6.874, 6.802, 20.390, 20.490, HST.506 Computational Systems Biology Deep Learning in the Life Sciences

Lecture 8: TF binding

Gene regulation, DNA regulatory code, 3D conformation folding

Prof. Manolis Kellis Guest lecture: David Kelley

Slides credit: 6.047, Anshul Kundaje, David Gifford

Deep Learning for Regulatory Genomics

1. Biological foundations: Building blocks of Gene Regulation

- Gene regulation: Cell diversity, Epigenomics, Regulators (TFs), Motifs, Disease role
- Probing gene regulation: TFs/histones: ChIP-seq, Accessibility: DNase/ATAC-seq
- Three-dimensional chromatin structure, Hi-C, ChIA-PET, TADs, Loop Extrusion

2. Classical methods for Regulatory Genomics and Motif Discovery

- Enrichment-based motif discovery: Expectation Maximization, Gibbs Sampling
- Experimental: PBMs, SELEX. Comparative genomics: Evolutionary conservation.

3. Regulatory Genomics CNNs (Convolutional Neural Networks): Foundations

- Key idea: pixels ⇔ DNA letters. Patches/filters ⇔ Motifs. Higher ⇔ combinations
- Learning convolutional filters ⇔ Motif discovery. Applying them ⇔ Motif matches

4. Regulatory Genomics CNNs/RNNs in Practice: Diverse Architectures

- DeepBind: Learn motifs, use in (shallow) fully-connected layer, mutation impact
- DeepSea: Train model directly on mutational impact prediction
- Basset: Multi-task DNase prediction in 164 cell types, reuse/learn motifs
- ChromPuter: Multi-task prediction of different TFs, reuse partner motifs
- DeepLIFT: Model interpretation based on neuron activation properties
- DanQ: Recurrent Neural Network for sequential data analysis

5. Guest Lecture: David Kelley on Basset and Deep Learning for Hi-C looping

1a. Basics of gene regulation

One Genome – Many Cell Types

ACCAGTTACGACGGTCA GGGTACTGATACCCCAA ACCGTTGACCGCATTTA CAGACGGGGGTTTGGGGTT TTGCCCCACACAGGTAC GTTAGCTACTGGTTTAG CAATTTACCGTTACAAC GTTTACAGGGTTACCAGT TGGGATTTGAAAAAAAG TTTGAGTTGGTTTTTC ACGGTAGAACGTACCGT TACCAGTA

Image Source wikipedia

DNA packaging

- Why packaging
 - DNA is very long
 - Cell is very small

Compression

 Chromosome is 50,000 times shorter than extended DNA

Using the DNA

 Before a piece of DNA is used for anything, this compact structure must open locally

Now emerging:

- Role of accessibility
- State in chromatin itself
- Role of 3D interactions

Systematic mapping using ChIP-, Bisulfite-, DNase-Seq

Summarize multiple marks into chromatin states

Chromatin state track summary

WashU Epigenome Browser

ChromHMM: multi-variate hidden Markov model

Transcription factors control activation of cell-type-specific promoters and enhancers

TFs use DNA-binding domains to recognize specific DNA sequences in the genome

Regulator structure \Leftrightarrow recognized motifs

- Proteins 'feel' DNA
 - Read chemical properties of bases
 - Do NOT open DNA (no base complementarity)
- 3D Topology dictates specificity
 - Fully constrained positions:
 every atom matters
 - "Ambiguous / degenerate" positions
 Joosely contacted
- Other types of recognition
 - MicroRNAs: complementarity
 - Nucleosomes: GC content
 - RNAs: structure/seqn combination

Motifs summarize TF sequence specificity

Target genes bound by ABF1 regulator		Coord	inates	Genome sequence at bound site				
ACS1	acetyl CoA synthetase	-491	-479	ATCATTCTGGACG				
ACS1	acetyl CoA synthetase	-433	-421	ATCATCTCGGACG				
ACS1	acetyl CoA synthetase	-311	-299	ATCATTTGCCACG				
CHA1	catabolic L-serine dehydratase	-280	-254	A ATCACCGCGAACG GA				
ENO2	Enolase	-470	-461	ggcgttat GTCACTAACGACG tgcacca				
HMR	silencer	-256	-283	ATCAATAC ATCATAAAATACG AACGATC				
LPD1	lipoamide dehydrogenase	-288	-300	gat ATCAAAATTAACG tag				
LPD1	lipoamide dehydrogenase	-301	-313	gat ATCACCGTTGACG tca				
PGK	phosphoglycerate kinase	-523	-496	CAAACAA ATCACGAGCGACG GTAATTTC				
RPC160	RNA pol III/C 160 kDa subunit	-385	-349	ATCACTATATACG TGAA				
RPC40	RNA pol III/C 40 kDa subunit	-137	-116	GTCACTATAAACG				
rpL2	ribosomal protein L2	-185	-167	TAAT aTCAcgtcACACG AC				
SPR3	CDC3/10/11/12 family homolog	-315	-303	ATCACTAAATACG				
YPT1	TUB2	-193	-172	CCTAG GTCACTGTACACG TATA				

- Summarize information
- Integrate many positions
- Measure of information
- Distinguish motif vs. motif instance
- Assumptions:
 - Independence
 - Fixed spacing

Position		1	2	3	4	5	6	7	8	9	10	11	12	13	14
Position Weight Matrix (PWM)	А	56	4	4	81	4	23	15	27	31	31	89	23	4	58
	G	32	4	4	12	4	31	23	4	19	23	4	4	89	35
	с	4	4	89	4	58	12	23	19	19	23	4	69	4	4
	Т	4	89	4	4	35	35	39	50	31	23	4	4	4	4
Motif Logo		AG		C	A	Ç						A	Č	G	AG
Consens	us	R	Т	с	Α	Y	N	N	Н	Ν	N	Α	с	G	R

- The parts list: ~20-30k genes
 - Protein-coding genes, RNA genes (tRNA, microRNA, snRNA)
- The circuitry: constructs controlling gene usage
 - Enhancers, promoters, splicing, post-transcriptional motifs
- The regulatory code, complications:
 - Combinatorial coding of 'unique tags'
 - Data-centric encoding of addresses
 - Overlaid with 'memory' marks
 - Large-scale on/off states
 - Modulation of the large-scale coding
 - Post-transcriptional and post-translational information
- Today: discovering motifs in co-regulated promoters and *de novo* motif discovery & target identification

Disrupted motif at the heart of FTO obesity locus

Restoring motif restores thermogenesis

1b. Technologies for probing gene regulation

Mapping regulator binding: ChIP-seq

(Chromatin immunoprecipitation followed by sequencing) TF=transcription factor

Nature Reviews | Genetics

ChIP-chip and ChIP-Seq technology overview

ChIP-Seq: Massively Parallel Next-gen Sequencing

ChIP-Seq Histone Modifications: What the raw data looks like

- Each sequence tag is 30 base pairs long
- Tags are mapped to unique positions in the ~3 billion base reference genome
- Number of reads depends on sequencing depth.
 Typically on the order of 10 million mapped reads.

