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Today: Predicting gene expression and splicing

Intro: Expression, unsupervised learning, clustering
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RNA-Seq: De novo tx reconstruction / quantification
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Microarray technology RNA-Seq technology:
 Synthesize DNA probe array, « Sequence short reads from
complementary hybridization MRNA, map to genome
 Variations:  Variations:
« One long probe per gene « Count reads mapping to each
* Many short probes per gene known gene
» Tiled k-mers across genome * Reconstruct transcriptome de
« Advantage: novo in each experiment
« Can focus on small regions, * Advantage:

even if few molecules / cell  Digital measurements, de novo



Expression Analysis Data Matrix

 Measure 20,000 genes in 100s of conditions
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Clustering VS.
Independent validation
Conditions~> of groups that emerge:
o
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$ lymphocytic
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B-cell genes in
blood cell lines

Proliferation genes
in transformed cell lines

Lymph node genes in
diffuse large B-cell
lymphoma (DLBCL)
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w00 Alizadeh, Nature 2000
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Goal of Clustering: Group similar items

Classification

Known

Conditions> | classes:

I Pan B cell

Germinal Centre
B cell

I T cell
Activated B cell

| Proliferation

Lymph node

= . Alizadeh, Nature 200
D
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Goal of Classification: Extract features

that likely come from the same category,
and in doing so reveal hidden structure

* Unsupervised learning

from the data that best assign new
elements to =21 of well-defined classes

* Supervised learning




PCA, Dimensionality reduction

Figure 1A Figure 1B
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Geometric interpretation of SVD
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Low-rank Approximation

e Solution via SVD
A, =U diag(al,...,Gk,Q,...,O)VT

set smallest r-k
singular values to zero
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=1 of rank 1 matrices

min [4-X|, =|4-4], =0

Xirank(X )=k

* Error:



PCA of MNIST digits
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t-SNE of MINIST digits
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t-SNEs of single-cell Brain data
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Autoencoder: dimensionality reduction with neural net

input
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Tricking a supervised learning algorithm to work in unsupervised fashion
Feed input as output function to be learned. But! Constrain model complexity

Pretraining with RBMs to learn representations for future supervised tasks. Use RBM

output as “data” for training the next layer in stack

After pretraining, "unroll” RBMs to create deep autoencoder
Fine-tune using backpropagation

[Hinton et al, 2006]
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1. Up-sampling gene expression
patterns



Challenge: Measure few values, infer many values

Multirate interpolation filter https://a r):('_iv.okrg/pdf/1902 .06068.pdf
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* Digital signal upscaling o |mage up_sca“ng
— Interpolating low-pass filter — Inverse of convolution (de-convolution)
(e.g. FIR finite impulse response) fer | ing fi
— Low-dim. capture of higher-dim. signal — Transfer learning from corpus of images
— Nyquist rate (discrete) / freq. (contin.) — Low-dim. re-projection to high-dim. img
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additional benefit :
* Gene expression measurements

— Measure 1000 genes, infer the rest *  Which 1000 genes? Compressed sensing
— Rapid, cheap, reference assay — Measure few combinations of genes
— Apply to millions of conditions — Better capture high-dimensional vector



https://arxiv.org/pdf/1902.06068.pdf

Deep Learning architectures for up-sampling images

e e s Pre-sampling super-resolution (SR)
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. Representatlon/abstract learning
— Enables compression, re-upscaling, denoising
— Example: autoencoder bottleneck. High-low-high

— M(l)dification: de-compression, up-scaling, low-high
only
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Local multi-path learning  Scale-specific multi-path learning Group convolution Pyramid pooling




D-GEX - Deep Learning for up-scaling L1000 gene expression

landmark genes 1~943 —— A

target genes 1~4,760

target genes 4,761~9,520

Parameters

# of hidden layers

# of hidden units in each hidden layer
Dropout rate

Momentum coefficient

Initial learning rate #

Minimum learning rate

Learning rate decay factor

Learning scale P

Mini-batch size

Training epoch

Weights initial range ©

1, 2, 3]

3000, 6000, 9000] 7

943 landmark genes 3000 hidden units

(0%, 10%, 25%]

