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Deep Learning for Regulatory Genomics
1. Biological foundations: Building blocks of Gene Regulation

– Gene regulation: Cell diversity, Epigenomics, Regulators (TFs), Motifs, Disease role
– Probing gene regulation: TFs/histones: ChIP-seq, Accessibility: DNase/ATAC-seq

2. Classical methods for Regulatory Genomics and Motif Discovery
– Enrichment-based motif discovery: Expectation Maximization, Gibbs Sampling
– Experimental: PBMs, SELEX. Comparative genomics: Evolutionary conservation. 

3. Regulatory Genomics CNNs (Convolutional Neural Networks): Foundations
– Key idea: pixels  DNA letters. Patches/filters Motifs. Higher  combinations
– Learning convolutional filters Motif discovery. Applying them Motif matches

4. Regulatory Genomics CNNs/RNNs in Practice: Diverse Architectures 
– DeepBind: Learn motifs, use in (shallow) fully-connected layer, mutation impact
– DeepSea: Train model directly on mutational impact prediction
– Basset: Multi-task DNase prediction in 164 cell types, reuse/learn motifs
– ChromPuter: Multi-task prediction of different TFs, reuse partner motifs
– DeepLIFT: Model interpretation based on neuron activation properties
– DanQ: Recurrent Neural Network for sequential data analysis

5. Guest Lecture: Anshul Kundaje, Stanford, Deep Learning for Reg. Genomics
6. Guest Lecture: Avantika Lal, Nvidia, Deep Learning for ATAC/scATAC



1a. Basics of gene regulation



One Genome – Many Cell Types

4

ACCAGTTACGACGGTCA
GGGTACTGATACCCCAA
ACCGTTGACCGCATTTA
CAGACGGGGTTTGGGTT
TTGCCCCACACAGGTAC
GTTAGCTACTGGTTTAG
CAATTTACCGTTACAAC
GTTTACAGGGTTACGGT
TGGGATTTGAAAAAAAG
TTTGAGTTGGTTTTTTC
ACGGTAGAACGTACCGT

TACCAGTA

Image Source wikipedia



DNA packaging
• Why packaging

– DNA is very long
– Cell is very small

• Compression
– Chromosome is  50,000 

times shorter than 
extended DNA

• Using the DNA
– Before a piece of DNA is 

used for anything, this 
compact structure must 
open locally

• Now emerging:
– Role of accessibility
– State in chromatin itself
– Role of 3D interactions



Combinations of marks encode epigenomic state

• 100s of known modifications, many new still emerging
• Systematic mapping using ChIP-, Bisulfite-, DNase-Seq

• H3K4me3
• H3K9ac
• DNase

• H3K36me3
• H3K79me2
• H4K20me1

• H3K4me1
• H3K27ac
• DNase

• H3K9me3
• H3K27me3
• DNAmethyl

• H3K4me3
• H3K4me1
• H3K27ac
• H3K36me3
• H4K20me1
• H3K79me3
• H3K27me3
• H3K9me3
• H3K9ac
• H3K18ac

Enhancers Promoters Transcribed Repressed



Summarize multiple marks into chromatin states

ChromHMM: multi-variate hidden Markov model
WashU Epigenome Browser
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Promoter regionEnhancer region Protein-coding sequence

Transcription factors control activation of cell-type-
specific promoters and enhancers



TFs use DNA-binding domains to recognize 
specific DNA sequences in the genome

DNA-binding domain of
Engrailed

“Logo” or  “motif”

TAATTA CACGTG AGATAAGA

TCATTA



Regulator structure  recognized motifs
• Proteins ‘feel’ DNA

- Read chemical properties of bases
- Do NOT open DNA (no base 

complementarity)

• 3D Topology dictates specificity
- Fully constrained positions: 
 every atom matters

- “Ambiguous / degenerate” positions
 loosely contacted

• Other types of recognition
- MicroRNAs: complementarity
- Nucleosomes: GC content
- RNAs: structure/seqn combination



Motifs summarize TF sequence 
specificity

• Summarize 
information

• Integrate many 
positions

• Measure of 
information

• Distinguish motif 
vs. motif instance

• Assumptions:
- Independence
- Fixed spacing



Regulatory motifs at all levels of pre/post-tx regulation

• The parts list:  ~20-30k genes
- Protein-coding genes, RNA genes (tRNA, microRNA, snRNA)

• The circuitry:  constructs controlling gene usage
- Enhancers, promoters, splicing, post-transcriptional motifs

• The regulatory code, complications: 
- Combinatorial coding of ‘unique tags’

- Data-centric encoding of addresses
- Overlaid with ‘memory’ marks

- Large-scale on/off states
- Modulation of the large-scale coding

- Post-transcriptional and post-translational information
• Today: discovering motifs in co-regulated promoters and de novo motif 

discovery & target identification

Enhancer regions Promoter motifs
Where in the body? When in time? Which variants?

Splicing signals
Which subsets?

Motifs at RNA level



Disrupted motif at the heart of FTO obesity locus

Obese

Lean

Strongest association 
with obesity

C-to-T disruption of AT-rich
regulatory motif

Restoring motif restores thermogenesis



1b. Technologies for probing gene regulation



Bar-coded multiplexed sequencing

Mapping regulator binding: ChIP-seq
(Chromatin immunoprecipitation followed by sequencing) TF=transcription factor

antibody



ChIP-chip and ChIP-Seq technology overview
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Modification-specific antibodies  Chromatin Immuno-Precipitation 
followed by: ChIP-chip: array hybridization

ChIP-Seq: Massively Parallel Next-gen Sequencing



ChIP-Seq Histone Modifications: What the 
raw data looks like

• Each sequence tag is 30 base pairs long
• Tags are mapped to unique positions in the ~3 billion 

base reference genome
• Number of reads depends on sequencing depth. 

Typically on the order of 10 million mapped reads.
17



Chromatin accessibility can reveal 
TF binding

Sherwood, RI, et al. “Discovery of directional and nondirectional
pioneer transcription factors by modeling DNase profile magnitude 
and shape” Nat. Bio tech 2014.



