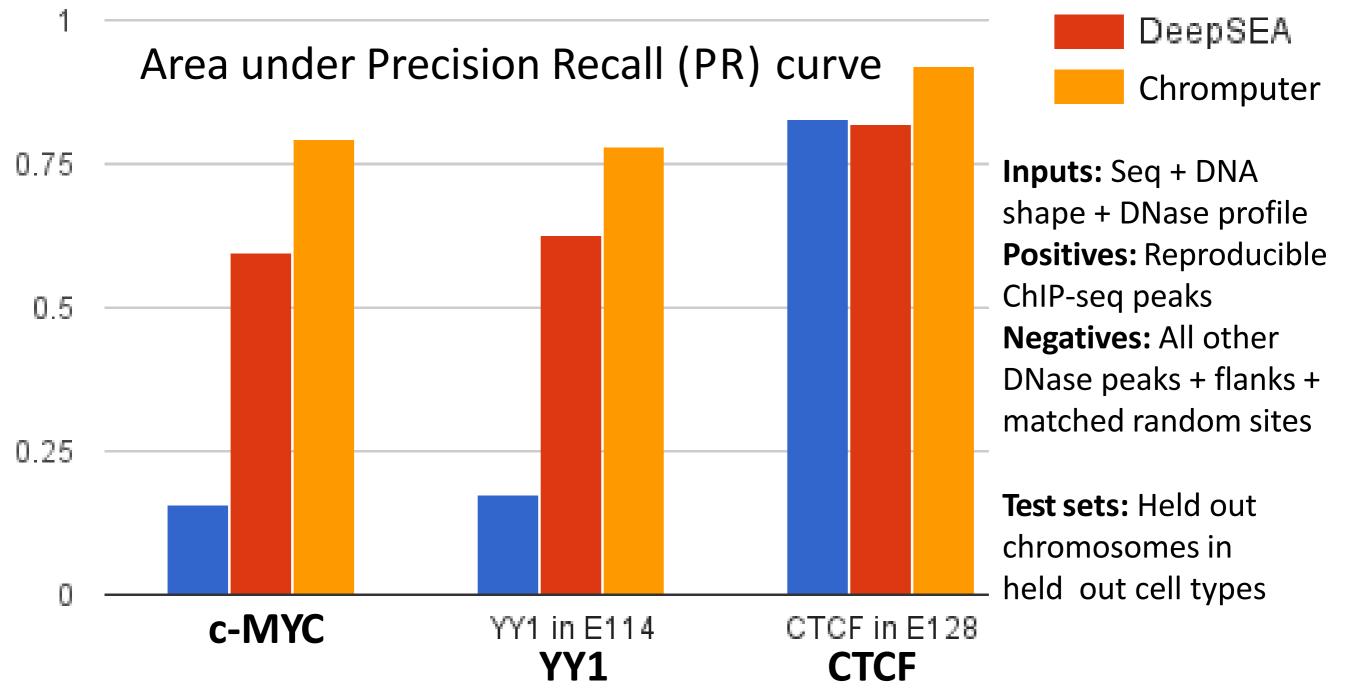
8 class chromatin state accuracy			
Train \downarrow / Test \rightarrow	GM12878	K562	
GM12878	0.816	0.818	
K562	0.769	0.844	

Predicting individual histone marks from ATAC/DNase/MNase/Sequence



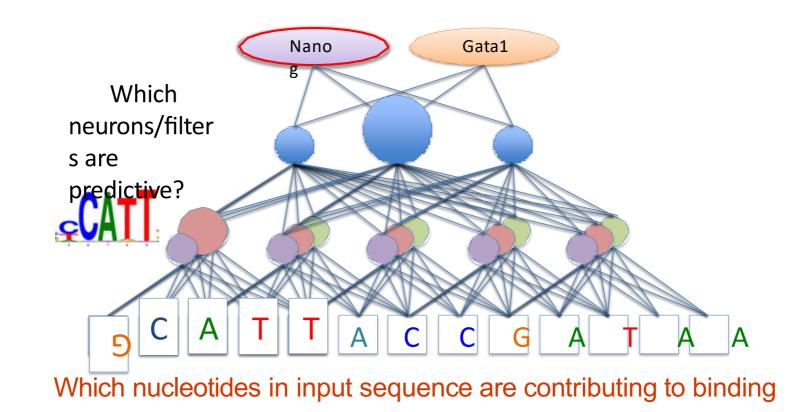
H3K27ac H3K4me3 H3K4me1 H3K9ac H3K36me3 H3K27me3 H3K9me3 H2Az

Chromputer trained on TF ChIP-seq predicts cross cell-type in-vivo TF binding with high accuracy



DeepBind

DeepLift reveals feature importance at the input layer



Key idea:

- ReLU is piece-wide linear
- Backpropagation differences of outputs using observed and reference inputs (e.g., inputs of all zeros) to obtain gradient w.r.t. the input
- Importance of any input to any output is the gradients weighted by the input itself

(Anshul Kundaje's group from Stanford)

Deep Learning for Regulatory Genomics

1. Biological foundations: Building blocks of Gene Regulation

- Gene regulation: Cell diversity, Epigenomics, Regulators (TFs), Motifs, Disease role
- Probing gene regulation: TFs/histones: ChIP-seq, Accessibility: DNase/ATAC-seq

2. Classical methods for Regulatory Genomics and Motif Discovery

- Enrichment-based motif discovery: Expectation Maximization, Gibbs Sampling
- Experimental: PBMs, SELEX. Comparative genomics: Evolutionary conservation.

3. Regulatory Genomics CNNs (Convolutional Neural Networks): Foundations

- Key idea: pixels ⇔ DNA letters. Patches/filters ⇔ Motifs. Higher ⇔ combinations
- Learning convolutional filters 🗇 Motif discovery. Applying them 🗇 Motif matches

4. Regulatory Genomics CNNs/RNNs in Practice: Diverse Architectures

- DeepBind: Learn motifs, use in (shallow) fully-connected layer, mutation impact
- DeepSea: Train model directly on mutational impact prediction
- Basset: Multi-task DNase prediction in 164 cell types, reuse/learn motifs
- ChromPuter: Multi-task prediction of different TFs, reuse partner motifs
- DeepLIFT: Model interpretation based on neuron activation properties
- DanQ: Recurrent Neural Network for sequential data analysis

5. Guest Lecture: Anshul Kundaje, Stanford, Deep Learning for Reg. Genomics

6. Guest Lecture: Avantika Lal, Nvidia, Deep Learning for ATAC/scATAC

Stanford MEDICINE FORD **Department of Genetics Deep learning at base-resolution** reveals cis-regulatory motif syntax Anshul Kundaje Twitter:@anshulkundaje Website: http://anshul.kundaje.net

Acknowledgements

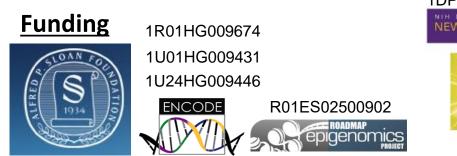
Ziga Avsec

Avanti Shrikumar

Melanie Weilert

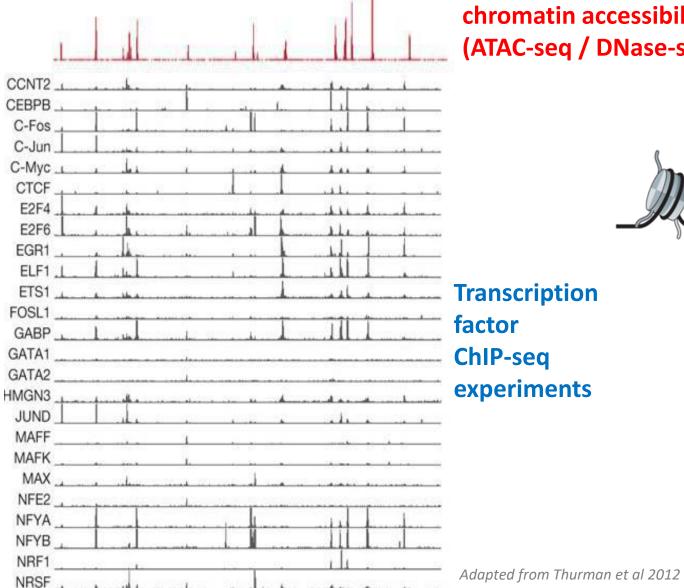
Amr Mohamed

Julia Zeitlinger

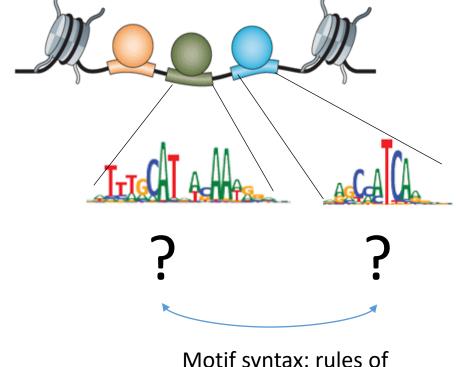


- Khyati Dalal
- Sabrina Kruger
- Robin Fropf
- Charles McAnany
- Julien Gagneur

Deciphering syntax of regulatory DNA

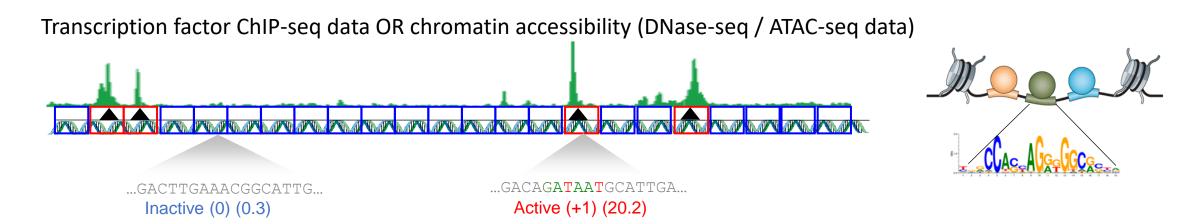


chromatin accessibility (ATAC-seq / DNase-seq)



Motif syntax: rules of arrangement, preferred spacing, orientation => cooperativity

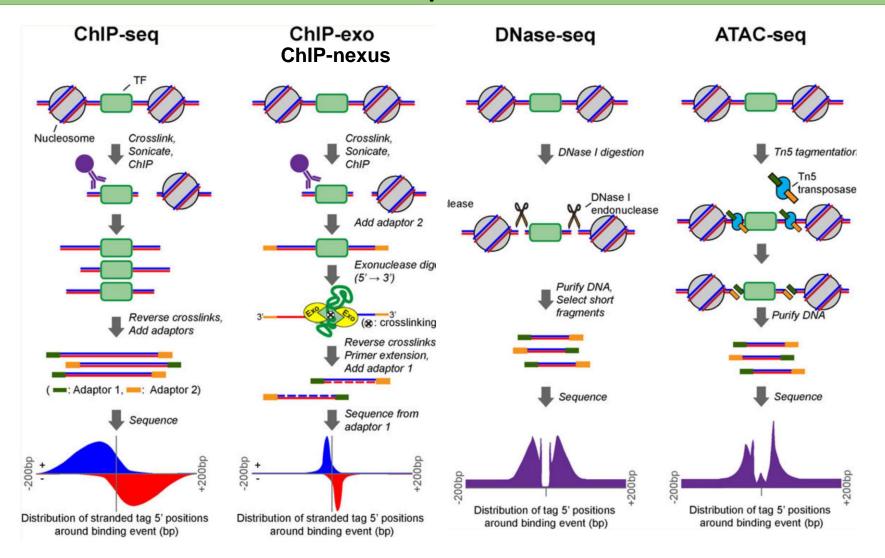
Predictive model of regulatory DNA



Predictive model of regulatory DNA



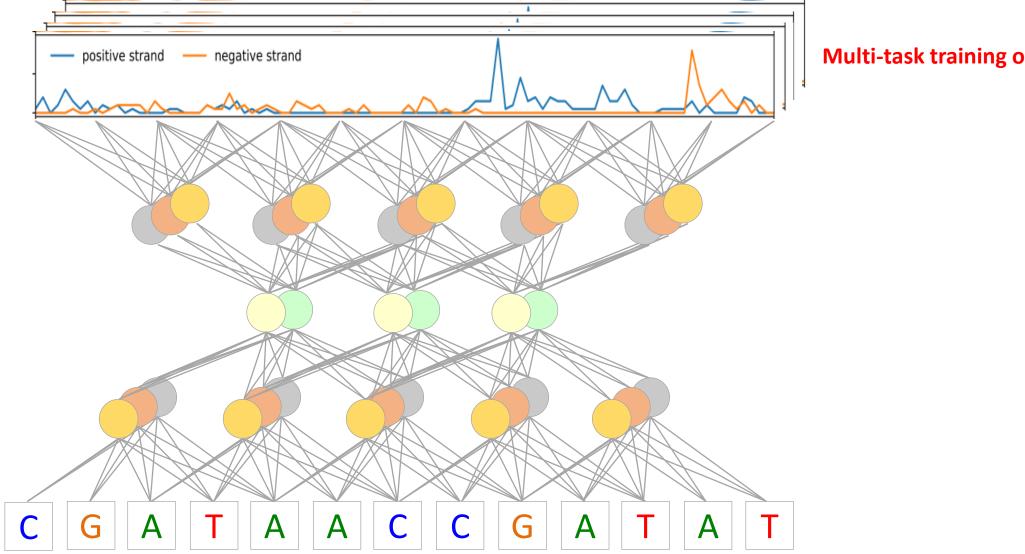
High-resolution 'shapes' of regulatory profiles capture exquisite information about protein-DNA contacts