Chromatin accessibility can reveal TF binding

Sherwood, RI, et al. "Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape" Nat. Biotech 2014.

DNase-seq reveals genome protection profiles

Sequence (60-100M reads)

ATAC-seq and DNase-seq are not

GMI2878, Chr. 14, **identical**

Each point is accessibility in a 2 kb window

Hashimoto TB, et al."A Synergistic DNA Logic Predicts Genome-wide Chromatin Accessibility" Genome Research 2016

DNase-seq is less defined evidence than ChIP-seq

seq

sea

ChIP-seq reports **TF-binding** locations regions (specifically)

DNase-seq reports proximal **TF-non-binding** locations (**noisily**)

Bound factors leave distinct DNase-seq profiles

Motifs can predict TF binding

Chromatin accessibly influences transcription factor binding

- Modeling accessibility profiles yields binding predictions and pioneer factor discovery
- Asymmetric accessibility is induced by directional pioneers
- The binding of settler factors can be enabled by proximal pioneer factor binding

Sherwood, Rl, et al."Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape" Nat. Biotech 2014.

Deep Learning for Regulatory Genomics

1. Biological foundations: Building blocks of Gene Regulation

- Gene regulation: Cell diversity, Epigenomics, Regulators (TFs), Motifs, Disease role
- Probing gene regulation: TFs/histones: ChIP-seq, Accessibility: DNase/ATAC-seq
- Three-dimensional chromatin structure, Hi-C, ChIA-PET, TADs, Loop Extrusion

2. Classical methods for Regulatory Genomics and Motif Discovery

- Enrichment-based motif discovery: Expectation Maximization, Gibbs Sampling
- Experimental: PBMs, SELEX. Comparative genomics: Evolutionary conservation.

3. Regulatory Genomics CNNs (Convolutional Neural Networks): Foundations

- Key idea: pixels ⇔ DNA letters. Patches/filters ⇔ Motifs. Higher ⇔ combinations
- Learning convolutional filters ⇔ Motif discovery. Applying them ⇔ Motif matches

4. Regulatory Genomics CNNs/RNNs in Practice: Diverse Architectures

- DeepBind: Learn motifs, use in (shallow) fully-connected layer, mutation impact
- DeepSea: Train model directly on mutational impact prediction
- Basset: Multi-task DNase prediction in 164 cell types, reuse/learn motifs
- ChromPuter: Multi-task prediction of different TFs, reuse partner motifs
- DeepLIFT: Model interpretation based on neuron activation properties
- DanQ: Recurrent Neural Network for sequential data analysis

5. Guest Lecture: David Kelley on Basset and Deep Learning for Hi-C looping

1c. 3D chromatin structure

A model of the (mammalian) nucleus

Spector, D.L. 2001. Nuclear domains. J. Cell Science 114, 2891-2893.

cytoplasm

nuclear lamina

DNA

Tissue: Mouse pancreas Fixed: Standard TEM fixation; 2.5% Glutaraldehyde, 1% OsO4, Embedded in PolyBed 812, Ultramicrotomy: 60nm sections cut on Reichert Ultracut E Ultramicrotome Stain: 2% Uranyl acetate, 0.2% Lead citrate

Imaged: JEOL 1200 EX II Transmission Electron Microscope. http://academics.hamilton.edu/biology/kbart/EMImages.html

PRESS AND A DESCRIPTION OF A DESCRIPTION

cell nucleus

nucleus

diameter:6μmthread length:2mthread thickness:2.5nm

nucleus

tennis ball

diameter: 6µmthread length: 2mthread thickness: 2.5nm

6.7cm ~20km (8 x MIT - Harvard) ~20μm

DNA compaction

- DNA is **locally** compacted using *histone octamers* to form *nucleosomes*
- DNA is globally compacted by way of chromosomes (at least, during cell division / mitosis)
- Intermediate packaging mechanisms are subject of heavy speculation

Z

2 µm

Cremer & Cremer, Nature Review Genetics (2001)

3

2

3C: Chromosome Conformation Capture

- Detects physical interactions between genomic elements
- Interacting elements are converted into *ligation products*

Dekker et al. Science 2002

Chromosome Conformation Capturing (3C) based methods

de Wit & de Laat, Genes & Dev. (2012)
Hi-C: genome-wide 3C

Selectively purify "ligation junctions"

from sheared, size-selected DNA

Add adapters and do paired-end sequencing

Lieberman-Aiden, van Berkum et al. Science 2009

Hi-C: genome-wide 3C

Ensemble average (over 10⁷ cells) Averages over homologs. Unless synchronized, averages over the cell cycle as well!

Goal:

Measure direct physical interactions (ensemble average)

Steps:

- Crosslink chromatin (freeze contacts)
 → "snapshot
- 2. Cut chromatin with restriction enzyme
- 3. Ligate: captures spatial proximity between fragment.
- High-throughput sequencing to identify chimeric reads → interactions

Main features:

- Bright diagonal
- Decay at increasing distances

Hi-C vs. What-you-See

Critical steps:

- 1. Crosslinking to fix conformation
- 2. Digestion and re-ligation
- 3. Sequencing (biotinylated) junctions

Lieberman-Aiden et al., *Science* 2009 Belaghzal etGalv,ril/der, hb/al/3 2013

ChIA-PET: Chromatin Interaction Analysis using Paired-End-Tag sequencing

Α

В

- 1. self-ligation peaks: binding sites
- Inter-ligation: long range 2. interaction
- 3. Consistence between CTCF ChIA-PET and Hi-C
- 4. ChIA-PET has higher resolution than Hi-C

Total inter-ligation PET reads: 1 Miseg = 6.4 Million reads; 1 Hiseg = 30.8 Million reads.

reads = 4.9 Billion

Territoriality

Kerpedjiev P, **Abdennur N**, Lekschas F, McCallum C, Dinkla K, Strobelt H, Luber JM, Ouellette SB, Azhir A, Kumar N, Hwang J, Lee S, Alver BH, Pfister H, Mirny LA, Park PJ, Gehlenborg N. HiGlass: web-based visual exploration and analysis of genome interaction maps. *Genome Biol.* 2018 Aug 24;19(1):125.

Compartmentalization (segregation)

TADs

Dixon et al, 2012: human ESCs and fibroblasts

Self-associating intervals, < 1Mb

Sharp boundaries enriched for architectural proteins

~2-4 fold difference in contact frequency within vs across boundaries

Regulatory neighborhoods

TADs

Scales of organization

Chromosome 14, 106Mb

chromosomes

Loop extrusion + polymer model

Formation of chromosomal domains by loop extrusion http://biorxiv.org/content/early/2015/08/14/024620

Deep Learning for Regulatory Genomics

1. Biological foundations: Building blocks of Gene Regulation

- Gene regulation: Cell diversity, Epigenomics, Regulators (TFs), Motifs, Disease role
- Probing gene regulation: TFs/histones: ChIP-seq, Accessibility: DNase/ATAC-seq
- Three-dimensional chromatin structure, Hi-C, ChIA-PET, TADs, Loop Extrusion

2. Classical methods for Regulatory Genomics and Motif Discovery

- Enrichment-based motif discovery: Expectation Maximization, Gibbs Sampling
- Experimental: PBMs, SELEX. Comparative genomics: Evolutionary conservation.