DNase-seq reveals genome protection profiles



Assay for Transposase-Accessible Chromatin
(ATAC-seq)



GM12878, Chr. 14, 
Each point is accessibility in a 2 kb window

ATAC -seq and DNase-seq are not identical

Hashimoto TB, et al. “A Synergistic DNA Logic Predicts Genome-wide Chromatin Accessibility”  
Genome Research 2016



DNase-seq is less defined evidence than ChIP-seq

ChIP-seq reports TF-binding 
locations regions (specifically)

DNase-seq reports proximal       
TF-non-binding locations (noisily)

A

seq

seq



Bound factors leave distinct DNase-seq
profiles

CTCF BrgOct4 ZfxEsrrb

motif

Aggregate CTCF:

Individual CTCF:

Individual binding site prediction is difficult



~650,000   
TF Motifs

~50,000 binding sites 
for a typical TF

Motifs can predict TF binding

Binding sites change across 
time



Chromatin accessibly influences 
transcription factor binding

• Modeling  accessibility profiles yields binding  
predictions and pioneer factor discovery

• Asymmetric accessibility is induced by d irectio nal 
pio neers

• The binding  of settler facto rs can be enabled by 
proximal pioneer factor binding

Sherwood, RI, et al. “Discovery of directional and nondirectional
pioneer transcription factors by modeling DNase profile magnitude 
and shape” Nat. Bio tech 2014.



Deep Learning for Regulatory Genomics
1. Biological foundations: Building blocks of Gene Regulation

– Gene regulation: Cell diversity, Epigenomics, Regulators (TFs), Motifs, Disease role
– Probing gene regulation: TFs/histones: ChIP-seq, Accessibility: DNase/ATAC-seq

2. Classical methods for Regulatory Genomics and Motif Discovery
– Enrichment-based motif discovery: Expectation Maximization, Gibbs Sampling
– Experimental: PBMs, SELEX. Comparative genomics: Evolutionary conservation. 

3. Regulatory Genomics CNNs (Convolutional Neural Networks): Foundations
– Key idea: pixels  DNA letters. Patches/filters Motifs. Higher  combinations
– Learning convolutional filters Motif discovery. Applying them Motif matches

4. Regulatory Genomics CNNs/RNNs in Practice: Diverse Architectures 
– DeepBind: Learn motifs, use in (shallow) fully-connected layer, mutation impact
– DeepSea: Train model directly on mutational impact prediction
– Basset: Multi-task DNase prediction in 164 cell types, reuse/learn motifs
– ChromPuter: Multi-task prediction of different TFs, reuse partner motifs
– DeepLIFT: Model interpretation based on neuron activation properties
– DanQ: Recurrent Neural Network for sequential data analysis
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2. Classical regulatory genomics
(before Deep Learning)



Enrichment-based discovery methods
Given a set of co-regulated/functionally related genes, 

find common motifs in their promoter regions

• Align the promoters to each other using local alignment
• Use expert knowledge for what motifs should look like
• Find ‘median’ string by enumeration (motif/sample driven)
• Start with conserved blocks in the upstream regions



Starting positions  Motif matrix

sequence positions

A

C

G

T

1 2 3 4 5 6 7 8

0.1

0.1

0.6

0.2

• given aligned sequences  easy to compute profile matrix

0.1
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0.2 0.3

0.2
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0.1
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0.2 0.1
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0.2

0.1

0.4

0.1

0.1

0.7

0.1

0.3

0.2

0.2

0.3

shared motif

given profile matrix
• easy to find starting position probabilities

Key idea:  Iterative procedure for estimating both, given uncertainty
(learning problem with hidden variables:  the starting positions)

expectation

maximization



Experimental factor-centric discovery of motifs

SELEX (Systematic 
Evolution of Ligands by 
Exponential Enrichment; 
Klug & Famulok, 1994). 

DIP-Chip (DNA-
immunoprecipitation 
with microarray 
detection; Liu et al., 
2005)

PBMs (Protein binding 
microarrays; Mukherjee, 
2004)
Double stranded DNA 
arrays



Approaches to regulatory motif discovery

• Expectation Maximization (e.g. MEME)
– Iteratively refine positions / motif profile

• Gibbs Sampling (e.g. AlignACE)
– Iteratively sample positions / motif profile

• Enumeration with wildcards (e.g. Weeder)
– Allows global enrichment/background score

• Peak-height correlation (e.g. MatrixREDUCE)
– Alternative to cutoff-based approach

• Conservation-based discovery (e.g. MCS)
– Genome-wide score, up-/down-stream bias

• Protein Domains (e.g. PBMs, SELEX)
– In vitro motif identification, seq-/array-based

Region-based 
motif 
discovery

Genome-wide 

In vitro / trans
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Convolutional  layer
(same color =  shared
weights)

Later conv layers operate on  outputs 
of previous conv layers

e
u

Conv Layer 1  
Kernel width = 4 
stride = 2*
num filters / num  channels = 3
Total neurons = 15

Max=2

2 61

Maxpooling layers take the max
over sets of conv layer outputs

Maxpooling layer  
pool width = 2  
stride = 1

Conv Layer 2  
Kernel width = 3  
stride = 1
num filters / num  channels = 2  
total neurons = 6

Typically followed by one or 
more  fully connected layers

*for genomics, a stride of 1 for conv layers is recommended

P (TF = bound | X)Sigmoid activations

Deep convolutional neural network

G C A T T A C C G A T A A

Max=2



3a. CNNs for Regulatory Genomics Foundations
(Low-level features)



An example of using CNN to model DNA sequence

NNNATGCAGCANN
N

A
T
G
C

Matrix representation of 
DNA sequence
(darker = stronger)

Representing DNA sequence as 2D matrix:



Convolution – extracting invariant feature

Applying 4 bp sequence filter along the DNA matrix:

ATGCAGCA
on 1st position 3rd position

Yellow = high activity; blue = low activity

A
T
G
C

A
T
G
C

A
T
G
C

A
T
G
C



Convolution – extracting invariant feature

Convolution module

NNNATGCAGCANN
N

convolutio
n filters

Matrix representation 
of DNA sequence
(darker = stronger)

filtere
d 
signal

ATGCAGC
A

rectification
(denoising)   max 
pooling

max
A
T
G
C

Rectification = ignore signals below some threshold. 
Pooling = summary of each channel by max or average.



Prediction using extracted features map

Convolution module Prediction module

ChIP-seq, PBMs, SELEX Experiments DNA sequence
A T G C A G C A N N N

(...) (...)
(...)

(...)
(...)

(...)