https://doi.org/10.3109/10409238.2015.1051505

BPNet: DNA sequence to base-pair resolution profile regression

stranded base-resolution probability profiles + total read count

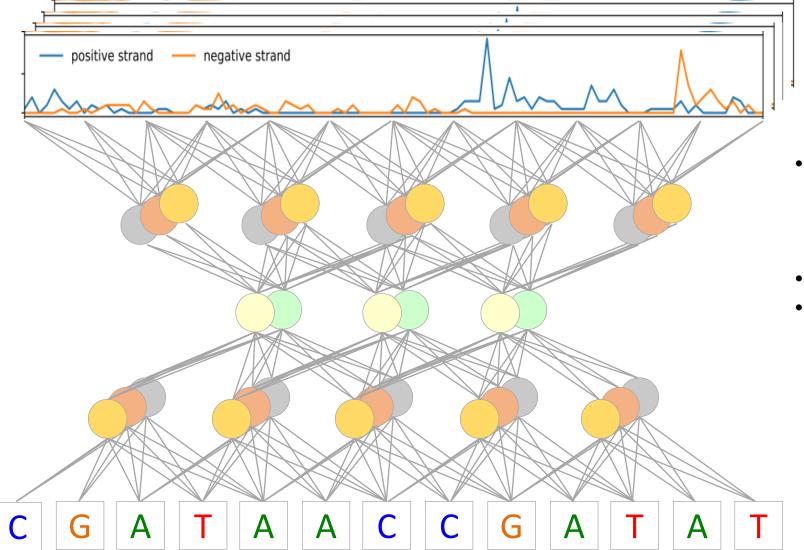


Multi-task training on multiple readouts

1 Kb sequence around all peaks

BPNet: DNA sequence to base-pair resolution profile regression

stranded base-resolution probability profiles + total read count

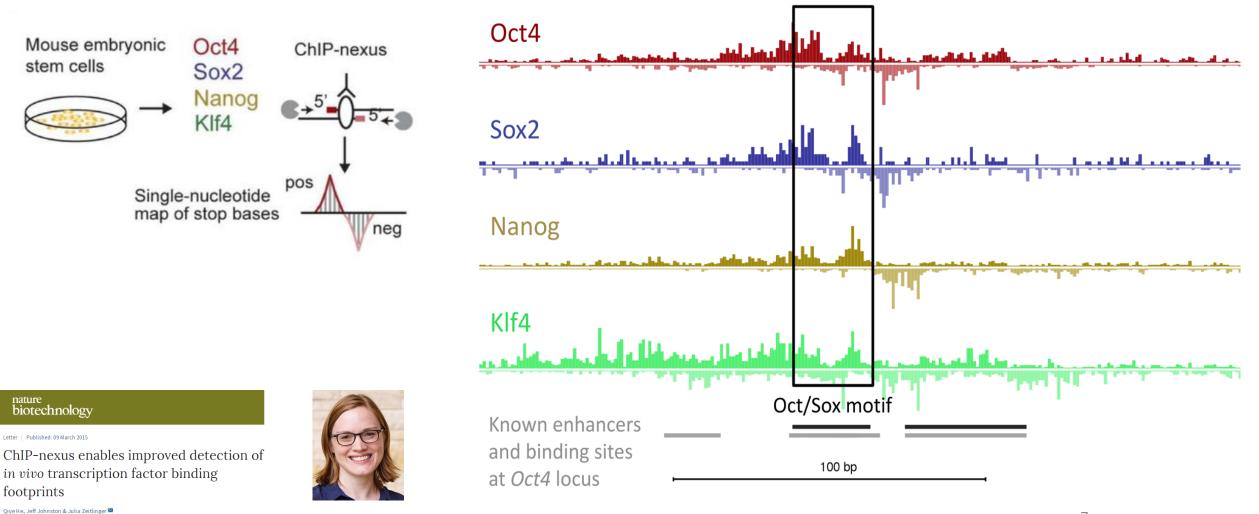


Multi-task training on multiple readouts

- Novel loss function
 - MSE for log(total counts)
 - Multinomial NLL for profile distribution
- Automatic assay bias correction
- Fully conv. architecture
 - Dilated convolutions
 - Residual connections

ChIP-exo/nexus: High resolution TF binding footprints

ChIP-nexus data for key transcription factors in mouse embryonic stem (ES) cells

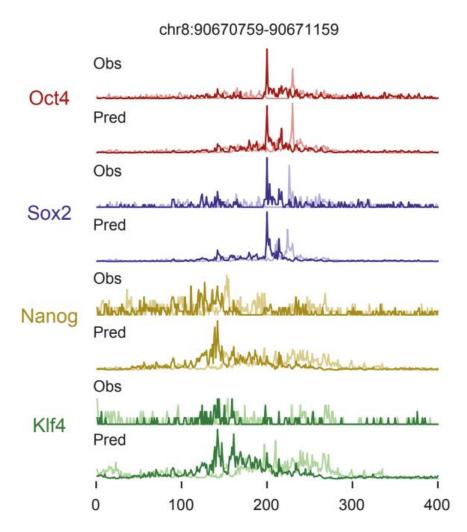


Nature Biotechnology 33, 395-401 (2015) | Download Citation 🚽

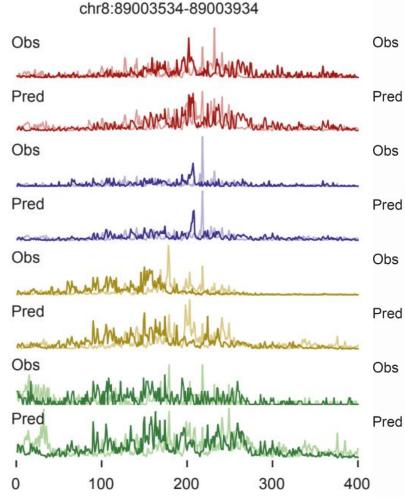
Julia Zeitlinger lab

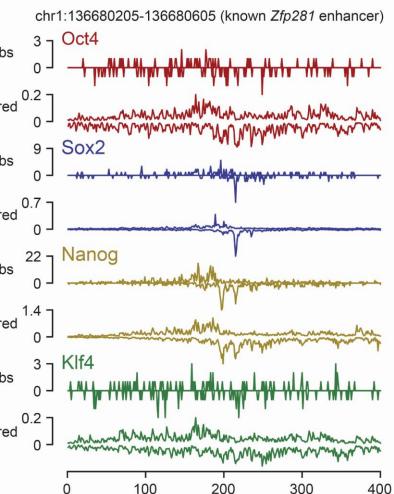
BPNet predicts base resolution binding footprints with unprecedented accuracy

- + strand (dark color)
- strand (light color)



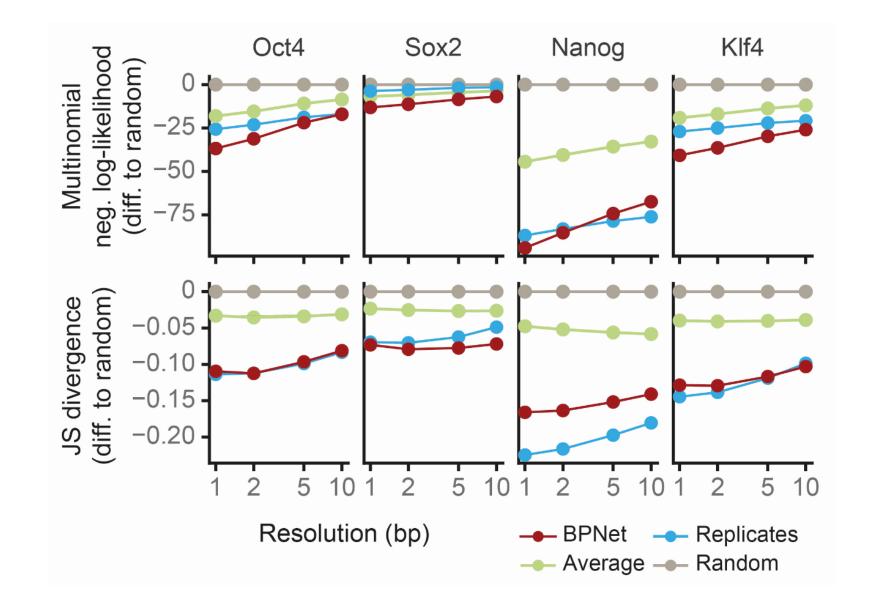
putative Sall1 enhancer





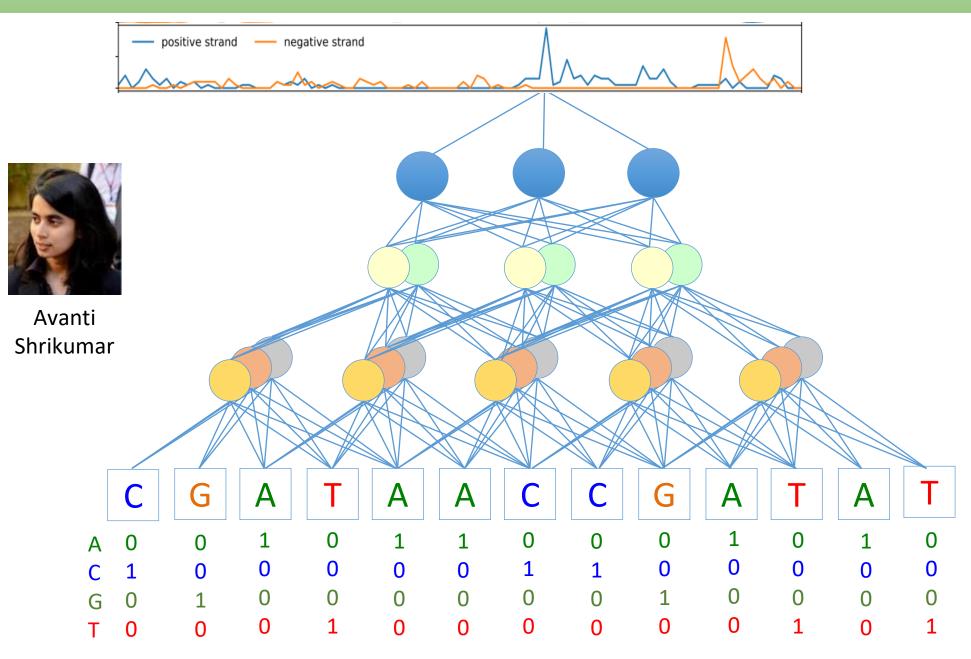
Genomic region (bp)