0.5

Be-4 or 3e-4 Gene expression inference with deep learning @
le-5 Yifei Chen, Yi Li, Rajiv Narayan, Aravind Subramanian, Xiaohui Xie ™ Author Notes
28 Bioinformatics, Volume 32, Issue 12, 15 June 2016, Pages 1832-1839,

200 https://doi.org/10.1093/bicinformatics/btw074

200 Published: 11 February2016 Article history v
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* Multi-task Multi-Layer Feed-Forward Neural Net
* Non-linear activation function (hyperbolic tangent)
* Input: 943 genes, Output: 9520 targets (partition to fit in memory)

4760 taréet genes



D-GEX outperforms Linear Regression or K-nearest-Neighbors
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e Strictly better for nearly all genes * Deeper = better
However: performance still not great, computational limitations
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2. Composite measurements
for compressed sensing



Key insight: Composite measurements better capture modules

Efficient Generation of Transcriptomic Profiles
by Random Composite Measurements

Brian Cleary,"? Le Cong,' Anthea Cheung,' Eric S. Lander,”** and Aviv Regev'-#:556"
'Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
2Computational and Systems Biology Program, MIT, Cambridge, MA, USA

®Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
“Department of Systems Biology, Harvard Medical School, Boston, MA, USA

Compressed sensing recovers expression profiles
from random composite measurements (RCM)

Using RCMs and compressed sensing
Samples Samples

RS

(1) Random composite measurements

Samples Samples

Modules

Genes

@%@

@ Infer gene module activity
(3) Estimate expression

Making RCMs in the lab

Pooled staining /
hybridization
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Detection and
quantification

A

Signal intensity,
barcode count, etc.

Tagged molecular
probes
N\

Y
VARV,

Common fluorophore / barcode

Frequency

Potential applications

mRNA profiling, CyTOF, imaging mass cytometry, screening,
metabolic profiling, chromatin profiling, etc.
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Sparse
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Activity

Factorization

(SMAF)

Total number of enriched gene sets

Number of modules

Bulk RNA

B GTEx (multi-tissue)

B ImmGen (immune)
TCGA (cancer)

Single-cell RNA
Gut epithelium

M Visual cortex
Radial glial cells
Cerebral cortex

1.00

0.104 .

0.01
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Algorithm: Sparse Module Activity Factorization

POTD® WLON A

SMAF(X.d, A.k)

Initialize Ue RI* 9 and We R?*" randomly.
For 10 iterations:
Update the module dictionary as U =LassoNonnegative(X, W, 4).
Normalize each module so that ||u; || ,=1.

Update the activity levels as W =0OMP(X. U.k).

Return U. W.



Making composite measurements in practice

Step 1: Design probes

Paired ssDNA probes &

Ligation
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Target RNA molecule

Step 2:

Hybridize and ligate
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Composite weights

Step 3: Pool ligation products

7 Q 5 »
Smmr.mé\ Gene 5 w\
7 N 2 I
}Bmmr.mé\ Gene 6 w
‘\

2 &
Gene 7 w

e ®
Gene 8 }BJ:umr_m:mé

Step 4. gPCR ampilification

gPCR signal

(2)

Cycles =———————3p

composite observations

0.50

0.25

0.00

signature genes

 Combinations of probes + barcodes for measurement
* More consistent signal-to-noise ratios
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3. Predicting Expression from Chromatin



Can we predict gene expression from chromatin information?
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Strong enhancers (+H3K27ac) vs. weak enhancers (H3K4me1l only)

Expression: log10[ mean RPKM ]
1000 L 1 1 B Genes near strong enhancers
(H3K27ac+H3K4me1)

Genes near weak enhancers
500 L 41— only (only H3K4me1)
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DeepChrome: positional histone features predictive of expression
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Convolution, pooling, drop-out, Multi-Layer-
Perceptron (MLP) alternating lin/non-linear

DeepChrome: Deep-learning for predicting gene
expression from histone modifications.
Ritambhara Singh, Jack Lanchantin, Gabriel Robins, and Yanjun Qi*

Department of Computer Science, Ui ity of Virginia, Char L VA, US.A

*To whom should be
This work will be published originally in Bioinformatics Journal at
http://biocinformatics.oxfordjournals.org
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AttentiveChrome: Selectively attend to specific marks/positions

Histone mark 1 Transcription Start ~ § [ ]