GCRC

GCRC
GCRC|ATRc

Affinity

higher-level 
combinations

TGRT

match 
filter

max

match 
filter

max

match
filter

max

TGRT

ATRc

ATRcIn
di

vi
du

al
m

ot
ifs

[Park and Kellis, 2015]
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Key properties of regulatory sequence

TRANSCRIPTION FACTOR BINDING

Regulatory proteins called transcription factors (TFs) bind to high  affinity sequence 
patterns (motifs) in regulatory DNA

Transcription  factor
Regulatory

DNA
sequences

Motif



Sequence motifs: PWM

A 0 0 1 0 1 0.5

C 0.5 0 0 0 0 0

G 0.5 1 0 0 0 0

T 0 0 0 1 0 0.5

Position weight matrix  
(PWM)

Bi
ts

PWM logo
https://en.wikipedia.org/wiki/Sequence_logo

GGATAA
CGATAA
CGATAT
GGATAT

Set of aligned sequences  
Bound by TF

https://en.wikipedia.org/wiki/Sequence_logo


Sequence motifs: PSSM

Position-specific
scoring matrix
(PSSM)

PSSM logo

A -5.7 -3.2 3.7 -3.2 3.7 0.6

C 0.5 -3.2 -3.2 -3.2 -3.2 -5.7

G 0.5 3.7 -3.2 -3.2 -3.2 -5.7

T -5.7 -3.2 -3.2 3.7 -3.2 0.5

Accounting for genomic background nucleotide distribution



Scoring a sequence with a motif PSSM

G C A T T A C C G A T A AInput sequence

One-hot encoding (X)

Scoring  
weights

W

A -5.7 -3.2 3.7 -3.2 3.7 0.6

C 0.5 -3.2 -3.2 -3.2 -3.2 -5.7

G 0.5 3.7 -3.2 -3.2 -3.2 -5.7

T -5.7 -3.2 -3.2 3.7 -3.2 0.5

PSSM parameters



G C A T T A C C G A T A AInput
sequence

One-hot encoding
(X)

Scoring  
weights  

W

-5.4

A -5.7 -3.2 3.7 -3.2 3.7 0.6

C 0.5 -3.2 -3.2 -3.2 -3.2 -5.7

G 0.5 3.7 -3.2 -3.2 -3.2 -5.7

T -5.7 -3.2 -3.2 3.7 -3.2 0.5

Motif match Scores
sum(W * x)

Convolution:
Scoring a sequence with a PSSM



G C A T T A C C G A T A AInput
sequence

One-hot encoding
(X)

Scoring  
weights  

W

-5.4 2.0

A -5.7 -3.2 3.7 -3.2 3.7 0.6

C 0.5 -3.2 -3.2 -3.2 -3.2 -5.7

G 0.5 3.7 -3.2 -3.2 -3.2 -5.7

T -5.7 -3.2 -3.2 3.7 -3.2 0.5

Motif match Scores
sum(W * x)

Convolution



G C A T T A C C G A T A AInput sequence

One-hot encoding (X)

A -5.7 -3.2 3.7 -3.2 3.7 0.6

C 0.5 -3.2 -3.2 -3.2 -3.2 -5.7

G 0.5 3.7 -3.2 -3.2 -3.2 -5.7

T -5.7 -3.2 -3.2 3.7 -3.2 0.5

Scoring  
weights  

W

-2.2 -5.4 2.0 -4.3 -24 -17 -18 -11 -12 16 -5.5 -8.5 -5.2
Motif match Scores

sum(W * x)

Convolution



G C A T T A C C G A T A AInput
sequence

One-hot encoding
(X)

A -5.7 -3.2 3.7 -3.2 3.7 0.6

C 0.5 -3.2 -3.2 -3.2 -3.2 -5.7

G 0.5 3.7 -3.2 -3.2 -3.2 -5.7

T -5.7 -3.2 -3.2 3.7 -3.2 0.5

Scoring  
weights  

W

-2.2 -5.4 2.0 -4.3 -24 -17 -18 -11 -12 16 -5.5 -8.5 -5.2

Thresholded
Motif  Scores
max(0, W*x)

Motif match
Scores
W*x

Thresholding scores

0 0 2.0 0 0 0 0 0 0 16 0 0 0



3b. CNNs for Regulatory Genomics Foundations
(Higher-level learning)



T

F

T

F

● Positive class of genomic sequences  
bound a transcription factor of
interest

● Negative class of genomic sequences
not bound by a transcription factor
of interest

Can we learn patterns in the DNA
sequence that distinguish these 2
classes of genomic sequences?

Learning patterns in regulatory DNA  
sequence



HOMOTYPIC MOTIF DENSITY

Regulatory sequences often contain more than one 
binding instance of a TF resulting in homotypic 

clusters of motifs of the same TF

Key properties of regulatory sequence



Key properties of regulatory sequence

HETEROTYPIC MOTIF COMBINATIONS

Regulatory sequences often bound by combinations of TFs
resulting in heterotypic clusters of motifs of different TFs



Key properties of regulatory sequence

SPATIAL GRAMMARS OF HETEROTYPIC MOTIF COMBINATIONS

Regulatory sequences are often bound by combinations of TFs with specific 
spatial and positional constraints resulting in distinct motif grammars



A simple classifier  (An artificial neuron)

parameters

Linear  function

Z

Training the neuron means learning the optimal w’s and b



A simple classifier  (An 
artificial neuron)

Y

Non-linear  
function

Logistic / Sigmoid
Useful for predicting probabilitie

parameters

Training the neuron means learning the optimal w’s and b

0



A simple classifier  (An 
artificial neuron)

Y

Training the neuron means learning the optimal w’s
and b

ReLu (Rectified Linear Unit)
Useful for thresholding

parameters

Non-linear  
function



Artificial neuron can represent a motif

Y

parameters



Convolutional filters
learn motifs (PSSM)

Biological motivation of Deep CNN

Max pool thresholded scores over windows

Threshold scores 
using ReLU

Scan sequence using filters

Predict probabilities using logistic
neuron



Convolutional  layer
(same color =  shared
weights)

Later conv layers operate on  outputs 
of previous conv layers

e
u

Conv Layer 1  
Kernel width = 4 
stride = 2*
num filters / num  channels = 3
Total neurons = 15

Max=2

2 61

Maxpooling layers take the max
over sets of conv layer outputs

Maxpooling layer  
pool width = 2  
stride = 1

Conv Layer 2  
Kernel width = 3  
stride = 1
num filters / num  channels = 2  
total neurons = 6

Typically followed by one or 
more  fully connected layers

*for genomics, a stride of 1 for conv layers is recommended

P (TF = bound | X)Sigmoid activations

Deep convolutional neural network

G C A T T A C C G A T A A

Max=2



Convolutional  layer
(same color =  shared
weights)