Profile prediction is on par with concordance from replicate experiments

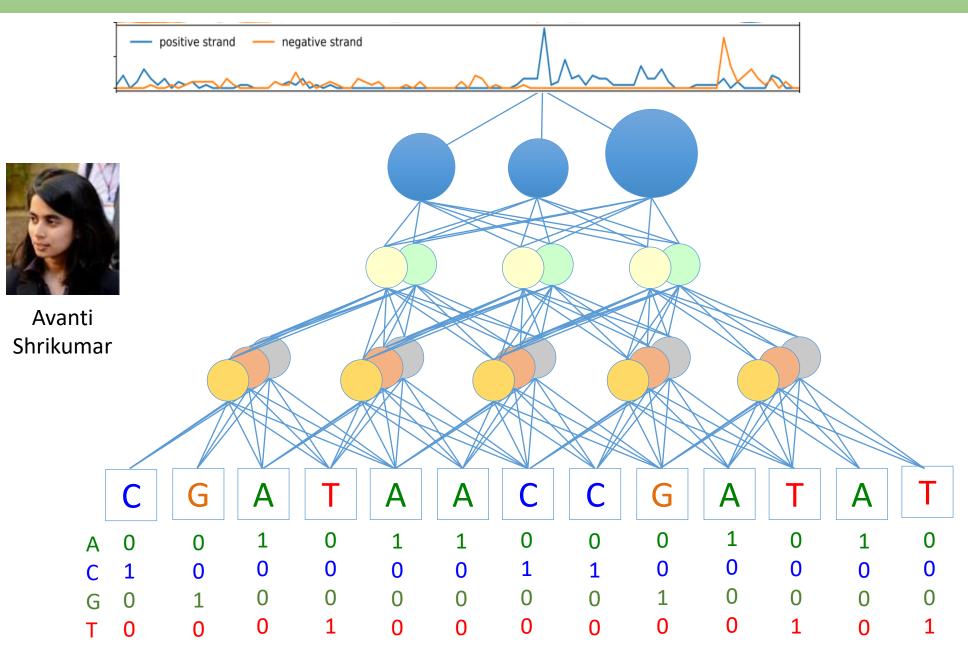


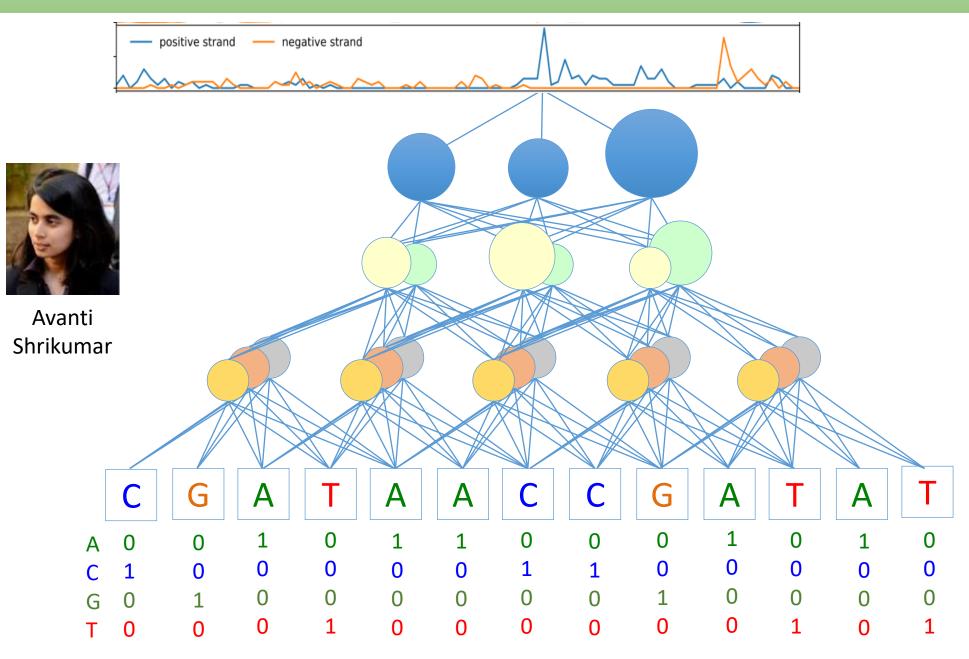
9

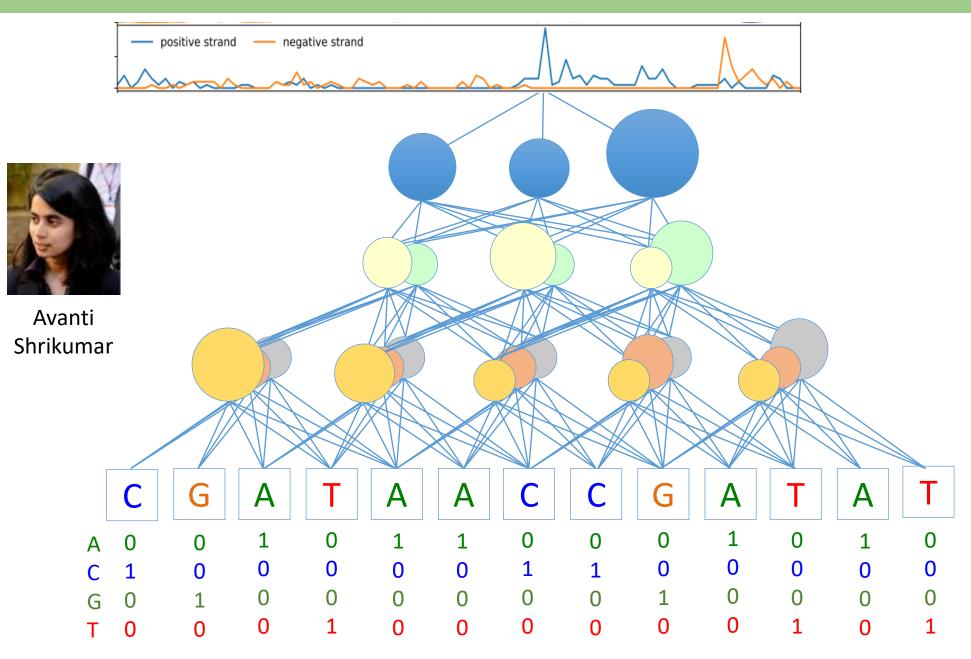
Deciphering predictive motifs and motif instances



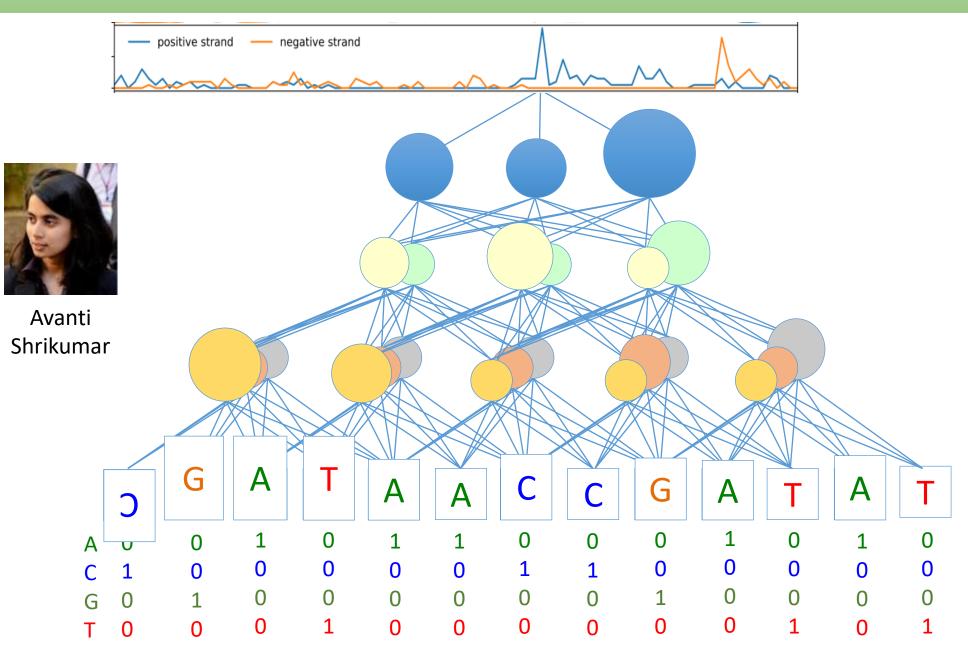
11





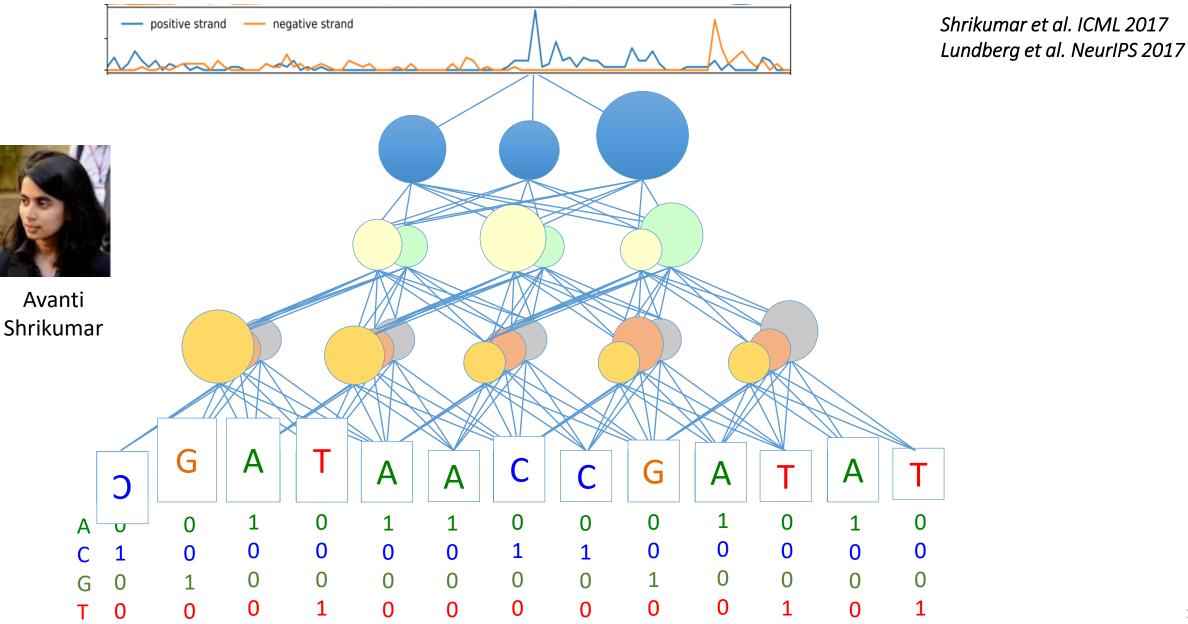


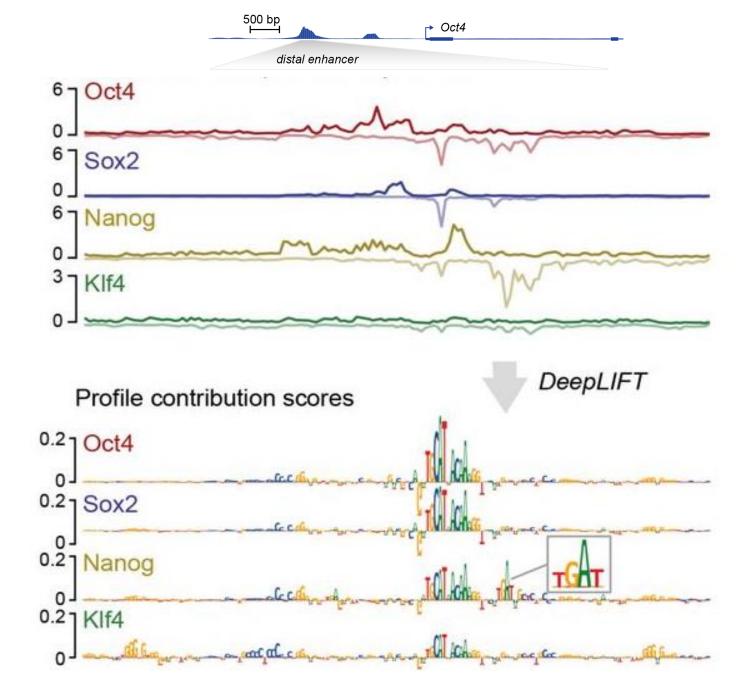
DeepLIFT: Inferring predictive nucleotides at individual binding events

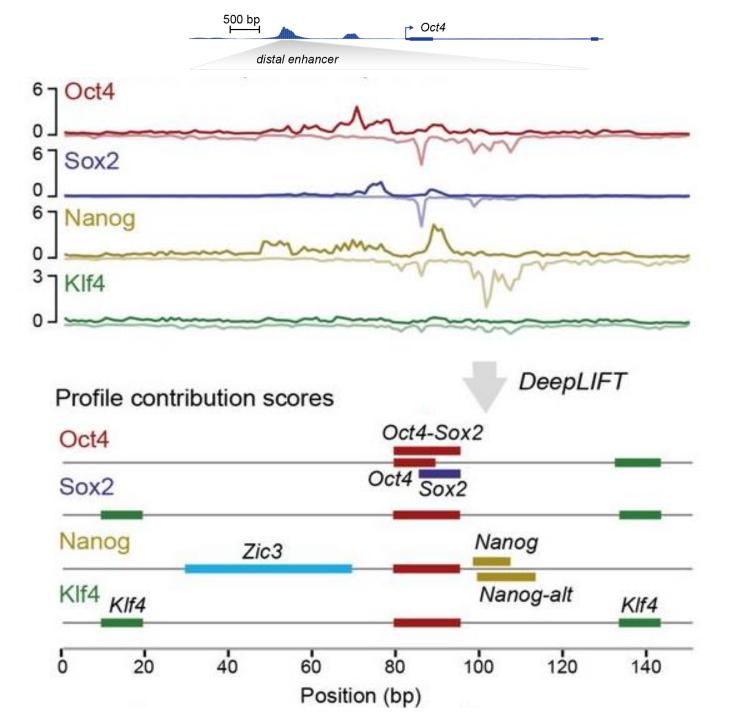


11

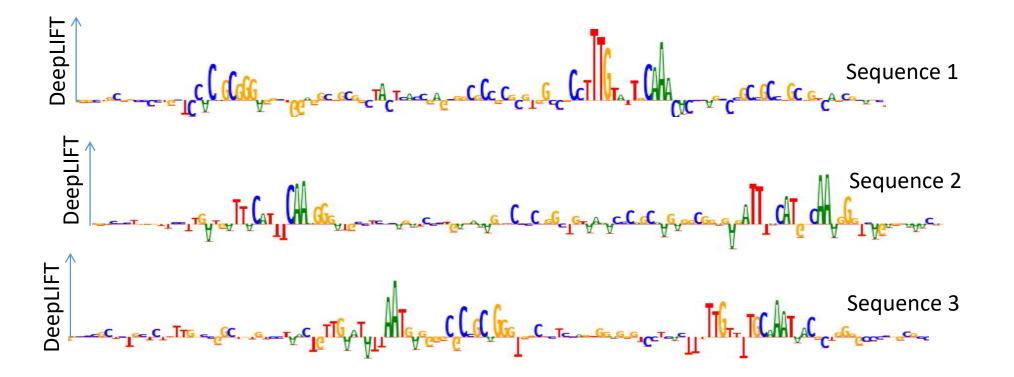
DeepLIFT: Inferring predictive nucleotides at individual binding events