3. Regulatory Genomics CNNs (Convolutional Neural Networks): Foundations

- Key idea: pixels ⇔ DNA letters. Patches/filters ⇔ Motifs. Higher ⇔ combinations
- Learning convolutional filters ⇔ Motif discovery. Applying them ⇔ Motif matches

4. Regulatory Genomics CNNs/RNNs in Practice: Diverse Architectures

- DeepBind: Learn motifs, use in (shallow) fully-connected layer, mutation impact
- DeepSea: Train model directly on mutational impact prediction
- Basset: Multi-task DNase prediction in 164 cell types, reuse/learn motifs
- ChromPuter: Multi-task prediction of different TFs, reuse partner motifs
- DeepLIFT: Model interpretation based on neuron activation properties
- DanQ: Recurrent Neural Network for sequential data analysis

5. Guest Lecture: David Kelley on Basset and Deep Learning for Hi-C looping

2. Classical regulatory genomics (before Deep Learning)

Enrichment-based discovery methods

Given a set of co-regulated/functionally related genes, find common motifs in their promoter regions

- Align the promoters to each other using local alignment
- Use expert knowledge for what motifs should look like
- Find 'median' string by enumeration (motif/sample driven)
- Start with conserved blocks in the upstream regions

Starting positions \Leftrightarrow Motif matrix

given <u>aligned</u> sequences → easy to compute profile matrix

Key idea: Iterative procedure for estimating both, given uncertainty (learning problem with hidden variables: the starting positions)

Experimental factor-centric discovery of motifs

SELEX (Systematic Evolution of Ligands by Exponential Enrichment; Klug & Famulok, 1994). DIP-Chip (DNAimmunoprecipitation with microarray detection; Liu et al., 2005) PBMs (Protein binding microarrays; Mukherjee, 2004) Double stranded DNA arrays

Approaches to regulatory motif discovery

Expectation Maximization (e.g. MEME) - Iteratively refine positions / motif profile **Region-based** Gibbs Sampling (e.g. AlignACE) motif discovery - Iteratively sample positions / motif profile Enumeration with wildcards (e.g. Weeder) Allows global enrichment/background score Peak-height correlation (e.g. MatrixREDUCE) Alternative to cutoff-based approach Conservation-based discovery (e.g. MCS) Genome-wide - Genome-wide score, up-/down-stream bias In vitro / trans Protein Domains (e.g. PBMs, SELEX) In vitro motif identification, seq-/array-based

Deep Learning for Regulatory Genomics

1. Biological foundations: Building blocks of Gene Regulation

- Gene regulation: Cell diversity, Epigenomics, Regulators (TFs), Motifs, Disease role
- Probing gene regulation: TFs/histones: ChIP-seq, Accessibility: DNase/ATAC-seq
- Three-dimensional chromatin structure, Hi-C, ChIA-PET, TADs, Loop Extrusion

2. Classical methods for Regulatory Genomics and Motif Discovery

- Enrichment-based motif discovery: Expectation Maximization, Gibbs Sampling
- Experimental: PBMs, SELEX. Comparative genomics: Evolutionary conservation.

3. Regulatory Genomics CNNs (Convolutional Neural Networks): Foundations

- Key idea: pixels ⇔ DNA letters. Patches/filters ⇔ Motifs. Higher ⇔ combinations
- Learning convolutional filters <> Motif discovery. Applying them <> Motif matches

4. Regulatory Genomics CNNs/RNNs in Practice: Diverse Architectures

- DeepBind: Learn motifs, use in (shallow) fully-connected layer, mutation impact
- DeepSea: Train model directly on mutational impact prediction
- Basset: Multi-task DNase prediction in 164 cell types, reuse/learn motifs
- ChromPuter: Multi-task prediction of different TFs, reuse partner motifs
- DeepLIFT: Model interpretation based on neuron activation properties
- DanQ: Recurrent Neural Network for sequential data analysis

5. Guest Lecture: David Kelley on Basset and Deep Learning for Hi-C looping

Deep convolutional neural network

*for genomics, a stride of 1 for conv layers is recommended

3a. CNNs for Regulatory Genomics Foundations (Low-level features)

An example of using CNN to model DNA sequence

Representing DNA sequence as 2D matrix:

Matrix representation of DNA sequence (darker = stronger)

Convolution – extracting invariant feature

Applying 4 bp sequence filter along the DNA matrix:

Yellow = high activity; blue = low activity

Convolution – extracting invariant feature

Rectification = ignore signals below some threshold. Pooling = summary of each channel by max or average.

Prediction using extracted features map

[Park and Kellis, 2015]

TRANSCRIPTION FACTOR BINDING

Regulatory proteins called <u>transcription factors</u> (TFs) bind to high affinity sequence patterns (<u>motifs</u>) in regulatory DNA

Sequence motifs: PWM

Sequence motifs: PSSM

Accounting for genomic background nucleotide distribution

Position-specific scoring matrix (PSSM)

$$\log_2\left(\frac{p_i(x_i=a_i)}{p_{bg}(x_i=a_i)}\right)$$

А	-5.7	-3.2	3.7	-3.2	3.7	0.6
С	0.5	-3.2	-3.2	-3.2	-3.2	-5.7
G	0.5	3.7	-3.2	-3.2	-3.2	-5.7
т	-5.7	-3.2	-3.2	3.7	-3.2	0.5

Scoring a sequence with a motif PSSM

PSSM parameters

Convolution: Scoring a sequence with a PSSM

Convolution

Convolution

Thresholding scores

Thresholded Motif Scores max(0, W*x) Motif match Scores W*x	0	0	2.0	0	0	0	0	0	0	16	0	0	0
	-2.2	-5.4	2.0	-4.3	-24	-17	-18	-11	-12	16	-5.5	-8.5	-5.2

3b. CNNs for Regulatory Genomics Foundations (Higher-level learning)

Learning patterns in regulatory DNA sequence

 Positive class of genomic sequences bound a transcription factor of interest

Can we learn patterns in the DNA sequence that distinguish these 2 classes of genomic sequences?