Attend and Predict: Understanding Gene Regulation
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(CNN) Attn a, B Attn a a, 3
[29]
Mean | 0.8008 0.8052 | 0.7622| 0.7936| 0.8100| 0.8133| 0.8115
Median 0.8009 0.8036| 0.7617 | 0.7914| 0.8118 | 0.8143| 0.8123
° COhSlstentlm rovement Max 0.9225 0.9185| 0.8707| 0.9059| 0.9155| 0.9218 | 09177
P Min | 0.6854 0.7073 | 0.6469 | 0.7001 | 0.7237| 0.7250| 0.7215
over DeepChrome
Improvement over DeepChrome [29] | 36 0 16 49 50 49
(out of 56 cell types)
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Today: Predicting gene expression and splicing

Intro: Expression, unsupervised learning, clustering
Up-sampling: predict 20,000 genes from 1000 genes
Compressive sensing: Composite measurements

DeepChrome+LSTMs: predict expression from chromatin
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4. Predicting Reporter Expression
from Chromatin Features



We can find regulatory elements ... but we don’t know how to read them

[P VN I ER S I WRIORN T VUSRI TR TP | WOPTU
ST '\ 1 N | R

H3K27me3

i, e s« i

@
®e
20

Comparative Genome-wide Genetics
sequence analysis chromatin/TF mapping
o J J | ) 55{ o J é ;250;:0 ‘;;:?Ei 2.6x107° _;
o e Eeqlrs pC 3>
H3K4me1 N E < - . '.ogg::: . —8%

T
0

H3K36me3 ) 193.6 kb
CTCF l l LYPLAL1 —
Y il L HH
PPARG
“ JL . l peali L U
T T T
SRS [ 215.8 216.0 216.2 216.4

Position on chromosome 1 (Mb)

100s of megabases of likely cis-regulatory elements

TATGGAACTGAAATGCCTCACTGTCCTAGAGACATCTTTTCTTCATTAATCTGGTTCATAAACTTGGTTGTAAAAAGCAAATTC
AAAGAATTCATCTAATAATGACAGAAAAAGAAACATTTCTGAATGAATTTGTGGAAGTGTACAATTTAATTTTTCATTTAATTT
TTATTTACAATTTTCATTTAATTTTCATAT TCTT TCC! CAAGGACACAGCAGTTAATAAATACTTAAG
AAATACTTCTCAATTGCATACCATTCTT. GATTTTATAAATCCAGTTATTAGTATCT
CAAACTTTAAATAATCAAAAGTCAATGGCAG! TAT TTC GGTATCAACTCACCCACCCACTCACCCC
AAAGAGACTTGTCGGTACGCCCTCTGGTGA! GA! CAAA AAATTTGAGAATGTGTAGCCCTCCAGTTCC
CAACCTTCATTCCATCTTTTTTTTTTTTTG. CTGC! TGAT TACT CAGGTATATTAGAAAATACCAAATTCTCT
TAGAGAAAAAAAAATTGCACAACAATCTC. CTGAGAGGACT! CAAG! GAAAGCAAGGTACTCCTAGGTTAGTAGTTT
TTCAAACCTATAGATGGCATTTGGAAAGAAGTACACGCATAGGCTTCAAAAAACCCTGAACACCAGAAACCTAATTAGCACTTT
CATTTTAGGGGCACGGGCTTTCCCTTATCCTTTTCTACAGCCAACCTTAATGGGGTCCAATTAAGGCAACAATGAAAGGTTACA
AAAGTCTACAAAAAGGTCCCATTACAGCATTTAAACAGGGTTCATTTTTTTTAATCAAATAGTTTACACTGTTTTTTTGTTGTT



Traditional regulatory element “bashing”

Luciferase/GFP

TATGGAACTGAAATGCCTCACTGTCCTAGAGACATCTTTTCTTCATTAATCTGGTTCATAAACTTGGTTGTAAAA [::]
TTTTACAACCAAGTTTATGAACCAGATTAATGAAGAAAAGATGTCTCTAGGACAGTGAGGCATTTCAGTTCCATA

Luciferase/GFP

TATGGAACTG. GCCTCACTGTCCTAGAGACATCTTTTCTTCATTAATCTGGTTCATAAACTTGGTTGTAAAA [::]
—
TTTTACAACC TTTATGAACCAGATTAATGAAGAAAAGATGTCTCTAGGACAGTGAGGCATTTCAGTTCCATA