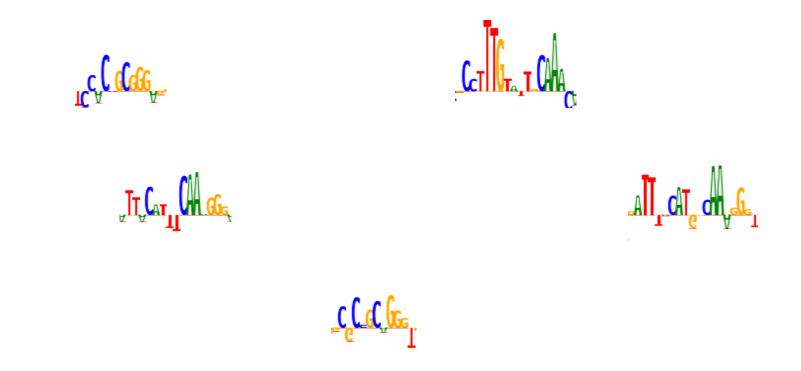




Insight: conv. filter contributions are integrated at the nucleotide level

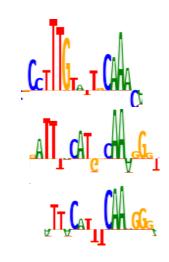


Insight: conv. filter contributions are integrated at the nucleotide level



Insight: conv. filter contributions are integrated at the nucleotide level



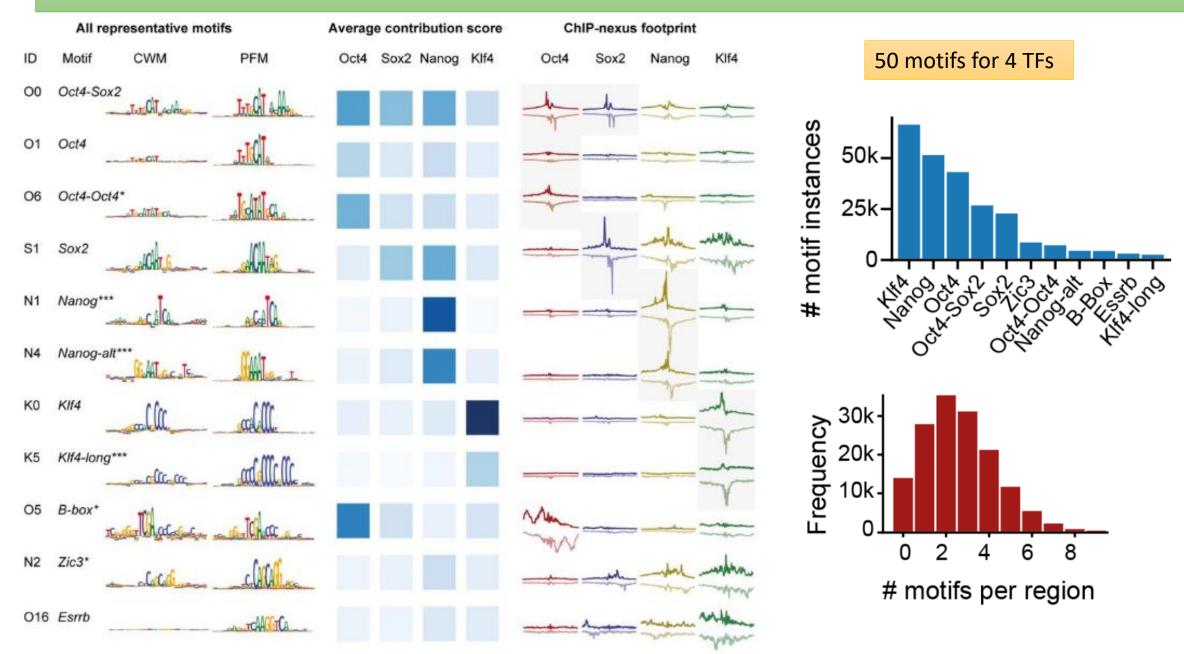


Insight: conv. filter contributions are integrated at the nucleotide level

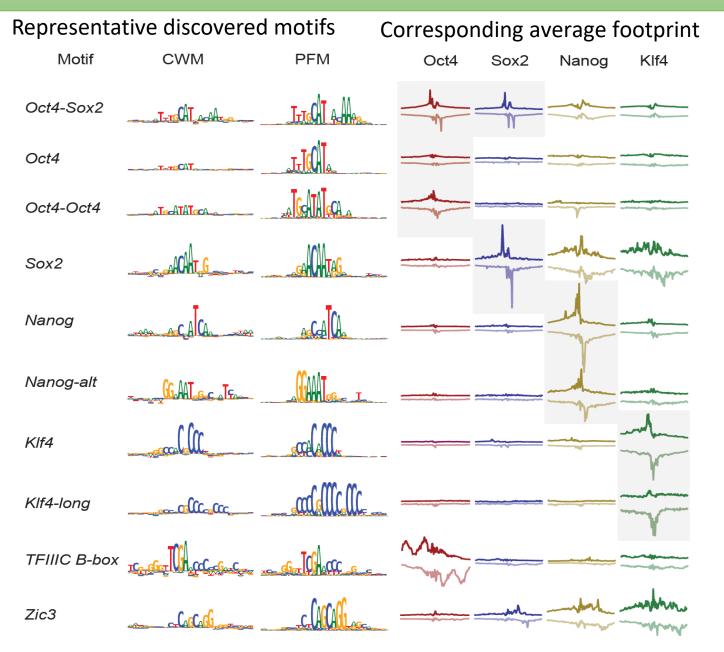
Shrikumar et al. 2018, arxiv

CODE: <u>https://github.com/kundajelab/tfmodisco</u>¹³

Consolidated motifs with combinatorial footprints

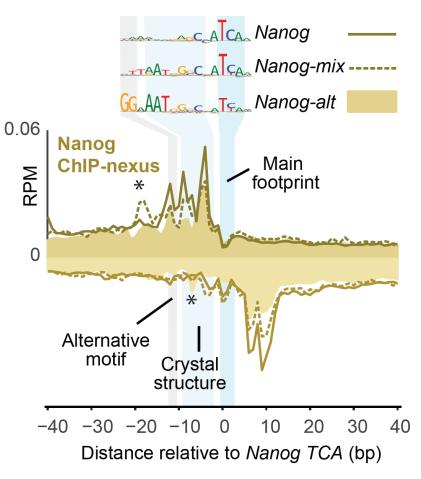


Multiple binding motifs for Nanog

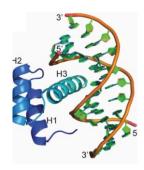


50 motifs for 4 TFs

Subtle differences in Nanog motifs

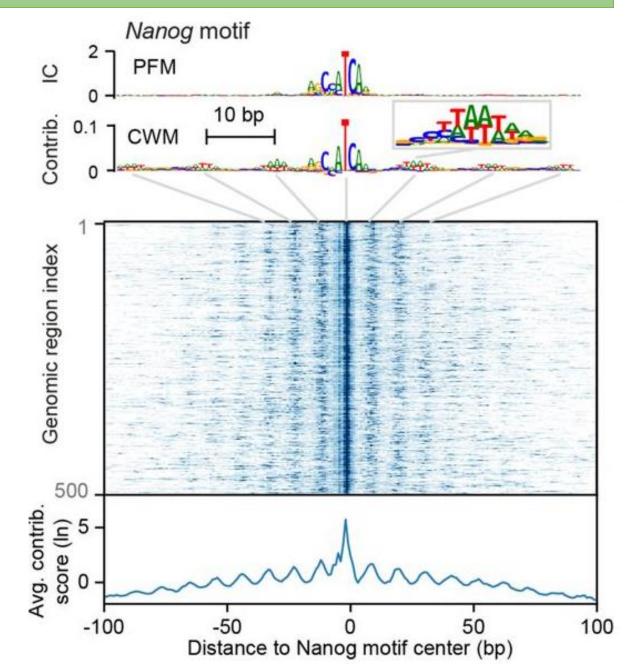


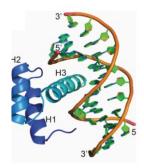
Deciphering motif syntax derived TF cooperativity



Nanog homeodomain Hayakshi et al. PNAS 2015

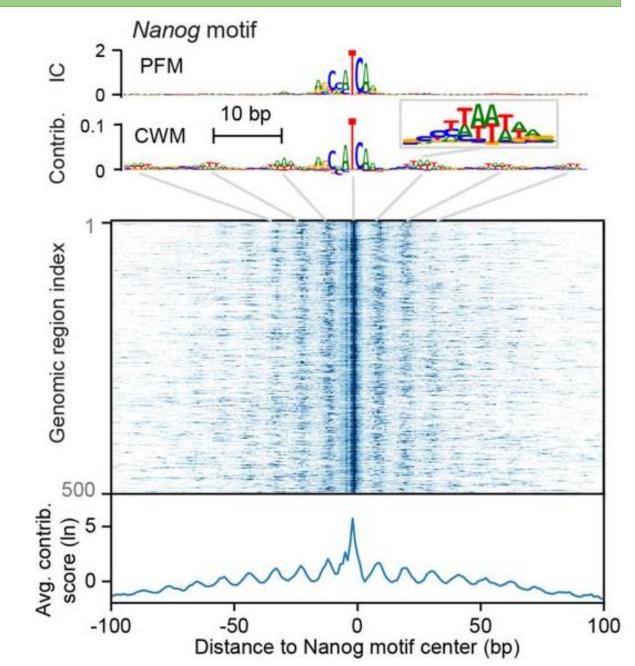
10.5 bp helical periodic flanking pattern for Nanog

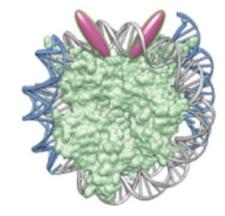




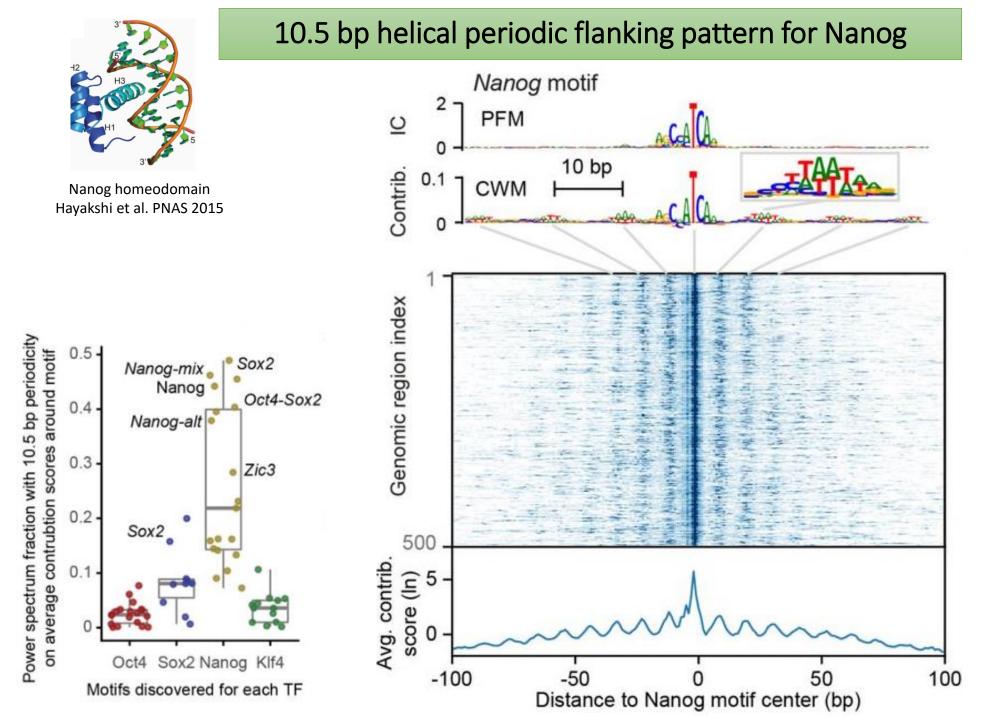
Nanog homeodomain Hayakshi et al. PNAS 2015

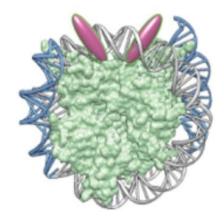
10.5 bp helical periodic flanking pattern for Nanog





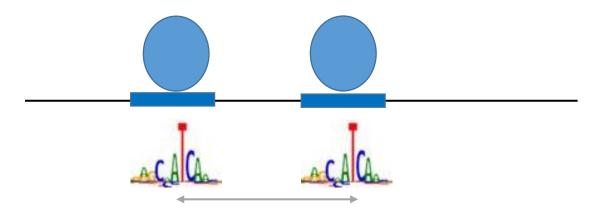
10 bp periodic binding of homeobox TFs to nucleosome DNA from recent *in vitro* NCAP-SELEX data (Zhu et al. Nature 2018)

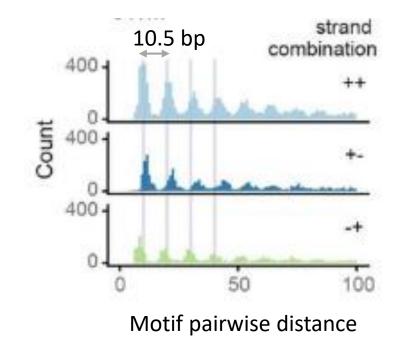


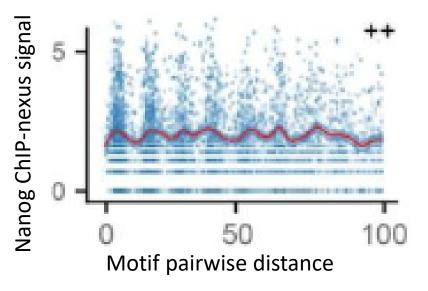


10 bp periodic binding of homeobox TFs to nucleosome DNA from recent *in vitro* NCAP-SELEX data (Zhu et al. Nature 2018)

Soft syntax: helical spacing preference between Nanog motifs across all control elements