 Negative class of genomic sequences not bound by a transcription factor of interest

HOMOTYPIC MOTIF DENSITY

Regulatory sequences often contain <u>more than one</u> <u>binding instance</u> of a TF resulting in <u>homotypic</u> <u>clusters of motifs of the same TF</u>

HETEROTYPIC MOTIF COMBINATIONS

Regulatory sequences often bound by <u>combinations of TFs</u> resulting in <u>heterotypic clusters of motifs of different TFs</u>

SPATIAL GRAMMARS OF HETEROTYPIC MOTIF COMBINATIONS

Regulatory sequences are often bound by <u>combinations of TFs</u> with specific <u>spatial and positional constraints</u> resulting in distinct <u>motif grammars</u>
A simple classifier (An artificial neuron)

$$Y = F(x_1, x_2, x_3)$$
parameters

$$Z = w_1 \cdot x_1 + w_2 \cdot x_2 + w_3 \cdot x_3 + b$$

Ζ

Linear function

Training the neuron means learning the optimal w's and b

A simple classifier (An artificial neuron)

Training the neuron means learning the optimal w's and b

A simple classifier (An artificial neuron)

Artificial neuron can represent a motif

Biological motivation of Deep CNN

Deep convolutional neural network

*for genomics, a stride of 1 for conv layers is recommended

Multi-task CNN

Multi-task CNN

Deep Learning for Regulatory Genomics

1. Biological foundations: Building blocks of Gene Regulation

- Gene regulation: Cell diversity, Epigenomics, Regulators (TFs), Motifs, Disease role
- Probing gene regulation: TFs/histones: ChIP-seq, Accessibility: DNase/ATAC-seq
- Three-dimensional chromatin structure, Hi-C, ChIA-PET, TADs, Loop Extrusion

2. Classical methods for Regulatory Genomics and Motif Discovery

- Enrichment-based motif discovery: Expectation Maximization, Gibbs Sampling
- Experimental: PBMs, SELEX. Comparative genomics: Evolutionary conservation.

3. Regulatory Genomics CNNs (Convolutional Neural Networks): Foundations

- Key idea: pixels ⇔ DNA letters. Patches/filters ⇔ Motifs. Higher ⇔ combinations
- Learning convolutional filters <> Motif discovery. Applying them <> Motif matches

4. Regulatory Genomics CNNs/RNNs in Practice: Diverse Architectures

- DeepBind: Learn motifs, use in (shallow) fully-connected layer, mutation impact
- DeepSea: Train model directly on mutational impact prediction
- Basset: Multi-task DNase prediction in 164 cell types, reuse/learn motifs
- ChromPuter: Multi-task prediction of different TFs, reuse partner motifs
- DeepLIFT: Model interpretation based on neuron activation properties
- DanQ: Recurrent Neural Network for sequential data analysis

5. Guest Lecture: David Kelley on Basset and Deep Learning for Hi-C looping

4. Regulatory Genomics CNNs in Practice:(a) DeepBind

DeepBind

[Alipanahi et al., 2015]

日本語要約

Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning

Babak Alipanahi, Andrew Delong, Matthew T Weirauch & Brendan J Frey

Affiliations | Contributions | Corresponding author

FeatureREDUCE_PWM

FeatureREDUCE_sec

FeatureREDUCE

Team_E

Team D

PWM_align

MatrixREDUCE

Nature Biotechnology 33, 831-838 (2015) | doi:10.1038/nbt.3300 Received 28 November 2014 | Accepted 25 June 2015 | Published online 27 July 2015 a Current batch of inputs TAAGCACCGT TAGGGGCACCAGTAC Convolve AGCACCTCTATTGCA ACAAATGAGCACAA Motif b DREAM5 ChIP AUC detectors 0.5 0.6 0.7 Current model DeepBind parameters BEEML-PBM_sec **BEEML-PBM** Parameter BEEML-PBM_dinuc updates FeatureREDUCE_dinuc

<

Motif scans

Outputs

Features

Targets

Constructing mutation map

Constructing sequence logo

Predicting disease mutations

[Alipanahi et al., 2015]

DeepBind summary

The key deep learning techniques:

- Convolutional learning
- Representational learning
- Back-propagation and stochastic gradient
- Regularization and dropout
- Parallel GPU computing especially useful for hyperparameter search

Limitations in DeepBind:

- Require defining negative training examples, which is often arbitrary
- Using observed mutation data only as post-hoc evaluation
- Modeling each regulatory dataset separately

Regulatory Genomics CNNs in Practice: (b) DeepSEA

DeepSea

DeepSea:

- Similar as DeepBind but trained a separate CNN on each of the ENCODE/Roadmap Epigenomic chromatin profiles 919 chromatin features (125 DNase features, 690 TF features, 104 histone features).
- It uses the ∆s mutation score as input to train a linear logistic regression to predict GWAS and eQTL SNPs defined from the GRASP database with a Pvalue cutoff of 1E-10 and GWAS SNPs from the NHGRI GWAS Catalog

[Zhou and Troyanskaya, 2015]

Regulatory Genomics CNNs in Practice: (c) Basset

Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks. David R. Kelley Jasper Snoek John L. Rinn Genome Research, March 2016

Basset

Prediction Actual

1111 11111

predicting DNase sites in

Simultaneously

164 cell types

1111

11 I.

Convolutional filters connected to the input sequence recapitulate some known TF motifs

[Kelley et al., 2016]

Bassett architecture for accessibility prediction

Bassett AUC performance vs. gkm-SVM

45% of filter derived motifs are found in the CIS-BP database

Motifs created by clustering matching input sequences and computing PWM

Motif derived from filters with more information tend to be annotated

Computational saturation mutagenesis of an AP-1 site reveals loss of accessibility

Regulatory Genomics CNNs in Practice: (d) Chromputer

ChromPuter

(Anshul Kundaje's group from Stanford)

How does a deep conv. neural network transform the raw V-plot input at each layer

After initial pooling (smoothing)

Second set of convolutional maps

Learning from <u>multiple 1D functional</u> <u>data</u> (e.g. DNase, MNase)

Learning from raw DNA sequence

The Chromputer

Integrating multiple inputs (1D, 2D signals, sequence) to simulatenously **predict multiple**

Chromatin architecture can predict <u>chromatin state</u> in held out chromosome

	(same	cell	type)
--	-------	------	-------

Model + Input data types	8-class chromatin state accuracy (%)
Majority class (baseline)	42%
Gene proximity	59%
Random Forest: ATAC-seq (150M reads)	61%
Chromputer: DNase (60M reads)	68.1%
Chromputer: Mnase (1.5B reads)	69.3%
Chromputer: ATAC-seq (150M reads)	75.9%
Chromputer: DNase + MNase	81.6%
Chromputer: ATAC-seq + sequence	83.5%
Chromputer: DNase + MNase + sequence	86.2%
Label accuracy across replicates (upper bound)	88%
High cross cell-type chromatin state prediction

- Learn model on **DNase and MNase only**
- Learn on GM12878, predict on K562 (and vice versa)
- <u>Requires local normalization</u> to make signal comparable

8 class chromatin state accuracy		
Train \downarrow / Test \rightarrow	GM12878	K562
GM12878	0.816	0.818
K562	0.769	0.844

Predicting individual histone marks from ATAC/DNase/MNase/Sequence

Chromputer trained on TF ChIP-seq predicts cross cell-type in-vivo TF binding with high accuracy

DeepBind

DeepLift reveals feature importance at the input layer

Key idea:

- ReLU is piece-wide linear
- Backpropagation differences of outputs using observed and reference inputs (e.g., inputs of all zeros) to obtain gradient w.r.t. the input
- Importance of any input to any output is the gradients weighted by the input itself

(Anshul Kundaje's group from Stanford)

Deep Learning for Regulatory Genomics

1. Biological foundations: Building blocks of Gene Regulation

- Gene regulation: Cell diversity, Epigenomics, Regulators (TFs), Motifs, Disease role
- Probing gene regulation: TFs/histones: ChIP-seq, Accessibility: DNase/ATAC-seq
- Three-dimensional chromatin structure, Hi-C, ChIA-PET, TADs, Loop Extrusion

2. Classical methods for Regulatory Genomics and Motif Discovery

- Enrichment-based motif discovery: Expectation Maximization, Gibbs Sampling
- Experimental: PBMs, SELEX. Comparative genomics: Evolutionary conservation.