Luciferase/GFP

TATGGAACTGAAATGCCTCAC! CTAGAGACATCTTTTCTTCATTAATCTGGTTCATAAACTTGGTTGTAAAA [::]
TTTTACAACCAAGTTTATGAA GATTAATGAAGAAAAGATGTCTCTAGGACAGTGAGGCATTTCAGTTCCATA

Luciferase/GFP

TATGGAACTGAAATGCCTCACTGTCCTAGAGACATCTTTTCT TTAATCTGGTTCATAAACTTGGTTGTAAAA [::]
—
TTTTACAACCAAGTTTATGAACCAGATTAATGAAGAAAAGAT TCTAGGACAGTGAGGCATTTCAGTTCCATA

Boitlenecks:
1. Generating/cloning individual variants is tedious

2. Enzymatic/fluorescent reporters limit multiplexing



Massively Parallel Reporter Assays (MPRA)

50,000+ synthetic DNA fragments (200+ bp)

ﬁ test fragment —”barcode-|:| b Fle)(ible OSSOY formOT:
Promoters, enhancers, silencers,
Construct plasmid pool oy
nonetwbs Insulators, RNA stability elements, ++

« Datais directly comparable to
traditional reporter assays:

21 r2=0.974 *
Transfect plasmid pool .
into cultured cells and 015 |
isolate mRNA
<
oz
E 01 |
0.05 { %
-
Amplify barcodes o T . . :
and sequence 0 0.05 01 0.15 02
v Luciferase

i luciferase | barcode F— AAAAAAAA
<

« Throughput increased by
v 3 orders of magnitude

Correlate barcode count to
activity of fragment




Systematic motif disruption for 5 activators
and 2 repressors in 2 human cell lines

HNF1
HNF4
FOXA
GATA
NRF2
ZFP161
GFI1

Motif-motif similarity

Motif enrichment
in enhancers Factor expression

HNF1

0.4

HepG2 K562 HepG2 K562
— N — N
33 33 g8 ©¢

0.4

0.4

1.0

1.0

0.8

0.5

-0.2

1.0

1.0

1.0

0.5

-0.1

1.0

0.1

0.4

Active in HepG2 cells

i obhr ATHAGHNF
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b TOUHNFS —

e for

«—CATA,

LA.:ACAQ__QAQ_T ZFP161 — erlﬁwsanGcgrs

25!

251
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0.1

0.3

0.4
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0.3

0.7

-0.1

-0.3

0.0

0.0

0.1

0.1

0.4

0.3

1k

11

Active in K562 cells

Selected motif instance
inside 145 bp context
Manipulations to the

wildtype sequence
Scramble | TN @ |
o Removal |[_] I [ ]
w O
° g Max 1-bp decrease || I [ |
X T
23 Least1-bp change [ T e
- T .
2 2 Max 1-bp increase || [ | | 1
[
“ | Random 1-bpchange (x2) [ TN i

Add unique 10 nt tag for each
candidate enhancer sequence (x10)

Sequences from other . .
9 — Synthesize and construct plasmid pool

selected motif matches

< =
sequence SV40 promoter
to test and "inert" ORF

tag

ol

Total of ~55,000
distinct plasmids

Transfect K562 and
HepG2 cells

Count plasmid tags ! !

(~30M reads each) Count mRNA tags from each

NRFZH AQLA CA 54000+ measurements (x2 cells, 2x repl)




ATAC-seq

STARR-seq

SHARPR-RE

HiDRA: High-Definition Reporter Assay

[ Collect cells for
library construction

Select fragments from 'L

accessible regions @ @

@QlJQS

Fragmentation + PCR ¥ Lig0 Jodmsracenams

—_— == R |
- . v
Size selection ——
EX I
[ Clone into plasmid ‘L
Insert
> G
6 * UTR
Transfect target cells
Sequence RNA ¢
GFP UTR Insert
e e —
Y —
R —
L /A S

[ High-resolution mappin
of%river nucleotidegp g

= .