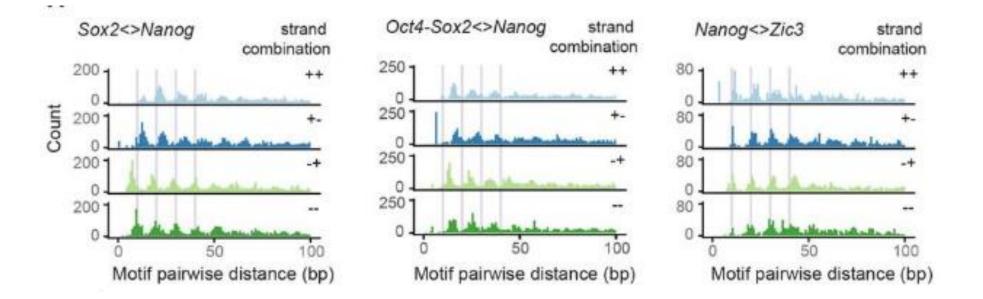




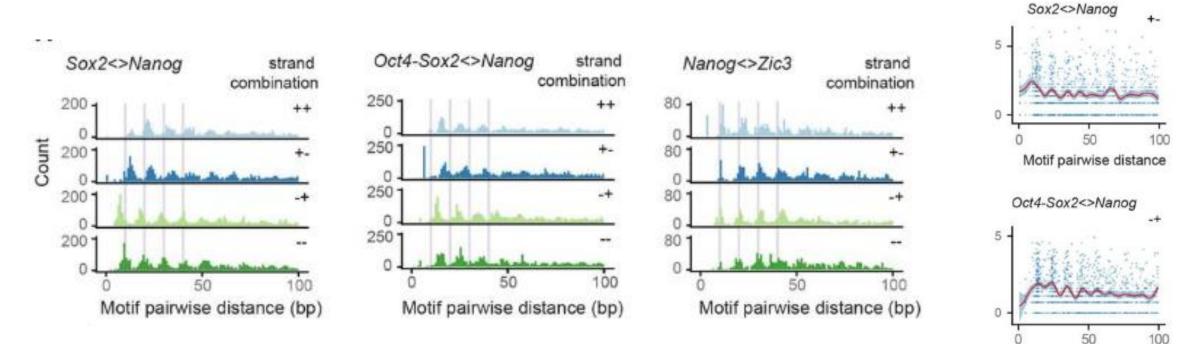


Preferred soft helical spacing preferences between Nanog <> other

Preferred soft helical spacing preferences between Nanog <> other



Preferred soft helical spacing preferences between Nanog <> other



Motif pairwise distance

Use BPNet model as in-silico oracle to perform perturbation experiments

1) On synthetic sequences

Use BPNet model as in-silico oracle to perform perturbation experiments

1) On synthetic sequences

Use BPNet model as in-silico oracle to perform perturbation experiments

1) On synthetic sequences

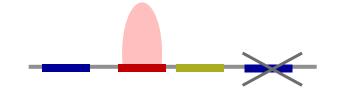
2) By mutating motifs in genomic regions

Use BPNet model as in-silico oracle to perform perturbation experiments

1) On synthetic sequences

2) By mutating motifs in genomic regions

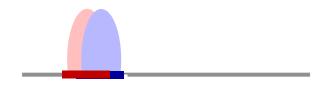
Use BPNet model as in-silico oracle to perform perturbation experiments

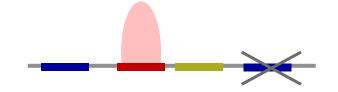


1) On synthetic sequences

2) By mutating motifs in genomic regions

Use BPNet model as in-silico oracle to perform perturbation experiments





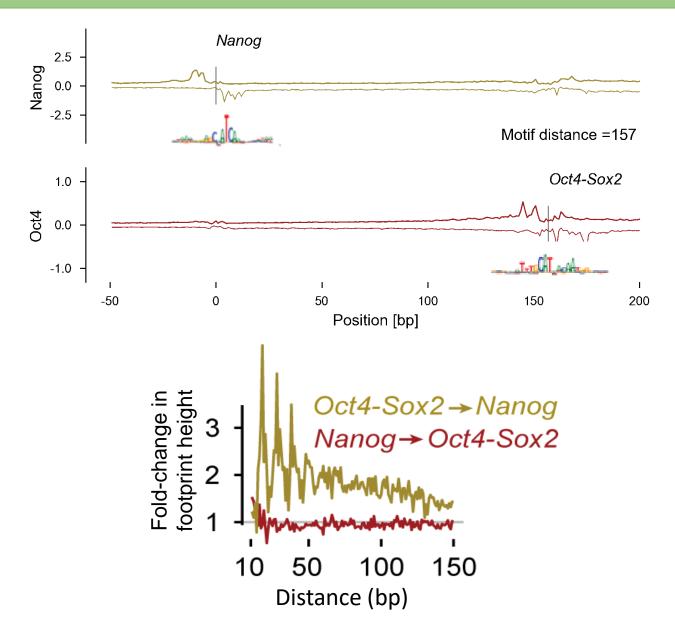
1) On synthetic sequences

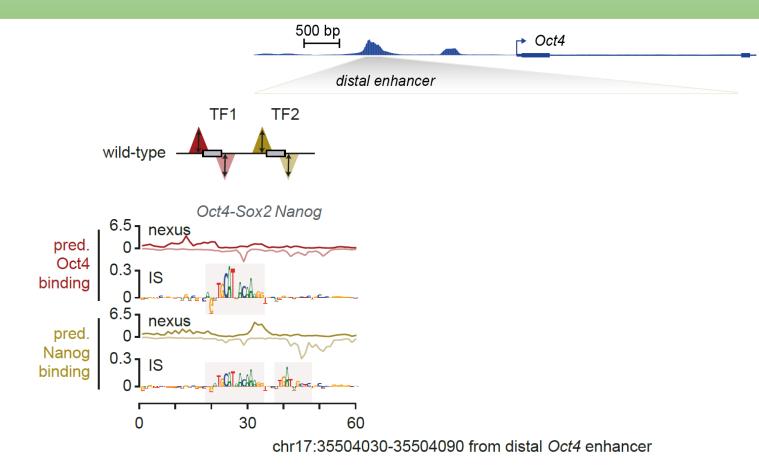
2) By mutating motifs in genomic regions

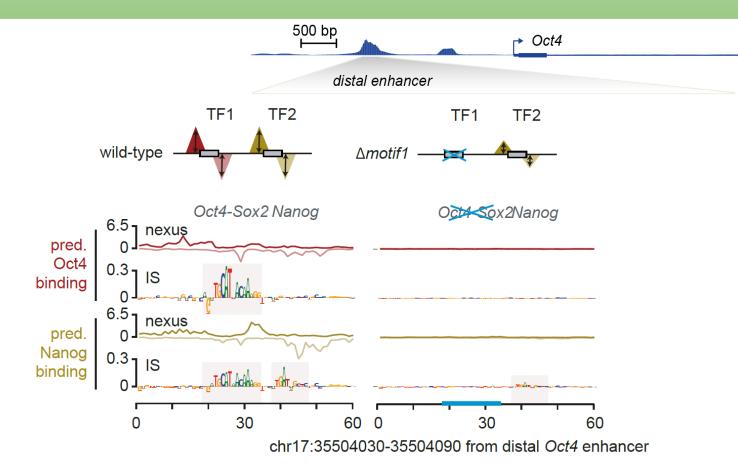
In silico biochemistry

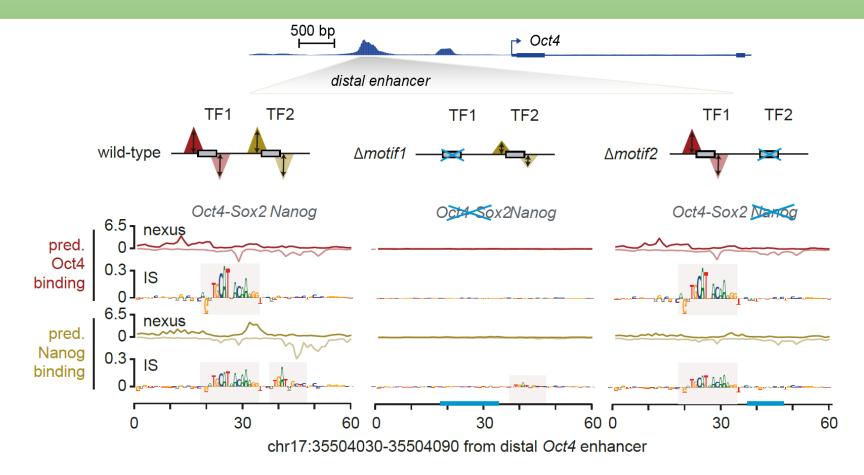
In silico genetics

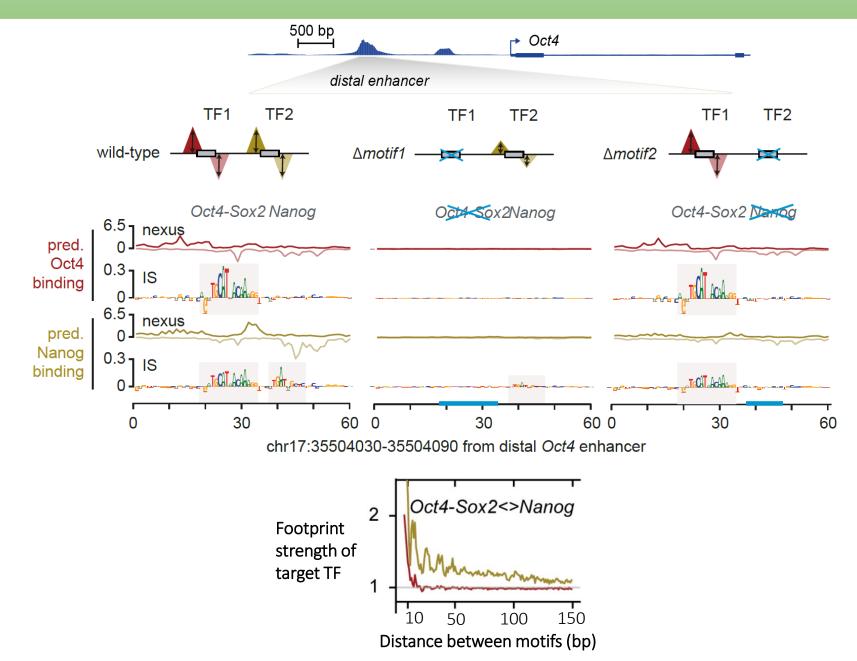
Cooperative interactions between Oct4 and Nanog as a function of motif spacing using synthetic sequences



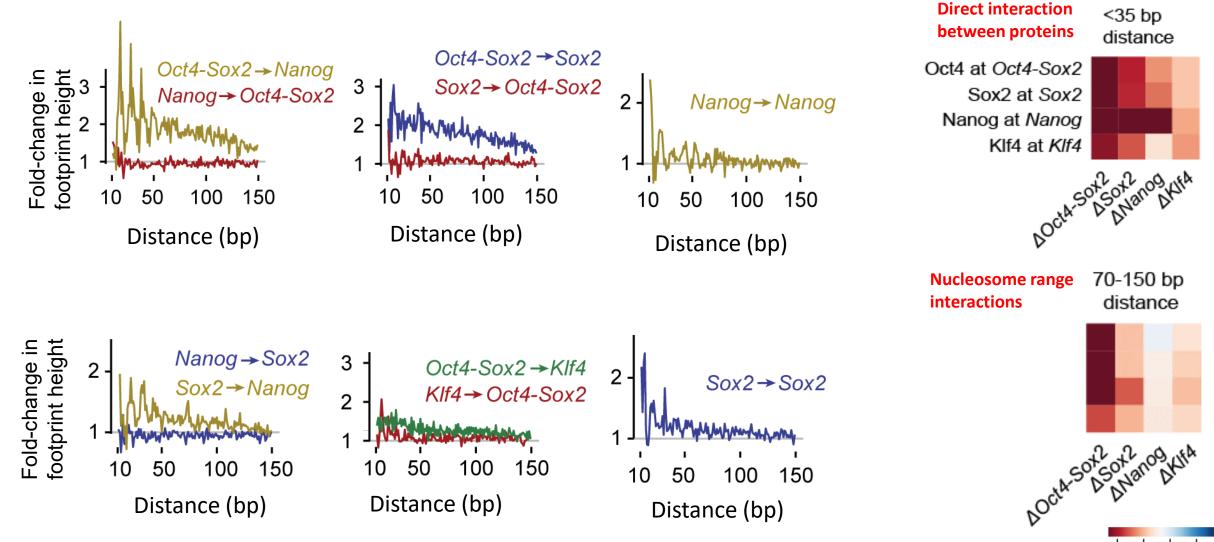




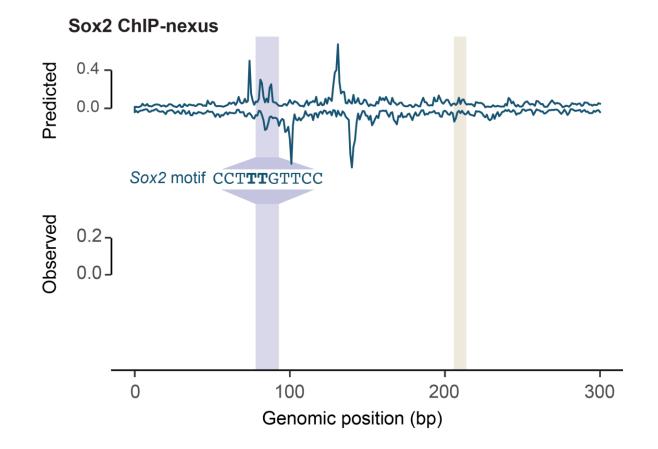


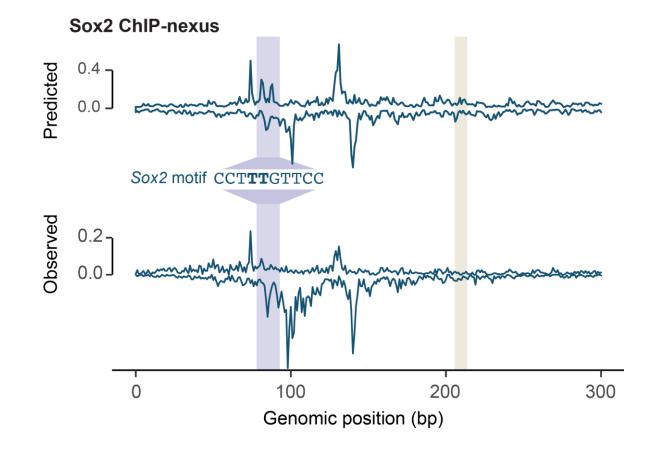


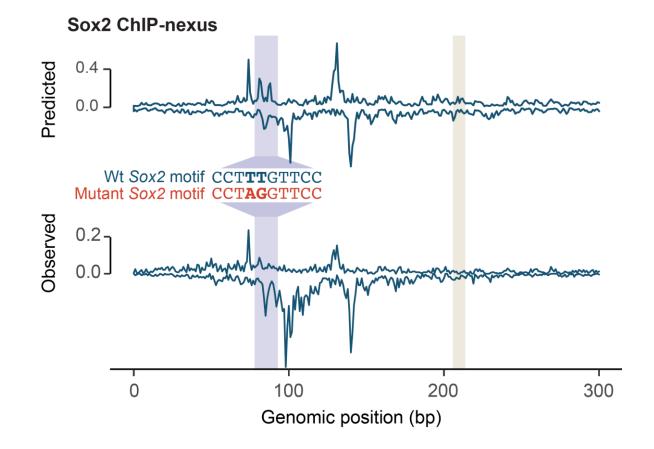
TF cooperativity is often directional & dependent on syntax with different distance ranges