Later conv layers operate on  outputs 
of previous conv layers

e
u

Conv Layer 1  
Kernel width = 4 
stride = 2
num filters / num  channels = 3
Total neurons = 15

Max=2

2 61

Maxpooling layers take the max
over sets of conv layer outputs

Maxpooling layer  
pool width = 2  
stride = 1

Conv Layer 2  
Kernel width = 3  
stride = 1
num filters / num  channels = 2  
total neurons = 6

Typically followed by one or 
more  fully connected layers

Multi-task CNN

G C A T T A C C G A T A A

Max=2

P (TF1 = bound | X) P (TF2 = bound | X)Multi-task output  
(sigmoid activations
here)



Convolution
al  layer
(same color =  
shared
weights)

Later conv layers operate on  
outputs of previous conv
layers

Conv Layer 1  
Kernel width 
= 4  stride =
2*
num filters / 
num  
channels = 3
Total neurons =
15

Maxm=2ax Maxm=6ax

2 61

Maxpooling layers take the
max
over sets of conv layer
outputs

Maxpooling
layer  pool 
width = 2  
stride = 1
Conv Layer 2  
Kernel width 
= 3  stride =
1
num filters / 
num  
channels = 2  
total neurons 
= 6

Typically followed by one or 
more  fully connected layers

Multi-task CNN

G C A T T A C C G A T A A
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4. Regulatory Genomics CNNs in Practice: 
(a) DeepBind



DeepBind

[Alipanahi et al., 2015]



http://www.nature.com/nbt/journal/v33/n8/full/nbt.3300.html

http://www.nature.com/nbt/journal/v33/n8/full/nbt.3300.html




Constructing mutation map

NNNATGTAGCANNN

Ref

NNNATGCAGCANNN
A
T
G
C

A
T
G
C

Alt

DeepBind
Model

p(sref|w)

p(salt|w)

∆s =(p(s |w) - p(s
|w))

j
alt ref

max(0,p(salt|w),p(sref|w))



filtered 
signal

rectification 
(denoising)

A
T
G
C

Constructing sequence logo
Motif 1

ATGCAGCA

NNNATGCAGCANN
N

GCAG
CAGC
ACGA

Test
sequence

Motif 2

Motif 2

Motif 1

GCAG
GCTG
GATG

.

.
.

GTAG 
GCTG

G A GC A
T T

Motif 2

CAGC
GGTC
AGTC

.

.

.
AGGC
GGTG

G GC   A T
G

G CA

...

PF
M



Predicting disease mutations

[Alipanahi et al., 2015]



DeepBind summary

The key deep learning techniques:
•Convolutional learning
•Representational learning
•Back-propagation and stochastic gradient
•Regularization and dropout
•Parallel GPU computing especially useful for hyperparameter 

search
Limitations in DeepBind:

•Require defining negative training examples, which is often 
arbitrary

•Using observed mutation data only as post-hoc evaluation
•Modeling each regulatory dataset separately



Regulatory Genomics CNNs in Practice: 
(b) DeepSEA



DeepSea

DeepSea:
• Similar as DeepBind but 

trained a separate CNN on 
each of the 
ENCODE/Roadmap 
Epigenomic chromatin 
profiles 919 chromatin
features (125 DNase 
features, 690 TF features, 
104 histone features).

• It uses the ∆s  mutation 
score as input to train a 
linear logistic regression to 
predict GWAS and eQTL 
SNPs defined from the 
GRASP database with a P-
value cutoff of 1E-10 and 
GWAS SNPs from the 
NHGRI GWAS Catalog

[Zhou and Troyanskaya, 2015]



Regulatory Genomics CNNs in Practice: 
(c) Basset



Basset: Learning the regulatory code of the 
accessible genome with deep 
convolutional neural networks. 

David R. Kelley
Jasper Snoek 
John L. Rinn

Genome Research, March 2016



Basset
300

Simultaneously
predicting DNase sites in
164 cell types

300 convolution filters

CNN-based Basset outperforms gkm-SVM

Convolutional filters connected to the input
sequence recapitulate some known TF motifs

[Kelley et al., 2016]



Bassett architecture for accessibility prediction

300 filters
3 conv layers
3 FC layers

168 outputs
(1 per cell type)

3 fully connected layers

Input:
600 bp

Output:
168 bits

1.9 million 
training 
examples



Bassett AUC performance vs. g km-SVM



45% of filter derived motifs are found 
in the CIS-BP database

Motifs created by clustering  matching  input 
sequences and computing  PWM



Motif derived from filters with more 
information tend to be annotated



Computational saturation mutag enesis 
of an AP-1 site reveals loss of 

accessibility 



Regulatory Genomics CNNs in Practice: 
(d) Chromputer



ChromPuter

E2F6
Other
TFs

Class Probabilities

CTCFMYCGATA1 
SOX2

OCT
4NANO

G
2nd FC
Layer1st FC
Layer

Multi-
task 
learning

2nd set of
Convolutional Maps

1D DNase-seq/ATAC-seq profile DNA sequence

(Anshul Kundaje’s group from Stanford)



How does a deep conv. neural network  
transform the raw V-plot input at each layer

Promoter

Enhancer Initial Smoothing

1st set of Convolutional
Maps

2nd
Smoothing

2nd set of Convolutional Maps

3rd Smoothing

1st Fully Connected Layer

2nd Fully Connected Layer

Class Probabilities

V-Plot Input (300 x 2001)

Chromatin
State

0 +1Kb-1Kb
500

Pure CTCF

0
500

0

0
500



After initial pooling (smoothing)

Pure CTCF

Promoter

Enhancer

Initial Smoothing

1st set of Convolutional Maps

2nd Smoothing

2nd set of Convolutional Maps

3rd Smoothing

1st Fully Connected Layer

2nd Fully Connected Layer

Class Probabilities

V-Plot Input (300 x
2001)

Chromatin
State



Second set of convolutional maps

Pure CTCF

Promoter

Enhancer

Initial Smoothing

1st set of Convolutional Maps

2nd Smoothing

2nd set of Convolutional Maps

3rd Smoothing

1st Fully Connected Layer

2nd Fully Connected Layer

Class Probabilities

V-Plot Input (300 x
2001)

Chromatin
State



Learning from multiple 1D functional data
(e.g. DNase, MNase)

19

1st Convolution Layer

2nd Convolution Layer

2nd FC Layer

1D MNase
signal

(1 x 2001)