3. Regulatory Genomics CNNs (Convolutional Neural Networks): Foundations

- Key idea: pixels ⇔ DNA letters. Patches/filters ⇔ Motifs. Higher ⇔ combinations
- Learning convolutional filters ⇔ Motif discovery. Applying them ⇔ Motif matches

4. Regulatory Genomics CNNs/RNNs in Practice: Diverse Architectures

- DeepBind: Learn motifs, use in (shallow) fully-connected layer, mutation impact
- DeepSea: Train model directly on mutational impact prediction
- Basset: Multi-task DNase prediction in 164 cell types, reuse/learn motifs
- ChromPuter: Multi-task prediction of different TFs, reuse partner motifs
- DeepLIFT: Model interpretation based on neuron activation properties
- DanQ: Recurrent Neural Network for sequential data analysis

5. Guest Lecture: David Kelley on Basset and Deep Learning for Hi-C looping

David Kelley 1 - Basset

How are genes regulated?

Where/when does this sequence generate transcription?

TTACCGCGCAGGTTCACCGTTGGCTAACCGATCGCGAGTATGGGTCATTGTCGCTGTTCTTAGCTGCATTCGGCGATCCCCGATCTCCACAGCGCCCAAATTTCGGTAAGAACATCCCGTGCTTACTATAGCAACCGGAGGTGCTGTTTT TACGGTCGCGAATAGCCTGAGGCAGTGTAGGTATACCACCTCACGTGGGGCGAACCAATTTTAGATTTAGGGCGACGAGCTATACGTCTGATGCAATAAGACTATTATGTTGCTGGCGCATAGGGTGCCACGGGGCGCAACCCACTTTTAGATTTAGGGCGACGAGCTATACGTCTGATGCAATAAGACTATTATGTTGCTGGCGCGCATAGGGTGCCACGCGCGCCACCGGGCGACCCACTTTAGGTCTGGCGCACGAGCTATACGTCTGATGCAATAAGACTATTATGTTGCTGGCGCGACGAGTGCCATCCCGGGCGACCGAGCTATAGGGCGACGACGAGCTATACGTCTGATGCAATAAGACTATTATGTTGCTGGCGCGATAGGGTGCCACGGGCGAACCCACTTTTAGGTCTGGCGCGACGAGCTATACGTCTGATGCAATAAGACTATTATGTTGCTGGCGCGCATAGGGTGCCATCTCCCCGGGCTT GAGCTAACTAAAGACACCGCTGTAAAAACCGAACAGTATTGGTATATGTAGCTGGTTCTTTAATAAACGACTTGGTATCGTTGAAGATTATTGGCCGCCTAATCACTCTCGCACTCCTGGCATTAGTTTATGCTCGTATATGTTCCTGG GCAGACGTCTTCACTGGAAGAAGTTGGTACAATTCCCAAAACCATCATCGGAGCTGTCACCACGAGGGGGATTCGTAATTTACATAGCGGCCCTGTACATGCGGACACGAGAGCTACTAACTTCGGGGCTAGCGGGAGACTCCCACTCG GTCTATGTAGAGATGAGATATAGCGATTTTGTGTCTGAGGTGATTAAGAGGAATTTACCAGCGTCCAACGGACTCTGAGGTAACTGTTCGAGTATTACCGCCGCGAGACCGTCACGCGGAGCACTCAAGGGCTCTATCAGCGGCCTGAGT TAAGAATGTTGATCCCCGTAGTGGGTGATCCCAAGCTGCTCCGCGAGATAAGGCAGCAGGTATTACTAATGCCATCGATGATGTCTTAGAATCATCAACAGCGCATAAATCAACAGCTAGTGGTAGTTCTACCAGACACGTGCTTGAAG GACGCAAATATACCCTGGTGTGAGTTCAGCGCATTTTACTGCTTAGCCTAGCATAACGAAAAACGCCGTAGCCCAGATGCCAGCTAGTAATTGTCATCTGCACGTAAAGCAAATTAGAAATCGAGTTATGAGATAAGAAGGATTCAC TACTTTCCGAACTTGTCGTGTGCTCGATACTCATTGCTTGAACAGAAGCTACTCGGTGAGGCCAATAGACTGCCGGCAATACGCTTCAGCGAACTGTTGCAACGGACAGTTCGCATACCATCTAGGGCTACTACACAATCGAATGCCG TCTAGTTACATCAGCGGAAGTGGATGATTGTGATTGCCGCTTGTCACCCCATTGAGGCATTTCACTCAATTACCCCTTATGCCCTCAAAACTCGTCAAGAGAGGGTACTAGCACAATTTCCTGCCAATTACGCACAGCTTTAG TAACGGGTCGAACATGGTGATGCAGGCCCCTACAGGAGTCCCTACCCCTCCGAAATGTGGGAGGTGCCTGTCGTGGAACATGGCATCAATCCGGGGCGTACGCTACCCATGTCGCGTCGCCTGCGAGAGCCATATGACTCCTT TGGCCCGCCTACCGACAATCGAACTCTGCGTTATCTGCACGGGCTATCCAGTTTTGAGGCGCATACTGCCAAGCTATGTCCCCTAAGCAATAGTTCGTGAAGACGGCTACATTTTCTTAGCCACCAGCCGTCCTTACTAATTTCTC GAGGAACGTGCGCTCCCTACCATCTTGAAGGACCTCCAGGCAGTGGCGCGCATCTAGCAGCTCGGAAGTTGAGTCGTCGAGACGACGATGTTTCGCGCCGGCGTGGAGAGACCAGGTAACTCGATGACACGCCCTATACCTCTGAATGCC