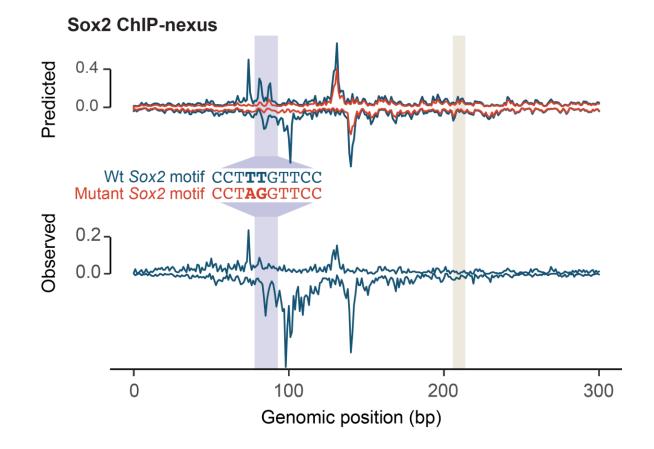


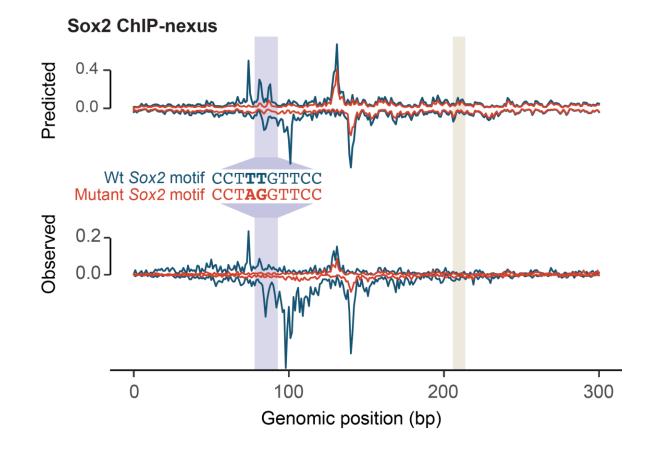
0.75 0.9 1.05 1.2 Max profile Δ/wt

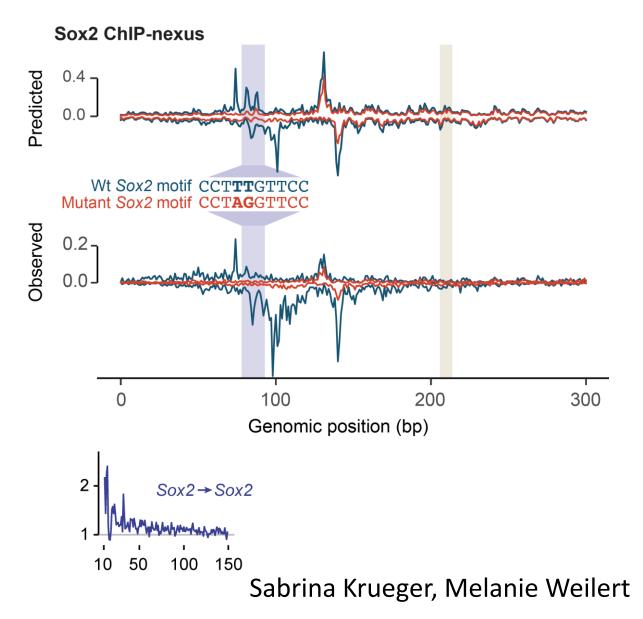


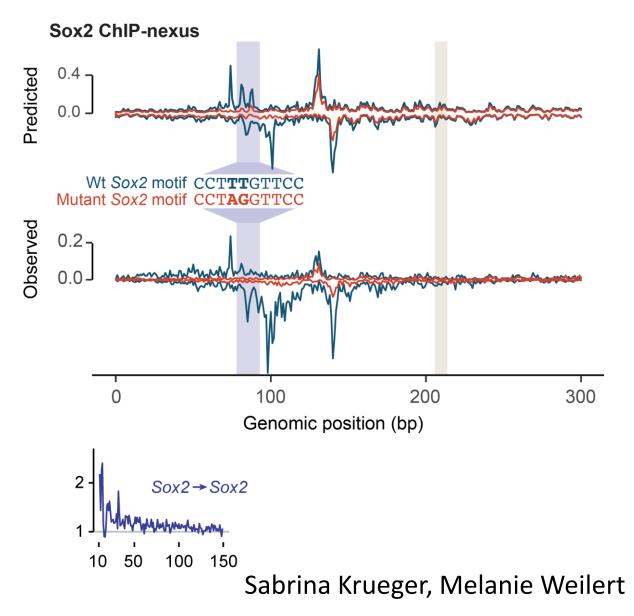


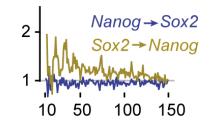


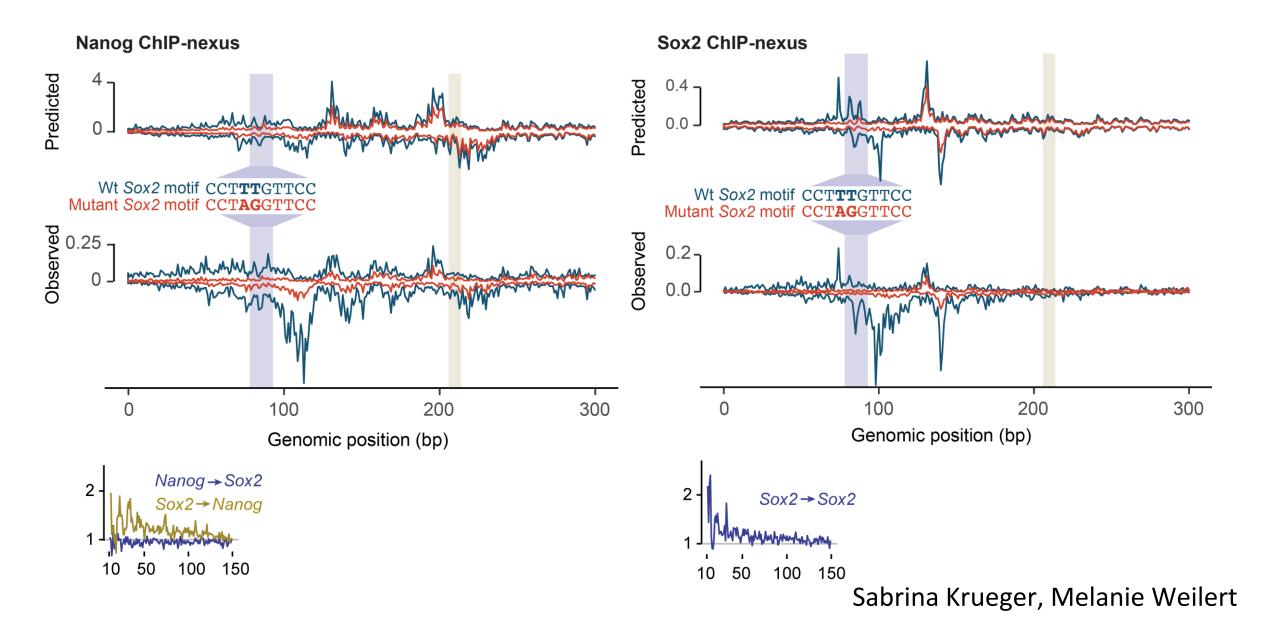


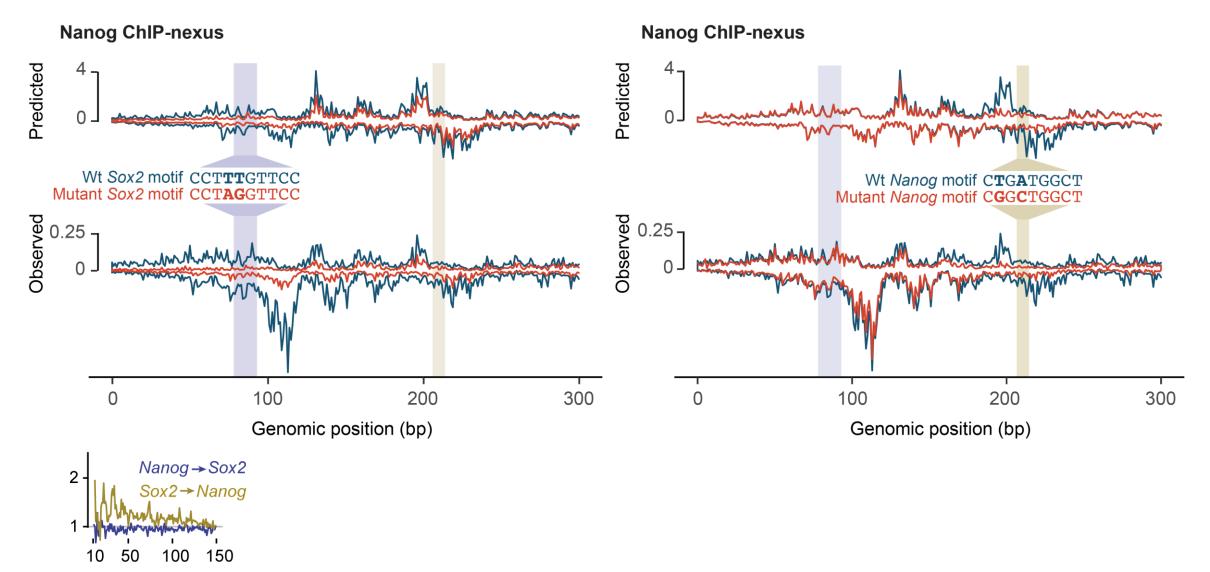


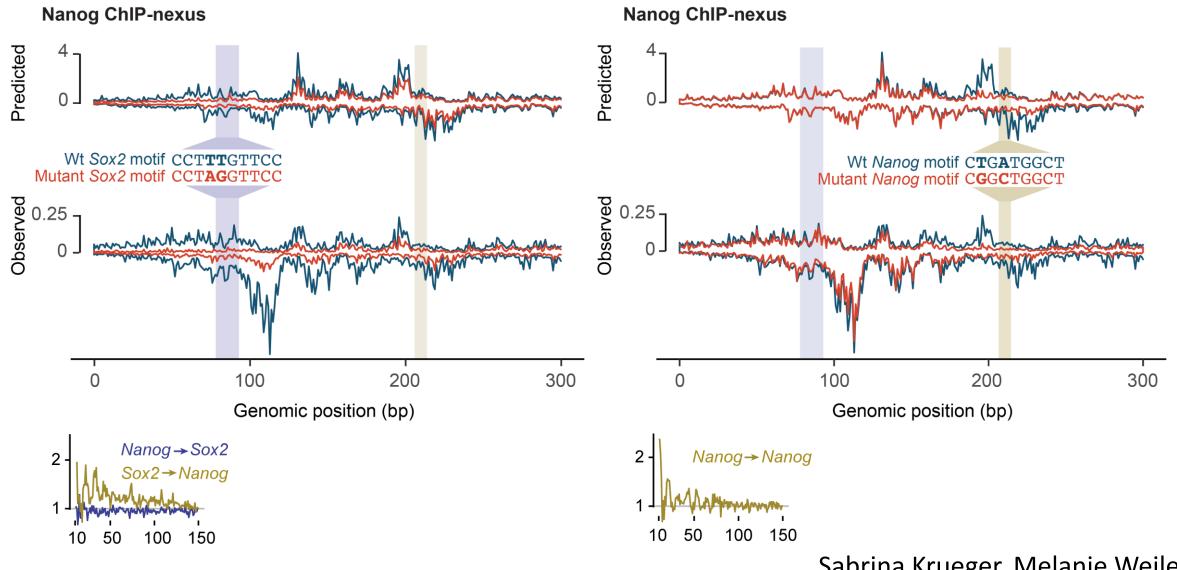


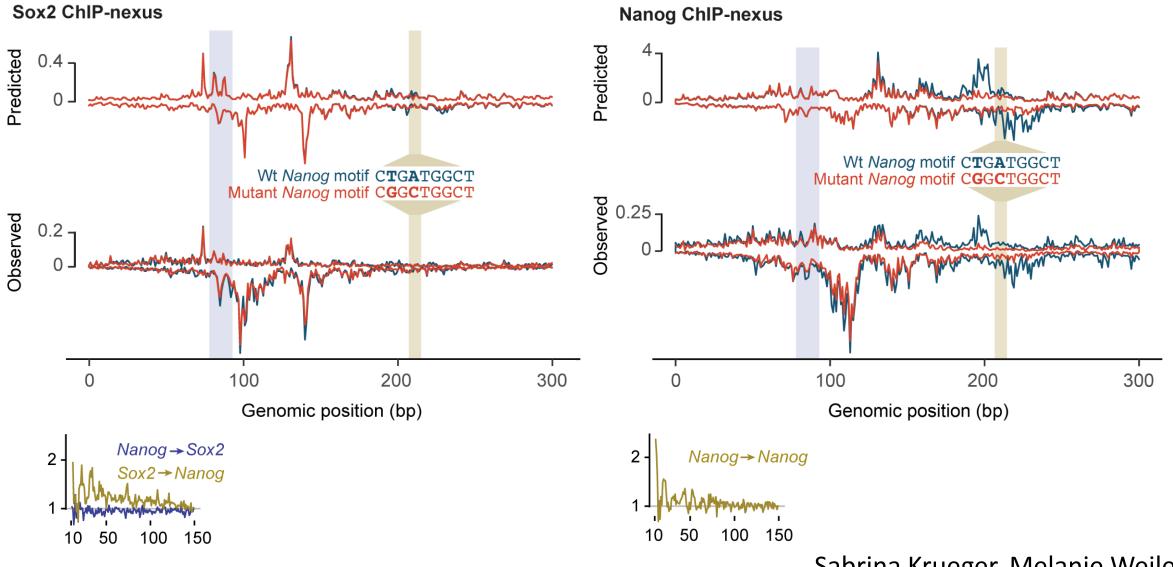






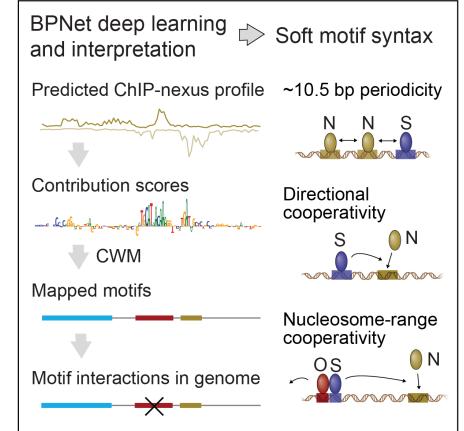






Summary

- BPNet can map raw DNA sequence to baseresolution regulatory profiles with unprecedented accuracy
 - TF ChIP-exo/nexus, ChIP-seq, CUT&RUN
 - DNase-seq, ATAC-seq, scATAC-seq
 - Histone ChIP-seq / CUT&RUN
 - PRO-seq, RAMPAGE/CAGE
- Interpretation frameworks enable discovery of soft syntax mediated directional TF cooperativity
- Syntax of TF binding is predictive of
 - CRISPR motif perturbation experiments
 - Differential chromatin accessibility after TF knockdown
 - Reporter expression activity



Acknowledgements

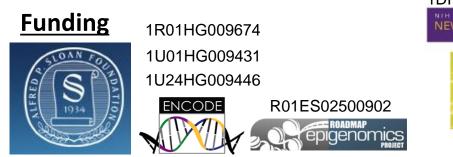
Ziga Avsec

Avanti Shrikumar

Melanie Weilert

Amr Mohamed

Julia Zeitlinger



- Khyati Dalal
- Sabrina Kruger
- Robin Fropf
- Charles McAnany
- Julien Gagneur

Deep Learning for Regulatory Genomics

1. Biological foundations: Building blocks of Gene Regulation

- Gene regulation: Cell diversity, Epigenomics, Regulators (TFs), Motifs, Disease role
- Probing gene regulation: TFs/histones: ChIP-seq, Accessibility: DNase/ATAC-seq

2. Classical methods for Regulatory Genomics and Motif Discovery

- Enrichment-based motif discovery: Expectation Maximization, Gibbs Sampling
- Experimental: PBMs, SELEX. Comparative genomics: Evolutionary conservation.

3. Regulatory Genomics CNNs (Convolutional Neural Networks): Foundations

- Key idea: pixels ⇔ DNA letters. Patches/filters ⇔ Motifs. Higher ⇔ combinations
- Learning convolutional filters 🗇 Motif discovery. Applying them 🗇 Motif matches

4. Regulatory Genomics CNNs/RNNs in Practice: Diverse Architectures

- DeepBind: Learn motifs, use in (shallow) fully-connected layer, mutation impact
- DeepSea: Train model directly on mutational impact prediction
- Basset: Multi-task DNase prediction in 164 cell types, reuse/learn motifs
- ChromPuter: Multi-task prediction of different TFs, reuse partner motifs