Key features:

No synthesis - 7M fragments tested in 1 expt
No synthesis, size-selection - Test long
fragments

Select accessible DNA regions = High sensitivity
3'UTR integration - self-transcribing 2> No
barcode

Densely-overlapping fragments - Region tiling
Unbiased, random starts/ends - Sharpr

dissection

Putting it all together:

Testing 7M fragments in 1 experiment
High sensitivity, high specificity, quantitative
assay

High-res inference pinpoints driver nucleotides



HiDRA data overview: DNA, RNA, Regulatory Activity, Sharpr2

HIDRA
Individual
Fragment

Activity

Regulatory
Activity

RNA output

DNA input

Conservation

SHARPR?2
Regulatory
Score

chr7:

123

142,506,000 1

142,506,500 | 142,507,000 |

High-resolution driver element

I DR <0.05 active re

142,507,500 |
—A
200nt

-1.44 18

log2(RNA/DNA)

—— Regulatory activity
FWER < 0.05 threshold

. Sequence DNA library

« Effectively a DNase/ATAC-Seq expt

. Sequence RNA output

 How much expression does this drive

. Take RNA/DNA ratio

* Measures regulatory activity

. Pinpoint boundaries of active region

* FDR<0.05

. Study activity of individual fragments

 Random start/end cuts (Transposase)

. Infer high-resolution driver nucleotides

» Sharpr2 deconvolution algorithm
» Exploit diffs btw overlapping fragments

. Compare with evolutionary conservation

» Capture evolutionarily-conserved nts

. Compare with bound regulatory motifs

 Driver nucleotides are highly accurate



Guest lecture: Flynn Chen, Mark Gerstein Lab
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Today: Predicting gene expression and splicing

Intro: Expression, unsupervised learning, clustering
Up-sampling: predict 20,000 genes from 1000 genes
Compressive sensing: Composite measurements
DeepChrome+LSTMs: predict expression from chromatin

Predicting splicing from sequence: 1000s of features
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Guest Lecture: Flynn Chen, Mark Gerstein Lab, Yale

* Predicting Reporter Expression from Chromatin Features
Guest Lecture: Xiaohui Xie, UC Irvine

* Predicting Gene Expression from partial subsets sampling
 Representation learning for multi-omics integration
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4. Predicting splicing from sequence



Deciphering tissue-specific splicing code

Alternatively spliced exon2

= exon1 _”_-_II_ exon3 =

300 nt;, 300 nt 300 nt; , 300 nt
Vg3 ,i'( Y Ve ¥

Feature set:
known motifs,
transcript structure extraction
in target exon and
adjacent exons

RNA feature

% Exon inclusion:

| tinc=1 ’ texc:O’

Tissue type —>»{ Splicing code —)""‘ET-F
3-class softplus :D. _
e _ Exon exclusion:
prediction model: ._ ~
inc  (yexc nc th_O’ texe=1 J
q I q ) q tnc:o

[Barash et al., 2010]



Bayesian neural network splicing code

1014 RNA features x 3665 exons

Bayesian neural network:

« # hidden units
follows Poisson(A)

* Network weights
follows spike-and-
slab prior Bern(1 — a)

 Likelihood is cross-
entropy

* Network weights are
sampled from the
posterior

CNS Muscle Embryo Digestive
4 Mouse tissues each with 3 classes
(i.e., 12 output units)

[Xiong et al., 2011]



Predicts diseasing causing mutations from splicing code

[Xiong et al., 2011]



Predicts diseasing causing mutations from splicing code

Scoring splicing changes due to SNP Ay:

« Train splice code model on 10,689 exons to predict the 3 splicing
classes over 16 human tissues using 1393 sequence features (motifs &

RNA structures)

» Score both the reference W and alternative war sequences
harboring one of the 658,420 common variants

« Calculate Ayt =yt - W', over each tissue t
« Obtain largest absolute or aggregate Ay; to score effects of
SNPs
Cell type Predicted ¥ (%)
Reference VL 100 o
CT T T — >
Computational 0 _;?
Variant 7 model 100 ) AW
T——— = oL Regulatory

score

[Xiong et al., 2011]



Predicted scores are indicative of disease causing mutations

A B 100
10,000
Cell type Predicted W (%) %
100 X 1000
Reference S 60 §'
LTI TT - z S
Computational 0 ;7 8 g [ 100
Variant model 100 ) AW g % T
s i ‘ T Regulatory 10
0 20
score
0 = i —0
0 20 40 60 80 100
Reference W (%)
C
300nt - 100nt 100nt 300nt >
Intron Intron