AAATGCTGTAAATGACCTCCATTAGCTCAGTGGCACTTCGCCTATAGAGCACCCTGAACTCAGAATGCAAATGTTTCGGGGGCGGAAAGATCCGCTTCTGCGGAAACGGTGCCAAATCCCACCTAACGGGTTCGATTTGTCGCCATTGG GAAAGTACAGCTTTGTCGATGAATGCCTTGCATACCGGTAGCCGGTCAAATGTAGCATAATCCGTGGGCGAAGATTACCTCTAAATGCTGATCTTGGGGGGACACTAATCCCTCAAGTGTCTCGCGCAGTGACGAAACTTTAAGCTCGA TAGGTGAGAATGCGCTAACCCAGACAACAGGGACTGGTATGTTGTTCCTAACAACGGTCGTTTATAATGGCTCACTTGACATACAGATAAACTACCTGATCCACGAGTTGCGATGACGCTGGATCGCTGGGGCCTCCTCTGGCCCAGG ACAATAGCAAAATTTGCAATTTACCCAGCAGAAGCAATGAATTGCGTGCTCCAAAATAAGATAAATCGGGTTGAACAATTTATCGAGTTACTACGCGGGAGACATCGAAGCTATGCTTTTGGTCGCTTTTGTGAATCGGACTGAATCG TGCCTAATGCTACTGTCAGTAAATTAAGCTGACGTTTCGGGTCCGCCTCCACATTATAGCCTGTGTACGATGTGAGTGCGTAACATCGTGATGCTATCTCGTGCCTGGCAGCGTACACACGCAGTGAAAGCTTGTTAAGCCAATTCTT ATGCCCGGACGTTGTTGAACAACTGGTGAAATACTCGAGCTGCGATTTGAGGGTACGTTCAGGGTGGATTGACGGAGCTTCACCACAAGTCTGTGGGCTCACGGGGTGAAGAGAGTCCTGAATGAGAGCCGGCAATCATGACGTCGGT TCCGTAGTAAGCACGCCCAACCGCAACTGGGATAGCACATGGTCCATAGGACTCACGGATACGATCCCTTTCTAGCCCCGGGCGTTCAGGCCAGATATCCCCGGACACTGACGCGACCCTCAACCGAACAACGGTTTGGAAA ATCTCCCTTTACTGTTCCAGTATGAGAATGGCTAGAGGAAAGTGTGTTGAATACTCGTGCATGAATAGTGTAACTCGTACCTCCTTCCACGGCTCGGACGCTACAGCTGCAATCGGTCTATAGGCTTTACACGAGCCCATTATGCAGC TACCCATTACAATCCGGTATCCCGGTCGCCATGTGGCCCCGTTGTGCACACTATGTCCAGCGGGTCAAGGTGCCGTAGATGAGAACATCCCACTGGTCGGGCGCGCAGCGGACCATTTCATGAAACTGCGCACCTGGCTCCGTG CCGAACGGGGAACACGTGGAGCTTAAGGTATGCACTTGAACGAATTAACTGTACGTTTCCCATAGCAATGAGTCACCAGGGAATCCAGTTCGGCAGACCCATGGACCAATTGGTATATTTGGCTAGTCTTTGCTGACGTAAAACCGCGTGATGACCGTCTACAGGGGGGGGGGGCGCCCGAATGGTTACACCACCCGCTGATGCCCCGTGAAATCCGTCTATCGACATGTACGTTGAGTTCATTATGGACGTCAACTCTCGGGATCCTAAATTAACCAACTATTTGCGGTATG AACGGTATTTAGGAACTACCTGCTGTTATTCCCCCGGCAAGGCGGCGGCGGCGCGCCTACAACTTATCACCTTTCACGGTTGGGACTGCTTCTCTACAAGAGCTAGCCCATTTTTGGTGGTCAGGTTATGCTGCTGAGCGGAACCG GTTAAATGGGTGAGCAATGCCGGGCCACCCCTCTAGCTCTATAAAAGGGATTAAATCGTGGCAGATTTAGGAGACTTCAGGTATCGGTTCTTGGGGTCTACGTAGGGTCCCGGGCGATCAAGCCCTTTTGAAATAACGTCGCCCCTCC GGTTCTTCAGGGATGCTAGAGCGGAAGAGTTGCACTGCGTAAAGCACACATCTGGCAAGATCTAGCGTGGCGAAATTATAAGTCGTTAAAGCTGCGGGGGAAGGTGAGCCACCGTAGGTCCCACTTTGACCGCTGGCGCAAGATCTAGCGTGGCGAAATTATAAGTCGTTAAAGCTGCGGGGAAGGTGAGCCACCGTAGGTCCCACTTTGACCGCCGCCTAGAT TGACGCCATTCCCATGTTTAACTTTGCGGTTTAGTTCCTTATCGGTGCACAGATGTTCGCCCTAGCTATAATTTACTCTAACAAGCTCCCATGCCTGAGACATCGGCCAGTCCGCGAATTCCAGTACGATATCACTTCGCCCAAGGATGAAC CAACCATTAAGAGTCAATCACGAATTCGACATTACTGGTCAATAGCAGCGTTTGTACGTTTTGGATGGTGCCCATAGATACGATTGAAGGGTGTACGTGTAAAGGTAATTGGAGCCGAATACAAATGTGACGGTTTTGAAGGTGCGACCCCTCATTAGGGGCGTTGATGGCACTCTTCCTTCTAAGAACAGTGTTGTCCAGGAATAGAGTACTCAAACCCTCGCAGCGAATATGACCCGTGGCTCTGGTTTACCGGTCCTGACTCGTGGCTGCCAAGCGCCGGAGGTACCAGTGCCAGTAGGGATGCGCCCGTTGTCGCCCCACCCTATTCCTGTCTAGCCCTGTAATTCTTTCCGTCCTGTGATGAGTTGTCGCTACTTTACGAGCACAACGAGAAATATAGAGTGCTGGCAGTTCTTAGAGAGCCCTCTGACAACGTTGGTAGT ACCAGAAGCTCCGGGATTTTCGAATGTCTCTCATATCTACAAAAGCGGGCTGAGATGTTTATTGCCCGATCCTTGCATTAGGAATCGCCTTTTGGGAAGGAGTTTAAAGCTTCGGGATTACAACGAATGTTGAGAATGACGTAAGAGA AGTAGTTGAATATCAGAGCACCCTTGGAAATGTATTGCGACACCGTTGGTCCCTTCAACTATGCGCATCCTGGCAGATGGGAGTCACCGGGGGTTGGGTCGTACGATCAACATGTTCCGTTAAGCCTCAGAACCCCAAAGTCCTCCCC

How about now?