- DeepLIFT: Model interpretation based on neuron activation properties
- DanQ: Recurrent Neural Network for sequential data analysis

5. Guest Lecture: Anshul Kundaje, Stanford, Deep Learning for Reg. Genomics

6. Guest Lecture: Avantika Lal, Nvidia, Deep Learning for ATAC/scATAC

Enhancing epigenomic data with deep learning

Avantika Lal, 3/11/2021

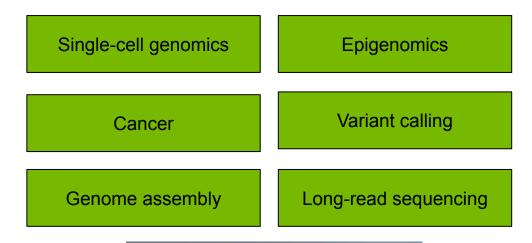
GENOMICS AT NVIDIA

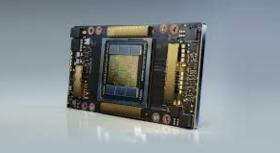
We are a team of scientists and engineers developing software to solve some of the most difficult problems in genomics.

We collaborate with academic institutes and companies across the world.

We apply machine learning, deep learning, and accelerated computing to build faster and more accurate tools - enabling new biological discoveries.

Some areas we work in:





ARTICLE

https://doi.org/10.1038/s41467-021-21765-5

OPEN

Deep learning-based enhancement of epigenomics data with AtacWorks

Avantika Lal[®]^{1,3}, Zachary D. Chiang^{2,3}, Nikolai Yakovenko¹, Fabiana M. Duarte[®]², Johnny Israeli^{1™} & Jason D. Buenrostro[®]^{2™}

https://www.nature.com/articles/s41467-021-21765-5

Check for updates

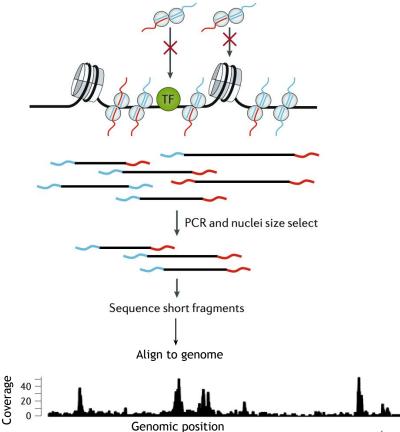
ATAC-SEQ

Chromatin accessibility mapping with DNA sequencing

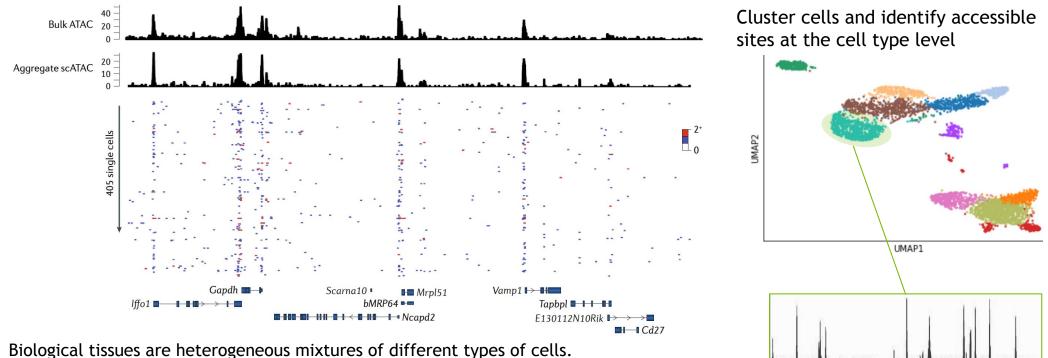
ATAC-seq measures chromatin accessibility using DNA sequencing.

'Peaks' of high sequencing read coverage correspond to regions of open chromatin in the genome.

ATAC-seq helps identify active regulatory elements, build regulatory networks, and study the effect of non-coding variation.

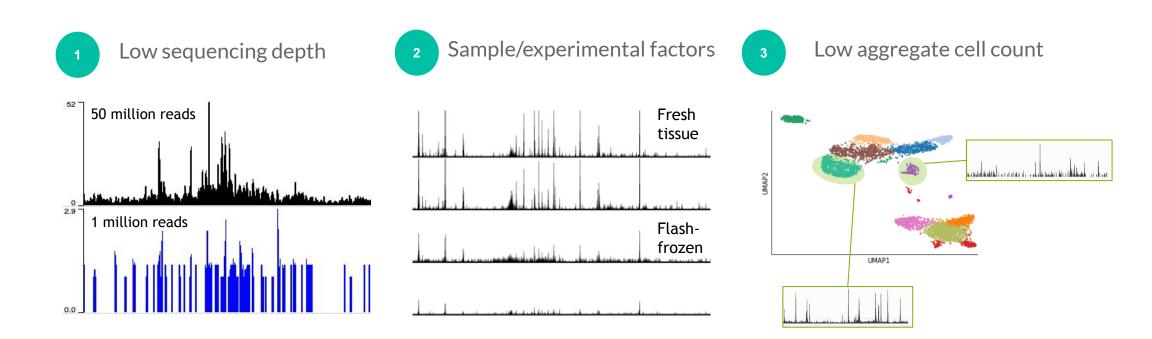


SINGLE-CELL ATAC-SEQ



Biological tissues are heterogeneous mixtures of different types of cells. Single-cell sequencing shows us this heterogeneity, but each cell provides only a noisy, sparse signal.

DATA QUALITY IN ATAC-SEQ



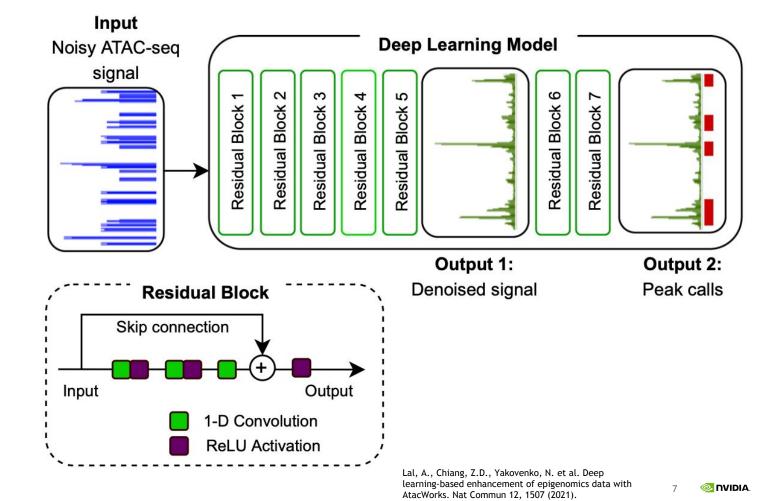
ATACWORKS

AtacWorks takes as input the coverage track from an ATAC-seq experiment, and improves its accuracy.

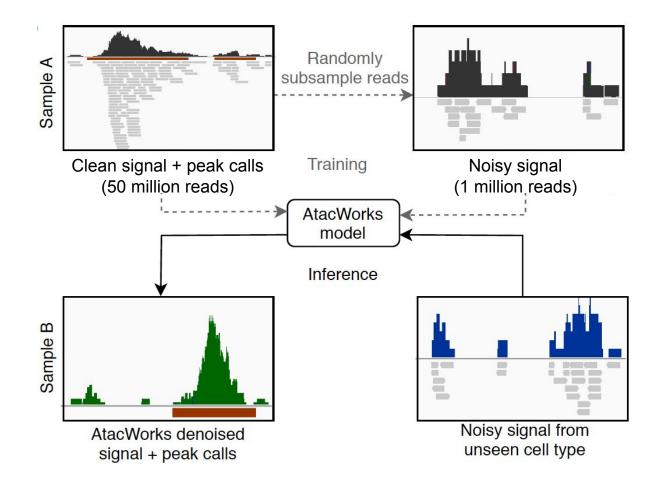
AtacWorks also identifies the peaks, or open chromatin regions.

It uses a ResNet (Residual Neural Network) architecture, a convolutional architecture originally used in computer vision.