Class Probabilities

3rd ConvolutionLayer

1st FC Layer

1st Convolution
Layer

2nd Convolution
Layer

3rd ConvolutionLayer

1D DNase
signal

(1 x 2001)

Chromatin State

Scan DNase profile using filter



Learning from raw DNA sequence

Higher layers learn  
motif combinations

Class Probabilities

Score sequence using filters Convolutional layers 
learn motif (PWM)  
like filters



The Chromputer

Integrating multiple inputs (1D, 2D signals, 
sequence)  to simulatenously predict multiple
outputs

Chromati
n  
State

TF
Binding

Class Probabilities

H3K4me
3

H3K9m
e 3

H3K27me3 H3K4me1

H2A.
Z

H3K36me
3

2nd  FC Layer
1st  FC Layer

Initial Smoothing

1st set of Convolutional Maps

2nd Smoothing

2nd set of Convolutional
Maps

3rd Smoothing

1st Combined FC Layer

2nd Combined FC Layer

V-Plot Input (300 x 2001)

Initial Smoothing

1st set of Convolutional Maps

2nd Smoothing

2nd set of Convolutional
Maps

3rd Smoothing

1st Combined FC Layer

2nd Combined FC Layer

Initial Smoothing

1st set of Convolutional Maps

2nd Smoothing

2nd set of Convolutional  
Maps

3rd Smoothing

1st Combined FC Layer

2nd Combined FC Layer

Multi-
task  
learning



Chromatin architecture can predict  
chromatin state in held out chromosome  

(same cell type)
Model + Input data types 8-class chromatin  

state accuracy (%)
Majority class (baseline) 42%
Gene proximity 59%
Random Forest: ATAC-seq (150M reads) 61%
Chromputer: DNase (60M reads) 68.1%
Chromputer: Mnase (1.5B reads) 69.3%
Chromputer: ATAC-seq (150M reads) 75.9%
Chromputer: DNase + MNase 81.6%
Chromputer: ATAC-seq + sequence 83.5%
Chromputer: DNase + MNase + sequence 86.2%
Label accuracy across replicates (upper bound) 88%



High cross cell-type chromatin state prediction

• Learn model on DNase and MNase only
• Learn on GM12878, predict on K562 (and vice versa)
• Requires local normalization to make signal comparable

8 class chromatin state accuracy

Train ↓ / Test → GM12878 K562

GM12878 0.816 0.818

K562 0.769 0.844



Predicting individual histone marks
from ATAC/DNase/MNase/Sequence

Area under Precision recall
curve

0.75

0.5

0.25

0

CTCF H3K27ac H3K4me3 H3K4me1 H3K9ac H2Az H3K36me3 H3K27me3 H3K9me3



Chromputer trained on TF ChIP-seq predicts  cross 
cell-type in-vivo TF binding with high  accuracy

25

ChromputerArea under Precision Recall (PR) curve

c-MYC
YY1 CTCF

Inputs: Seq + DNA  
shape + DNase profile  
Positives: Reproducible  
ChIP-seq peaks  
Negatives: All other  
DNase peaks + flanks +  
matched random sites

Test sets: Held out  
chromosomes in 
held  out cell types



DeepLift reveals feature importance at the input layer

G C A T T
A    C C G A T A A

Nano
g

Gata1

GC   A   T   T

Which 
neurons/filter
s are
predictive?

Which nucleotides in input sequence are contributing to binding

Key idea:
•    ReLU is piece-wide linear
• Backpropagation differences of outputs using observed and reference 

inputs (e.g., inputs of all zeros) to obtain gradient w.r.t.  the input
• Importance of any input to any output is the gradients weighted by the input 

itself

(Anshul Kundaje’s group from Stanford)



Deep Learning for Regulatory Genomics
1. Biological foundations: Building blocks of Gene Regulation

– Gene regulation: Cell diversity, Epigenomics, Regulators (TFs), Motifs, Disease role
– Probing gene regulation: TFs/histones: ChIP-seq, Accessibility: DNase/ATAC-seq

2. Classical methods for Regulatory Genomics and Motif Discovery
– Enrichment-based motif discovery: Expectation Maximization, Gibbs Sampling
– Experimental: PBMs, SELEX. Comparative genomics: Evolutionary conservation. 

3. Regulatory Genomics CNNs (Convolutional Neural Networks): Foundations
– Key idea: pixels  DNA letters. Patches/filters Motifs. Higher  combinations
– Learning convolutional filters Motif discovery. Applying them Motif matches

4. Regulatory Genomics CNNs/RNNs in Practice: Diverse Architectures 
– DeepBind: Learn motifs, use in (shallow) fully-connected layer, mutation impact
– DeepSea: Train model directly on mutational impact prediction
– Basset: Multi-task DNase prediction in 164 cell types, reuse/learn motifs
– ChromPuter: Multi-task prediction of different TFs, reuse partner motifs
– DeepLIFT: Model interpretation based on neuron activation properties
– DanQ: Recurrent Neural Network for sequential data analysis

5. Guest Lecture: Anshul Kundaje, Stanford, Deep Learning for Reg. Genomics
6. Guest Lecture: Avantika Lal, Nvidia, Deep Learning for ATAC/scATAC



AGCCAAGCAGCAAAGTTTTGCTGCTGTTTATTTTTGTAGCTCTTACTATATTCTACTTTTACCA
TTGAAAATATTGAGGAAGTTATTTATATTTCTATTTTTTATATATTATATATTTTATGTATTTTAAT
ATTACTATTACACATAATTATTTTTTATATATATGAAGTACCAATGACTTCCTTTTCCAGAGCAA
TAATGAAATTTCACAGTATGAAAATGGAAGAAATCAATAAAATTATACGTGACCTGTGGCGA
AGTACCTATCGTGGACAAGGTGAGTACCATGGTGTATCACAAATGCTCTTTCCAAAGCCCTC
TCCGCAGCTCTTCCCCTTATGACCTCTCATCATGCCAGCATTACCTCCCTGGACCCCTTTCTAA
GCATGTCTTTGAGATTTTCTAAGAATTCTTATCTTGGCAACATCTTGTAGCAAGAAAATGTAA
AGTTTTCTGTTCCAGAGCCTAACAGGACTTACATATTTGACTGCAGTAGGCATTATATTTAGC
TGATGACATAATAGGTTCTGTCATAGTGTAGATAGGGATAAGCCAAAATGCAATAAGAAAAA
CCATCCAGAGGAAACTCTTTTTTTTTTCTTTTTCTTTTTTTTTTTTCCAGATGGAGTCTCGCA
CTTCTCTGTCACCCGGGCTGGAGCGCAGTGGTGCAATCTTGGCTCACTGCAACCTCCACCT
CCTGGGTTCAGGTGATTCTCCCACCTCAGCCTCCCGAGTAGTAGCTGGAATTACAGGTGCG
CGCTCCCACACCTGGCTAATTTTTTGTATTCTTAGTAGAGATGGGGTTTCACCATGTTGGCCA
GGCTGGTCTCAAACTCCTGCCCTCAGGTGATCTGCCCACCTTGGCCTCCCAGTGTTGGGTTT
ACAGGCGTGAGCCACCGCGCCTGGCCTGGAGGAAACTCTTAACAGGGAAACTAAGAAAG
AGTTGAGGCTGAGGAACTGGGGCATCTGGGTTGCTTCTGGCCAGACCACCAGGCTCTTGA
ATCCTCCCAGCCAGAGAAAGAGTTTCCACACCAGCCATTGTTTTCCTCTGGTAATGTCAGCC
TCATCTGTTGTTCCTAGGCTTACTTGATATGTTTGTAAATGACAAAAGGCTACAGAGCATAGA