TTACCGCGCAGGTTCACCGTTGGCTAACCGATCGCGAGTATGGGTCATTGTCGCTGTTCTTAGCTGCATTCGGCGATCCCCGATCTCCACAGCGCCCAAATTTCGGTAAGAACATCCCGTGCTTACTATAGCAACCGGAGGTGCTGTTTT TACGGTCGCGAATAGCCTGAGGCAGTGTAGGTATACCACCTCACGTGGGGCGAACCAATTTTAGATTTAGGGCGACGAGCTATACGTCTGATGCAATAAGACTATTATGTTGCTGGCGCGATAGGGTGCGAGTGCCTCTCCCCGGGCTT GAGCTAACTAAAGACACCGCTGTAAAAACCGAACAGTATTGGTATATGTAGCTGGTTCTTTAATAAACGACTTGGTATCGTTGAAGATTATTGGCCGCCTAATCACTCTCGCACTCCTGGCATTAGTTTATGCTCGTATATGTTCCTGG GCAGACGTCTTCACTGGAAGAAGTTGGTACAATTCCCAAAACCATCATCGGAGCTGTCACCACGAGGGGGATTCGTAATTTACATAGCGGCCCTGTACATGCGGACACGAGAGCTACTAACTTCGGGCTAGCGGGAGACTCCCACTCG GTCTATGTAGAGATGAGATATAGCGATTTTGTGTCTGAGGTGATTAAGAGGAATTTACCAGCGTCCAACGGACTCTGAGGTAACTGTTCGAGTATTACCGCCGCGAGACCGTCACGCGGAGCACTCAAGGGCTCTATCAGCGGCCTGAGT TAAGAATGTTGATCCCCGTAGTGGGTGATCCCAAGCTGCTCCGCGAGATAAGGCAGCAGGTATTACTAATGCCATCGATGATGTCTTAGAATCATCAACAGCGCATAAATCAACAGCTAGTGGTAGTTCTACCAGACACGTGCTTGAAG GACGCAAATATACCCTGGTGTGAGTTCAGCGCATTTTACTGCTTAGCCTAGCATAACGAAAAACGCCGTAGCCCAGATGCCAGCTAGTAATTGTCATCTGCACGTAAAGCAAATTAGAAATCGAGTTATGAGATAAGAAGGATTACGAGTTCAC TACTTTCCGAACTTGTCGTGTGCTCGATACTCATTGCTTGAACAGAAGCTACTCCGGTGAGGCCCAATAGACTGCCGGCAATACGCTTCAGCGAACTGTTGCAACGGACAGTTCGCATACCATCTAGGGCTACTACAAATCGAATGCCG TAACGGGTCGAACATGGTGATGCAGGCCCCTACAGGAGTCCCTACCCCTCCGAAATGTGGGAGGTGCCTGTCGTGGAACATGGCATCAATCCGGGGCGTACGCTACCCATGTCGCGTCGCCTGCGAGAGCCATATGACTCCTT TGGCCCGCCTACCGACAATCGAACTCTGCGTTATCTGCACGGGCTATCCAGTTTTGAGGCGCATACTGCCAAGCTATGTCCCCTAAGCAATAGTTCGTGAAGACGGCTACATTTTCTTAGCCACCAGCCGTCCTTACTAATTTCTC GAGGAACGTGCGCTCCCTACCATCTTGAAGGACCTCCAGGCAGTGGCGCATCTAGCAGCTCGGAAGTTGAGTCGTCGAGACGACGATGTTTCGCGCCGGCGTGGAGAGACCAGGTAACTCGATGACACGCCCTATACCTCTGAATGCC AAATGCTGTAAATGACCTCCATTAGCTCAGTGGCACTTCGCCTAT<mark>C</mark>GAGCACCCTGAACTCAGAATGCAAATGTTTCGGGGGCGGAAAGATCCGCTTCTGCGGAAACGGTGCCAAATCCCACCTAACGGGTTCGATTTGTCGCCATTGG GAAAGTACAGCTTTGTCGATGAATGCCTTGCATACCGGTAGCCGGTCAAATGTAGCATAATCCGTGGGCGAAGATTACCTCTAAATGCTGATCTTGGGGGGACACTAATCCCTCAAGTGTCTCGCGCAGTGACGAAACTTTAAGCTCGA CACGCTTTATGTTCACCCGCAGGAGAGTCCGATCGCGGTTGGACATTAACGTGCCGAACCATTTTTAACGGACAGCGGAAACAAAGATTTCTTCGCCACAATTAATGTACAGGTTACACCATGGATCGATACTGCCTTAACAGTAGTGCCACAATTAATGTACAGGTTACACCATGGATCGATACTGCCTTAACAGTAGTGCGAAACAAAGATTTCTTCGCCACAATTAATGTACAGGTTACACCATGGATCGATACTGCCTTAACAGTAGTAGTACAGGAAACAAAGATTTCTTCGCCACAATTAATGTACAGGTTACACCATGGATCGATACTGCCTTAACAGTAGTGCGAAACAAAGATTTCTTCGCCACAATTAATGTACAGGTTACACCATGGATCGATACTGCCTTAACAGTAGTGCGAAACAAAGATTTCTTCGCCACAATTAATGTACAGGTTACACCATGGATCGATACTGCCTTAACAGTAGTGTAGGTGAGAATGCGCTAACCCAGACAACAGGGACTGGTATGTTGTTCCTAACAACGGTCGTTTATAATGGCTCACTTGACATACAGATAAACTACCTGATCCACGAGTTGCGATGACGCTGGATCGCTGGGGCCTCCTCTGGCCCAGG ACAATAGCAAAATTTGCAATTTACCCAGCAGAAGCAATGAATTGCGTGCTCCAAAATAAGATAAATCGGGTTGAACAATTTATCGAGTTACTACGCGGGAGACATCGAAGCTATGCTTTTGGTCGCTTTTGTGAATCGGACTGAATCG TGCCTAATGCTACTGTCAGTAAATTAAGCTGACGTTTCGGGTCCGCCTCCACATTATAGCCTGTGTACGATGTGAGTGCGTAACATCGTGATGCTATCTCGTGCCTGGCAGCGTACACACGCAGTGAAAGCTTGTTAAGCCAATTCTT ATGCCCGGACGTTGTTGAACAACTGGTGAAATACTCGAGCTGCGATTTGAGGGTACGTTCAGGGTGGATTGACGGAGCTTCACCACAAGTCTGTGGGCTCACGGGGTGAAGAGAGTCCTGAATGAGAGCCGGCAATCATGACGTCGGT TCCGTAGTAAGCACGCCCAACCGCAACTGGGATAGCACATGGTCCATAGGACTCACGGATACGATCCCTTTCTAGCCCCGGGCGTTCAGGCCAGATATCCCCGGACACTGACGCGACCCTCAACCGAACAACGGTTTGGAAA ATCTCCCTTTACTGTTCCAGTATGAGAATGGCTAGAGGAAAGTGTGTTGAATACTCGTGCATGAATAGTGTAACTCGTACCTCCTTCCACGGCTCGGACGCTACAGCTGCAATCGGTCTATAGGCTTTACACGAGCCCATTATGCAGC TACCCATTACAATCCGGTATCCCGGTCGCCATGTGGCCCCGTTGTGCACACTATGTCCAGCGGGTCAAGGTGCCGTAGATGAGAACATCCCACTGGTCGGGCGCGCAGCGGACCATTTCATGAAACTGCGCACCTGCGTCCGTG AACCGCGTGATGACCGTCTACAGGGGGGCGGCACCGAATGGTTACACCACCCGCTGATGCCCCGTGAAATCCGTCTATCGACATGTACGTTGAGTTCATTATGGACGTCAACTCTCGGGATCCTAAATTAACCAACTATTTGCGGTATG AACGGTATTTAGGAACTACCTGCTGTTATTCCCCCGGCAAGGCGGCGGCGGCGCGCCTACAACTTATCACCGTTTGGGGACTGCTTCTCTACAAGAGCTAGCCCATTTTTGGTGGTCAGGTCAGGTTTTGCTGCTGCGGCGCGCACCG GTTAAATGGGTGAGCAATGCCGGGCCACCCCTCTAGCTCTATAAAAGGGATTAAATCGTGGCAGATTTAGGAGACTTCAGGTATCGGTTCTTGGGGTCTACGTAGGGTCCCGGGCGATCAAGCCCTTTTGAAATAACGTCGCCCCTCC GGTTCTTCAGGGATGCTAGAGCGGAAGAGTTGCACTGCGTAAAGCACACATCTGGCAAGATCTAGCGTGGCGAAATTATAAGTCGTTAAAGCTGCGGGGAAGGTGAGCCACCGTAGGTCCCACTTTGACCGCTGGCGCAAGATCTAGCGTGGCGAAATTATAAGTCGTTAAAGCTGCGGGGAAGGTGAGCCACCGTAGGTCCCACTTTGACCGCTGGCGCAAGATCTAGCGTGGCGAAATTATAAGTCGTTAAAGCTGCGGGGAAGGTGAGCCACCGTAGGTCCCACTTTGACCGCTGCCGCCACGTAGATCTAGCGTGGCGAAATTATAAGTCGTTAAAGCTGCGGGGAAGGTGAGCCACCGTAGGTCCCACTTTGACCGCTGCCGCCACGT TGACGCCATTCCCATGTTTAACTTTGCGGTTTAGTTCCTTATCGGTGCACAGATGTTCGCCCTAGCTATAATTTACTCTAACAAGCTCCCATGCCTGAGACATCGGCCAGTCCGCGAATTCCAGTACGATATCACTTCGCCCAAGGATGAAC CAACCATTAAGAGTCAATCACGAATTCGACATTACTGGTCAATAGCAGCGTTTGTACGTTTTGGATGGTGCCCATAGATACGATTGAAGGGTGTACGTGTAAAGGTAATTGGAGCCGAATACAAATGTGACGGTTTTGAAGGTGCGACTAGTGATCTTCCTTAAACGGTGTTATGAGTTTAACGTCTGCACGGGACGCGCTAAGAGATGTTCTATACGACGAGGCTTTTTAACATTCCCGCACATGGCTGCACAAGGCACCGAAACAACTCAAGGATAAGGCCGTGCCTTGCTG AGTAGGGATGCGCCCGTTGTCGCCCCACCCTATTCCTGTCTAGCCCTGTAATTCTTTCCGTCCTGTGATGAGTTGTCGCTACTTTACGAGCACAACGAGAAATATAGAGTGCTGGCAGTTCTTAGAGAGCCCTCTGACAACGTGGTAGT ACTTACATACCCAATTCATGGTGCAACCGACACGGCCCATACCGTCTGTTACGGTACCGTAGCGGTCAACAACAGGCAGCACCGACTCGTTGCGACACCTCTTTTTTATGGTACCAGGTTAGACGGGGGTACATTCGGTTCTAC ACCAGAAGCTCCGGGATTTTCGAATGTCTCTCATATCTACAAAAGCGGGCTGAGATGTTTATTGCCCGATCCTTGCATTAGGAATCGCCTTTTGGGAAGGAGTTTAAAGCTTCGGGATTACAACGAATGTTGAGAATGACGTAAGAGA AGTAGTTGAATATCAGAGCACCCTTGGAAATGTATTGCGACACCGTTGGTCCCTTCAACTATGCGCATCCTGGCAGATGGGAGTCACCGGAGGTTGGGTCGTACGATCAACATGTTCCGTTAAGCCTCAGAACCCCAAAGTCCTCCCC