However, it uses 1-D convolutional layers instead of the 2-D layers used in image analysis.



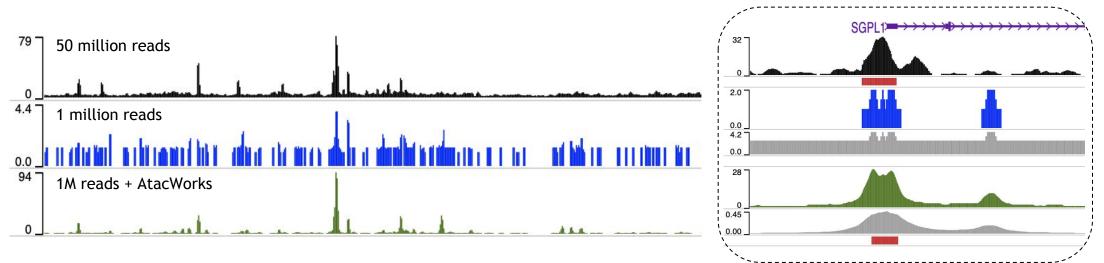
TRAINING ATACWORKS TO ENHANCE LOW-COVERAGE ATAC-SEQ DATA



ATACWORKS DENOISES AND CALL PEAKS FROM LOW-COVERAGE ATAC-SEQ

Bulk ATAC-seq data from human Erythroblasts

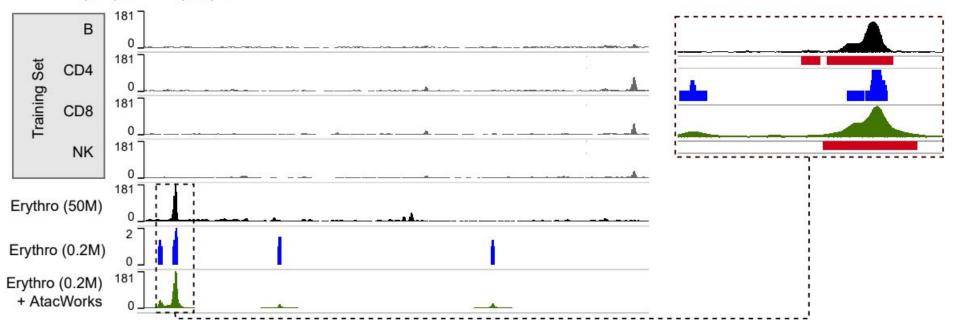
Chr10: 70,400,000-71,450,000



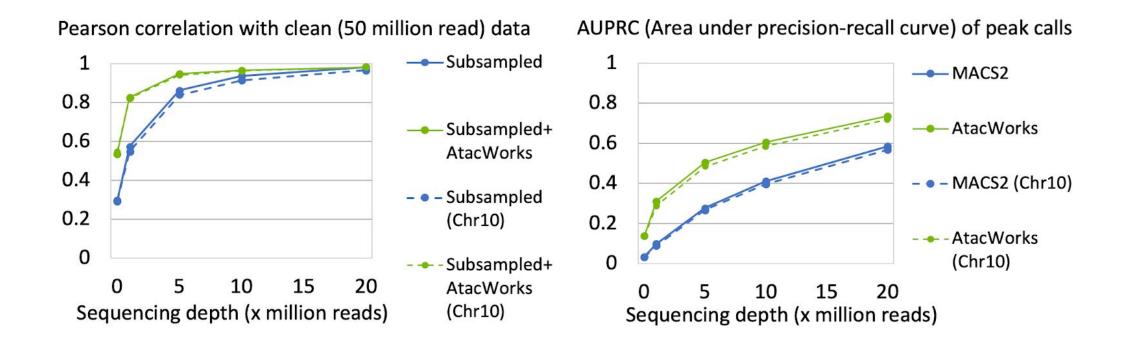
AtacWorks distinguishes real peaks and identifies peaks missed by MACS2.

ATACWORKS GENERALIZES ACROSS CELL TYPES

chr4:145,021,501 - 145,098,191



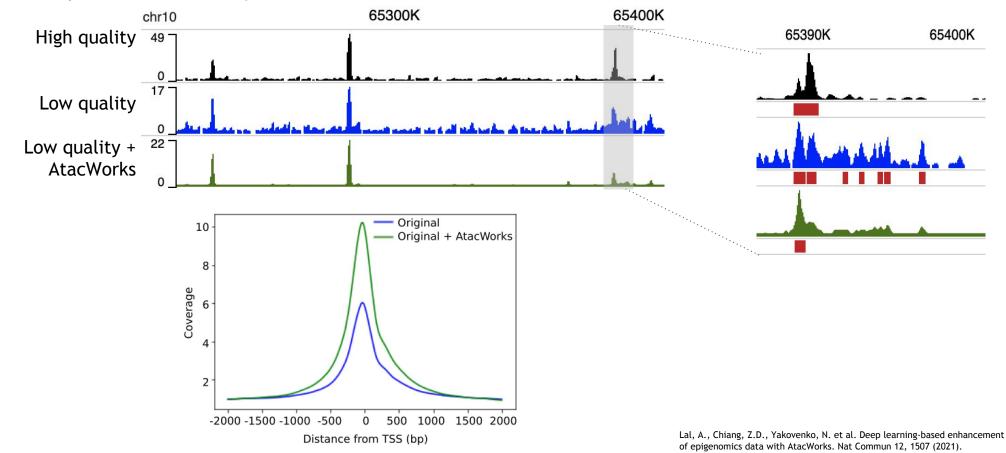
GENOME-WIDE PERFORMANCE METRICS



AtacWorks returns equivalent results at 2-5x lower sequencing depth.

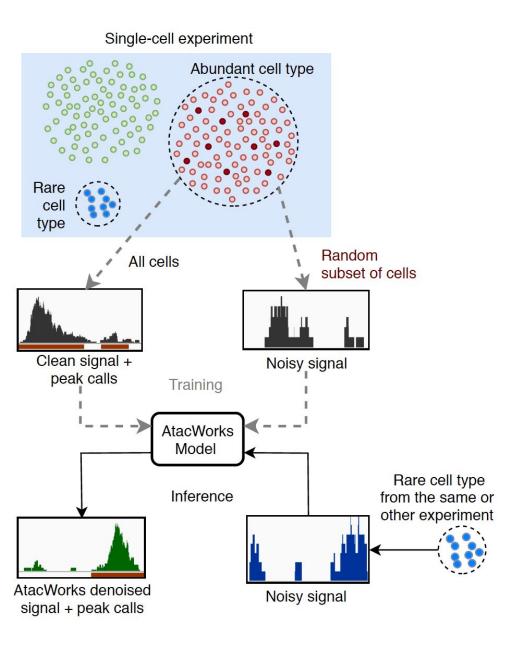
ATACWORKS ENHANCES LOW-QUALITY ATAC-SEQ

Bulk ATAC-seq data from human Erythroblasts

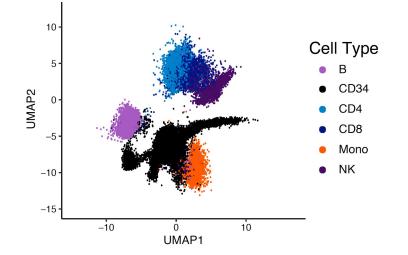


ATACWORKS FOR SINGLE-CELL ATAC-SEQ

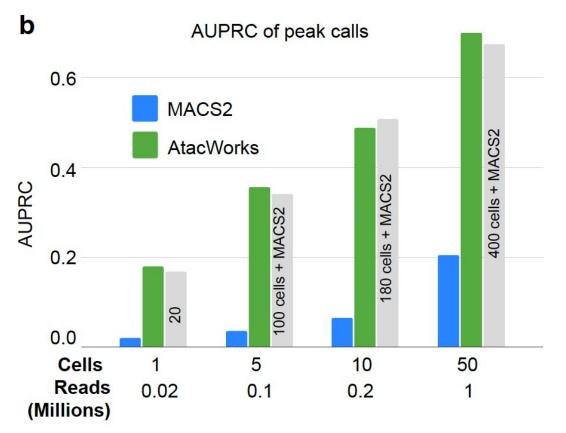
Profiling accessible chromatin in rare cell types



ATACWORKS ENABLES ANALYSIS OF SMALL NUMBERS OF CELLS

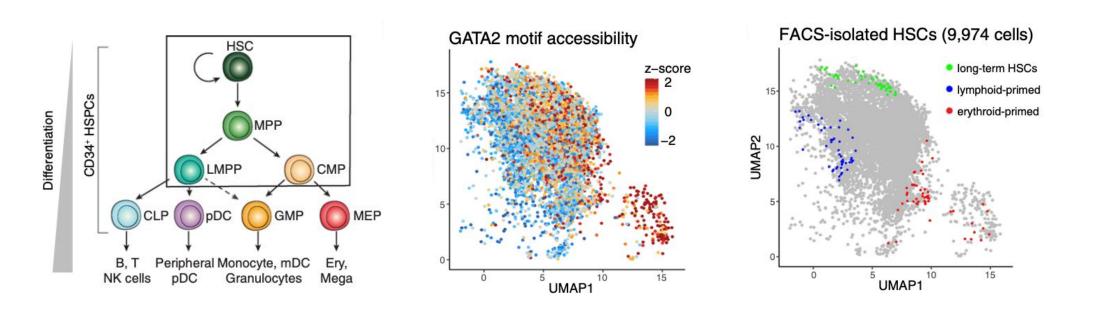


AtacWorks can obtain the same quality from ~10x fewer cells, increasing the resolution of single-cell chromatin accessibility profiling by an order of magnitude.



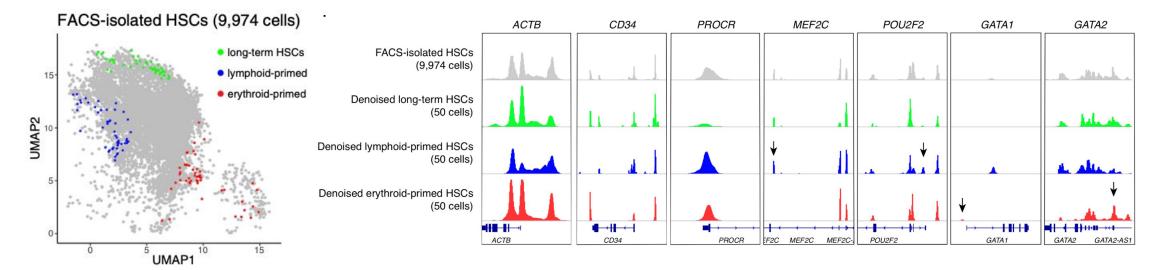
Lal, A., Chiang, Z.D., Yakovenko, N. et al. Deep learning-based enhancement of epigenomics data with AtacWorks. Nat Commun 12, 1507 (2021).

LINEAGE PRIMING IN HEMATOPOIETIC STEM CELLS



Lal, A., Chiang, Z.D., Yakovenko, N. et al. Deep learning-based enhancement of epigenomics data with AtacWorks. Nat Commun 12, 1507 (2021).

ATACWORKS IDENTIFIES REGULATORY ELEMENTS THAT CONTROL LINEAGE PRIMING



INTERACTIVE EXAMPLE

https://github.com/clara-parabricks/rapids-single-cell-examples/blob/master/notebooks/5k pbmc_coverage_gpu.ipynb

Built by Raj Movva (MIT CS undergrad)

ACKNOWLEDGMENTS

NVIDIA

Nikolai Yakovenko Joyjit Daw Eric Xu Gary Burnett Neha Tadimeti Ohad Mosafi Rajiv Movva (MIT) Bryan Catanzaro Johnny Israeli

Buenrostro Lab, Harvard University

Jason Buenrostro

Zachary Chiang

Fabiana Duarte

CONTACT

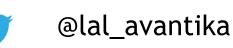
Avantika Lal

alal@nvidia.com

Senior Scientist (Deep Learning & Genomics)

https://www.linkedin.com/in/avantikalal

NVIDIA



Internships available!

Deep Learning for Regulatory Genomics

1. Biological foundations: Building blocks of Gene Regulation

- Gene regulation: Cell diversity, Epigenomics, Regulators (TFs), Motifs, Disease role
- Probing gene regulation: TFs/histones: ChIP-seq, Accessibility: DNase/ATAC-seq

2. Classical methods for Regulatory Genomics and Motif Discovery

- Enrichment-based motif discovery: Expectation Maximization, Gibbs Sampling
- Experimental: PBMs, SELEX. Comparative genomics: Evolutionary conservation.

3. Regulatory Genomics CNNs (Convolutional Neural Networks): Foundations

- Key idea: pixels ⇔ DNA letters. Patches/filters ⇔ Motifs. Higher ⇔ combinations
- Learning convolutional filters 🗇 Motif discovery. Applying them 🗇 Motif matches

4. Regulatory Genomics CNNs/RNNs in Practice: Diverse Architectures

- DeepBind: Learn motifs, use in (shallow) fully-connected layer, mutation impact
- DeepSea: Train model directly on mutational impact prediction
- Basset: Multi-task DNase prediction in 164 cell types, reuse/learn motifs
- ChromPuter: Multi-task prediction of different TFs, reuse partner motifs
- DeepLIFT: Model interpretation based on neuron activation properties
- DanQ: Recurrent Neural Network for sequential data analysis

5. Guest Lecture: Anshul Kundaje, Stanford, Deep Learning for Reg. Genomics

6. Guest Lecture: Avantika Lal, Nvidia, Deep Learning for ATAC/scATAC