Deep learning at base-resolution 
reveals cis-regulatory motif syntax

Anshul Kundaje

Twitter:@anshulkundaje 

Website: http://anshul.kundaje.net

http://anshul.kundaje.net/
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Deciphering syntax of regulatory DNA

Transcription 
factor 
ChIP-seq 
experiments

chromatin accessibility 
(ATAC-seq / DNase-seq)

?

Adapted from Thurman et al 2012

?

Motif syntax: rules of 
arrangement, preferred spacing, 

orientation => cooperativity



…GACAGATAATGCATTGA……GACTTGAAACGGCATTG…

Inactive (0) (0.3) Active (+1) (20.2)

Predictive model of regulatory DNA

Transcription factor ChIP-seq data OR chromatin accessibility (DNase-seq / ATAC-seq data) 



…GACAGATAATGCATTGA……GACTTGAAACGGCATTG…

Inactive (0) (0.3) Active (+1) (20.2)

DNA sequences (𝑆𝑖)

Classification 

or Regression 

model

𝐹(𝑆𝑖)

Class = +1 (20.2) 

Class = +1 (10.6)

Class = +1 (15.8)

Class = 0 (0.3)

Class = 0 (1.2)

Class = 0 (3.5)

Measured

Labels (𝑌𝑖)

Bound

Unbound

…GACAGATAATGCATTGA…

…ACTGTCATGGATATTCT…

…GACTTGAAACGGCATTG…

…CAGTATGCATACGTGAA…

…CAACCTTGAACGGCATTG…

…GATATTCTACTGTAAG…

Predictive model of regulatory DNA

Arvey et al. 2012

Ghandi et al. 2014

Setty et al. 2015

Transcription factor ChIP-seq data OR chromatin accessibility (DNase-seq / ATAC-seq data) 



High-resolution ‘shapes’ of regulatory profiles capture exquisite 
information about protein-DNA contacts

https://doi.org/10.3109/10409238.2015.1051505

ChIP-nexus



BPNet: DNA sequence to base-pair resolution profile regression 

Ziga Avsec

C G A T A A C C G A T A T

stranded base-resolution probability profiles + total read count

1 Kb sequence around all peaks

Multi-task training on multiple readouts



BPNet: DNA sequence to base-pair resolution profile regression 

Ziga Avsec

• Novel loss function
• MSE for log(total counts)
• Multinomial NLL for profile 

distribution
• Automatic assay bias correction
• Fully conv. architecture

• Dilated convolutions
• Residual connections

C G A T A A C C G A T A T

stranded base-resolution probability profiles + total read count

1 Kb sequence around all peaks

Multi-task training on multiple readouts



7

ChIP-exo/nexus: High resolution TF binding footprints

ChIP-nexus data for key transcription factors in mouse embryonic stem (ES) cells

Julia Zeitlinger lab
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BPNet predicts base resolution binding footprints with unprecedented accuracy

+ strand (dark color)
- strand (light color)
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Profile prediction is on par with concordance from replicate experiments



Deciphering predictive motifs and 
motif instances
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DeepLIFT: Inferring predictive nucleotides at individual binding events
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TF-MoDISCO: Cluster and consolidate predictive subsequences into 
contribution weight matrix (CWM) motifs

Shrikumar et al. 2018, arxiv 13CODE: https://github.com/kundajelab/tfmodisco

https://github.com/kundajelab/tfmodisco


TF-MoDISCO: Cluster and consolidate predictive subsequences into 
contribution weight matrix (CWM) motifs

Insight: conv. filter contributions are integrated at the nucleotide level

Sequence 1

Sequence 2

Sequence 3

D
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D
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p
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FT

Shrikumar et al. 2018, arxiv 13CODE: https://github.com/kundajelab/tfmodisco

https://github.com/kundajelab/tfmodisco


TF-MoDISCO: Cluster and consolidate predictive subsequences into 
contribution weight matrix (CWM) motifs

Insight: conv. filter contributions are integrated at the nucleotide level

Shrikumar et al. 2018, arxiv 13CODE: https://github.com/kundajelab/tfmodisco

https://github.com/kundajelab/tfmodisco


TF-MoDISCO: Cluster and consolidate predictive subsequences into 
contribution weight matrix (CWM) motifs

Insight: conv. filter contributions are integrated at the nucleotide level

Shrikumar et al. 2018, arxiv 13CODE: https://github.com/kundajelab/tfmodisco

https://github.com/kundajelab/tfmodisco


TF-MoDISCO: Cluster and consolidate predictive subsequences into 
contribution weight matrix (CWM) motifs

Insight: conv. filter contributions are integrated at the nucleotide level

Shrikumar et al. 2018, arxiv 13CODE: https://github.com/kundajelab/tfmodisco

https://github.com/kundajelab/tfmodisco


Consolidated motifs with combinatorial footprints

50 motifs for 4 TFs



Multiple binding motifs for Nanog
Representative discovered motifs Corresponding average footprint

Subtle differences in Nanog motifs

50 motifs for 4 TFs



Deciphering motif syntax derived TF 
cooperativity



Nanog homeodomain
Hayakshi et al. PNAS 2015

10.5 bp helical periodic flanking pattern for Nanog



Nanog homeodomain
Hayakshi et al. PNAS 2015

10 bp periodic binding of homeobox 
TFs to nucleosome DNA 

from recent in vitro NCAP-SELEX data 
(Zhu et al. Nature 2018)