ACGT 1

ACGT 1

CGTG 1

Can we learn better representations?

DNA convolutional neural network

DNA convolutional neural network

Demonstration: DNasel hypersensitivity

- DNasel-seq from 164 cell types from ENCODE and Epigenomics Roadmap.
- 2 million sites—broken into training, validation, and test sets.

Conv nets accurately predict DNase hypersensitivity

Filters recapitulate known TF binding motifs

Filters recapitulate known TF binding motifs

Multiple filters capture motif variants

12

Dense representations challenge filter interpretation

Known motif injection

Annotate nucleotide influence

Can we predict transcription?

David Kelley 2 – Incorporating broader context

Sequential regulatory activity prediction

Kelley, D., et al. Sequential regulatory activity prediction across chromosomes with convolutional neural networks. Genome Research, 2018.

Dilated convolution

•Parameters grow linearly.

•Receptive field grows exponentially.

Dilated convolution for image segmentation

Dilated convolution with residual connections

Model generalizes to held out sequences

Predictions rival replicate experiment correlation

Does the model use sequence beyond the promoter?

Intermediate gradient

Enhancer maps

Predicting noncoding variant effects

Case study: multiple sclerosis

David Kelley 3 – Incorporating spatial information

3D contact and gene regulation

Can we predict 3D contacts from DNA?

1D profiles to 2D maps

Predictions recover Hi-C contacts

Predictions recover Hi-C contacts

Contacts depend on CTCF and other elements

CTCF is the only truly relevant TF motif

Model predicts deletion effects

Deep Learning for Regulatory Genomics

1. Biological foundations: Building blocks of Gene Regulation

- Gene regulation: Cell diversity, Epigenomics, Regulators (TFs), Motifs, Disease role
- Probing gene regulation: TFs/histones: ChIP-seq, Accessibility: DNase/ATAC-seq
- Three-dimensional chromatin structure, Hi-C, ChIA-PET, TADs, Loop Extrusion

2. Classical methods for Regulatory Genomics and Motif Discovery

- Enrichment-based motif discovery: Expectation Maximization, Gibbs Sampling
- Experimental: PBMs, SELEX. Comparative genomics: Evolutionary conservation.

3. Regulatory Genomics CNNs (Convolutional Neural Networks): Foundations

- Key idea: pixels ⇔ DNA letters. Patches/filters ⇔ Motifs. Higher ⇔ combinations
- Learning convolutional filters ⇔ Motif discovery. Applying them ⇔ Motif matches

4. Regulatory Genomics CNNs/RNNs in Practice: Diverse Architectures

- DeepBind: Learn motifs, use in (shallow) fully-connected layer, mutation impact
- DeepSea: Train model directly on mutational impact prediction
- Basset: Multi-task DNase prediction in 164 cell types, reuse/learn motifs
- ChromPuter: Multi-task prediction of different TFs, reuse partner motifs
- DeepLIFT: Model interpretation based on neuron activation properties
- DanQ: Recurrent Neural Network for sequential data analysis

5. Guest Lecture: David Kelley on Basset and Deep Learning for Hi-C looping