10.5 bp helical periodic flanking pattern for Nanog



Nanog homeodomain
Hayakshi et al. PNAS 2015

10 bp periodic binding of homeobox 
TFs to nucleosome DNA 

from recent in vitro NCAP-SELEX data 
(Zhu et al. Nature 2018)

10.5 bp helical periodic flanking pattern for Nanog



Soft syntax: helical spacing preference between Nanog motifs across all control elements

10.5 bp

Motif pairwise distance
Motif pairwise distance

N
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Preferred soft helical spacing preferences between Nanog <> other



Preferred soft helical spacing preferences between Nanog <> other



Preferred soft helical spacing preferences between Nanog <> other



1) On synthetic sequences

Use BPNet model as in-silico oracle to perform perturbation experiments

Can we infer “causal” directional cooperative influence of different 
proteins via motif syntax?
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experiments

Can we infer “causal” directional cooperative influence of different 
proteins via motif syntax?



1) On synthetic sequences

Use BPNet model as in-silico oracle to perform perturbation experiments

2) By mutating motifs in genomic 
regions 

Can we infer “causal” directional cooperative influence of different 
proteins via motif syntax?
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1) On synthetic sequences

Use BPNet model as in-silico oracle to perform perturbation experiments

2) By mutating motifs in genomic 
regions 

Can we infer “causal” directional cooperative influence of different 
proteins via motif syntax?



1) On synthetic sequences

Use BPNet model as in-silico oracle to perform perturbation experiments

2) By mutating motifs in genomic 
regions 

In silico biochemistry In silico genetics

Can we infer “causal” directional cooperative influence of different 
proteins via motif syntax?



Cooperative interactions between Oct4 and Nanog as a function of motif spacing 
using synthetic sequences

Distance (bp)
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Motif syntax: cooperative TF interactions in genomic enhancers (in-silico CRISPR)



23

Motif syntax: cooperative TF interactions in genomic enhancers (in-silico CRISPR)



23

Motif syntax: cooperative TF interactions in genomic enhancers (in-silico CRISPR)
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Motif syntax: cooperative TF interactions in genomic enhancers (in-silico CRISPR)

Footprint 
strength of 
target TF

10 50 100 150
Distance between motifs (bp)



TF cooperativity is often directional & dependent on syntax 
with different distance ranges

Distance (bp)
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Sabrina Krueger, Melanie Weilert

CRISPR mutations validate motif syntax Nanog <> Sox2
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CRISPR mutations validate motif syntax Nanog <> Sox2



Sabrina Krueger, Melanie Weilert

CRISPR mutations validate motif syntax Nanog <> Sox2



Summary
• BPNet can map raw DNA sequence to base-

resolution regulatory profiles with 
unprecedented accuracy

• TF ChIP-exo/nexus, ChIP-seq, CUT&RUN

• DNase-seq, ATAC-seq, scATAC-seq

• Histone ChIP-seq / CUT&RUN

• PRO-seq, RAMPAGE/CAGE

• Interpretation frameworks enable discovery of 
soft syntax mediated directional TF cooperativity

• Syntax of TF binding is predictive of
• CRISPR motif perturbation experiments 

• Differential chromatin accessibility after TF 
knockdown

• Reporter expression activity
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Deep Learning for Regulatory Genomics
1. Biological foundations: Building blocks of Gene Regulation

– Gene regulation: Cell diversity, Epigenomics, Regulators (TFs), Motifs, Disease role
– Probing gene regulation: TFs/histones: ChIP-seq, Accessibility: DNase/ATAC-seq

2. Classical methods for Regulatory Genomics and Motif Discovery
– Enrichment-based motif discovery: Expectation Maximization, Gibbs Sampling
– Experimental: PBMs, SELEX. Comparative genomics: Evolutionary conservation. 

3. Regulatory Genomics CNNs (Convolutional Neural Networks): Foundations
– Key idea: pixels  DNA letters. Patches/filters Motifs. Higher  combinations
– Learning convolutional filters Motif discovery. Applying them Motif matches

4. Regulatory Genomics CNNs/RNNs in Practice: Diverse Architectures 
– DeepBind: Learn motifs, use in (shallow) fully-connected layer, mutation impact
– DeepSea: Train model directly on mutational impact prediction
– Basset: Multi-task DNase prediction in 164 cell types, reuse/learn motifs
– ChromPuter: Multi-task prediction of different TFs, reuse partner motifs
– DeepLIFT: Model interpretation based on neuron activation properties
– DanQ: Recurrent Neural Network for sequential data analysis

5. Guest Lecture: Anshul Kundaje, Stanford, Deep Learning for Reg. Genomics
6. Guest Lecture: Avantika Lal, Nvidia, Deep Learning for ATAC/scATAC



Avantika Lal, 3/11/2021

Enhancing epigenomic data with 
deep learning



2 

GENOMICS AT NVIDIA

We are a team of scientists and engineers 
developing software to solve some of the most 
difficult problems in genomics.

We collaborate with academic institutes and 
companies across the world.

We apply machine learning, deep learning, and 
accelerated computing to build faster and 
more accurate tools - enabling new biological 
discoveries.

Some areas we work in:

Long-read sequencing

Single-cell genomics

Cancer Variant calling

Genome assembly

Epigenomics
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https://www.nature.com/articles/s41467-021-21765-5
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ATAC-SEQ

ATAC-seq measures chromatin accessibility using 
DNA sequencing.

‘Peaks’ of high sequencing read coverage 
correspond to regions of open chromatin in the 
genome. 

ATAC-seq helps identify active regulatory 
elements, build regulatory networks, and study 
the effect of non-coding variation.

Chromatin accessibility mapping with DNA sequencing

Klemm, S.L., Shipony, Z. & Greenleaf, W.J. Chromatin accessibility and the regulatory epigenome. Nat Rev 
Genet 20, 207–220 (2019). https://doi.org/10.1038/s41576-018-0089-8

Align to genome

Genomic positionCo
ve

ra
ge
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SINGLE-CELL ATAC-SEQ

Cluster cells and identify accessible 
sites at the cell type level

Klemm, S.L., Shipony, Z. & Greenleaf, W.J. Chromatin accessibility and the regulatory 
epigenome. Nat Rev Genet 20, 207–220 (2019). https://doi.org/10.1038/s41576-018-0089-8

Biological tissues are heterogeneous mixtures of different types of cells. 
Single-cell sequencing shows us this heterogeneity, but each cell provides only 
a noisy, sparse signal.
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DATA QUALITY IN ATAC-SEQ

Low sequencing depth Sample/experimental factors Low aggregate cell count

Fresh 
tissue

Flash-
frozen

50 million reads

1 million reads

1 2 3

6
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ATACWORKS
AtacWorks takes as input the 
coverage track from an ATAC-seq 
experiment, and improves its 
accuracy.

AtacWorks also identifies the peaks, 
or open chromatin regions.

It uses a ResNet (Residual Neural 
Network) architecture, a 
convolutional architecture originally 
used in computer vision.

However, it uses 1-D convolutional 
layers instead of the 2-D layers used 
in image analysis. 

Lal, A., Chiang, Z.D., Yakovenko, N. et al. Deep 
learning-based enhancement of epigenomics data with 
AtacWorks. Nat Commun 12, 1507 (2021).
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TRAINING ATACWORKS TO ENHANCE 
LOW-COVERAGE ATAC-SEQ DATA

Clean signal + peak calls
(50 million reads)

Noisy signal
(1 million reads)
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ATACWORKS DENOISES AND CALL PEAKS FROM 
LOW-COVERAGE ATAC-SEQ

50 million reads

1 million reads

1M reads + AtacWorks

Chr10: 70,400,000-71,450,000

AtacWorks distinguishes real peaks and 
identifies peaks missed by MACS2.

Bulk ATAC-seq data from human Erythroblasts



10 

ATACWORKS GENERALIZES ACROSS CELL 
TYPES

Lal, A., Chiang, Z.D., Yakovenko, N. et al. Deep learning-based enhancement of 
epigenomics data with AtacWorks. Nat Commun 12, 1507 (2021).
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GENOME-WIDE PERFORMANCE METRICS

AtacWorks returns equivalent results at 2-5x lower sequencing depth.

11
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ATACWORKS ENHANCES LOW-QUALITY ATAC-SEQ

High quality

Low quality

Low quality + 
AtacWorks

Bulk ATAC-seq data from human Erythroblasts

Lal, A., Chiang, Z.D., Yakovenko, N. et al. Deep learning-based enhancement 
of epigenomics data with AtacWorks. Nat Commun 12, 1507 (2021).
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ATACWORKS FOR 
SINGLE-CELL 

ATAC-SEQ
Profiling accessible chromatin in 

rare cell types

Lal, A., Chiang, Z.D., Yakovenko, N. et al. Deep learning-based enhancement of 
epigenomics data with AtacWorks. Nat Commun 12, 1507 (2021).
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ATACWORKS ENABLES ANALYSIS OF SMALL 
NUMBERS OF CELLS

AtacWorks can obtain the same quality from 
~10x fewer cells, increasing the resolution of 
single-cell chromatin accessibility profiling 
by an order of magnitude. 

Lal, A., Chiang, Z.D., Yakovenko, N. et al. Deep learning-based enhancement of epigenomics data with 
AtacWorks. Nat Commun 12, 1507 (2021).
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LINEAGE PRIMING IN HEMATOPOIETIC STEM 
CELLS

Lal, A., Chiang, Z.D., Yakovenko, N. et al. Deep learning-based enhancement of epigenomics data with 
AtacWorks. Nat Commun 12, 1507 (2021).
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ATACWORKS IDENTIFIES REGULATORY 
ELEMENTS THAT CONTROL LINEAGE PRIMING

Lal, A., Chiang, Z.D., Yakovenko, N. et al. Deep learning-based enhancement of epigenomics data with 
AtacWorks. Nat Commun 12, 1507 (2021).
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INTERACTIVE EXAMPLE

https://github.com/clara-parabricks/rapids-single-cell-examples/blob/master/notebooks/5k_
pbmc_coverage_gpu.ipynb

Built by Raj Movva (MIT CS undergrad)

https://github.com/clara-parabricks/rapids-single-cell-examples/blob/master/notebooks/5k_pbmc_coverage_gpu.ipynb
https://github.com/clara-parabricks/rapids-single-cell-examples/blob/master/notebooks/5k_pbmc_coverage_gpu.ipynb


18 

ACKNOWLEDGMENTS

NVIDIA

Nikolai Yakovenko

Joyjit Daw

Eric Xu

Gary Burnett

Neha Tadimeti

Ohad Mosafi

Rajiv Movva (MIT)

Bryan Catanzaro

Johnny Israeli

Buenrostro Lab,
Harvard University

Jason Buenrostro

Zachary Chiang

Fabiana Duarte



19 

📧   alal@nvidia.com

 
          https://www.linkedin.com/in/avantikalal

          @lal_avantika

Avantika Lal

Senior Scientist
(Deep Learning & Genomics)

NVIDIA

CONTACT

Internships available!

mailto:alal@nvidia.com
https://www.linkedin.com/in/avantikalal/




Deep Learning for Regulatory Genomics
1. Biological foundations: Building blocks of Gene Regulation

– Gene regulation: Cell diversity, Epigenomics, Regulators (TFs), Motifs, Disease role
– Probing gene regulation: TFs/histones: ChIP-seq, Accessibility: DNase/ATAC-seq

2. Classical methods for Regulatory Genomics and Motif Discovery
– Enrichment-based motif discovery: Expectation Maximization, Gibbs Sampling
– Experimental: PBMs, SELEX. Comparative genomics: Evolutionary conservation. 

3. Regulatory Genomics CNNs (Convolutional Neural Networks): Foundations
– Key idea: pixels  DNA letters. Patches/filters Motifs. Higher  combinations
– Learning convolutional filters Motif discovery. Applying them Motif matches

4. Regulatory Genomics CNNs/RNNs in Practice: Diverse Architectures 
– DeepBind: Learn motifs, use in (shallow) fully-connected layer, mutation impact
– DeepSea: Train model directly on mutational impact prediction
– Basset: Multi-task DNase prediction in 164 cell types, reuse/learn motifs
– ChromPuter: Multi-task prediction of different TFs, reuse partner motifs
– DeepLIFT: Model interpretation based on neuron activation properties
– DanQ: Recurrent Neural Network for sequential data analysis

5. Guest Lecture: Anshul Kundaje, Stanford, Deep Learning for Reg. Genomics
6. Guest Lecture: Avantika Lal, Nvidia, Deep Learning for ATAC/scATAC
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