O] d

@ |ntron
.| ® Exon,Synonymous

® Exon. Missense

L i e

: mﬁb’é’s«w -*:ﬁ;‘*&‘m'ﬁ@

Code-predicted AW (%)
I
'T

&k
]

o
T

<10

P=8.1e-141 P<1e-320 P<1e-320 P<1e-320 P=1.4e-125
n=6866 n=12,056 n=17,248 n=12,591 n=7,631



Predicted scores are indicative of disease causing
mutations

Or P=7.1e-16
= GWAS-implicated MAF=1% s i
— Non-GWAS-implicated MAF=1% S _os 75th B
o 0.06 == Disease annotated S :
= > | @son
[«}) o -
= -—
3 g &
E g) B 25th
Q
o
2 P @
(®)]
o
. : . _ , , -2.5 , , , ,
-5 -4 -3 -2 -1 0 1 \ N I
Q'a\’%a Q'\UON\ 600\0\ 900‘&0(\'5‘\
log,, Regulatory score \0 o Nﬁf\ 00('}‘
X



Predicted mutations in MLH1,2 in nonpolyposis
colorectal cancer patients are validated via RT-PCR

Code-predicted AY (%)

Code-predicted AW (%)

20

10

E2 E3 E4 ES E6 E7 E8 E9 E10 EN E12 E13 E14 E15 E16 E17 E18

- MLH1 ? Intronic variation
? Exonic variation
100 nt
—
, 1
B ATPase
[ MutS homologs interaction
[ IPMS1/PMS2/MLH3 interaction
117 208 307 381 454 546 589 678 791 885 1039 1410 1559 1668 1732 1897 1990
CDS numbering
E2 E3 E4, E5 E6 E7 E8 E9  E10 E11 Ef2 E13 E14 E15
MSH2
100 nt
I ONA binding ! Intronic variation
[ IMSH3/MSHES interaction : o
I MutL homologs interaction T Exonic variation
212 367 546 793 843 1077 1277 1387 1511 1662 1760 2006 221 2458

CDS numbering

True positive rate

True positive rate

1
05
0 0 05 1
False positive rate
1
0.5
9 0 0.5 1

False positive rate



Splice code goes deep

S @)
O110
O O O_'} L tissue A
Genomic o | O O—%P M tissue
Features E O O O_'} H tis8ue 1 Low=Medim=
O \ O O_-} L tissue 3 Aigh Code
O O : O__} M tissue J
O O O_+ H tissue j J
1 of 5 :iﬁsue O QO O (O—> pecrease T Tissue
index i 5 O (O—» o change J Difference
O—-} Increase Code
1 of 5 tissue O O
index j 5 o

Architecture of the new network to predict alternative splicing
between two tissues. It contains three hidden layers, with hidden
variables that jointly represent genomic features and tissue types.

[Leung et al., 2014]



Limitations of the splice code model

« Require threshold to define discrete splicing targets

* Not taking into account exon expression level in specific
tissue types

 Fully connected neural network potentially impose a
large number of parameters: (1393 inputs + 13 outputs)
x 10 hidden units = 13000 parameters

« Although authors showed that neural network performs
the best a softplus/Dirichlet multivariate linear regression
may achieve similar performance

« The features are pre-defined and thus may be
completely reflect the underlying splicing mechanism

* Interpretation of the importance of features is not trivial



Guest lecture: Kyle Farh, Illumina
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Where before What, a Weakly Supervised
Framework (DECODE) for Precise Enhancer
Localization

-- Zhanlin (Flynn) Chen

https://www.biorxiv.org/content/10.1101/2021.01.27.428477v?2.full.pd
f 52



https://www.biorxiv.org/content/10.1101/2021.01.27.428477v2.full.pdf

Enhancer Discovery

e Enhancers are a type of regulatory element that increases the transcription of a
particular gene

e Mapping out cell-type specific regulatory landscape allows us to find genetic drivers for
various diseases

e Earliest methods for enhancer discovery like ChromHMM focused on unsupervised

29 BZ.co o
e EE 288uvo,9
EL.58855355S8s
5553853538 cana -
B2 ER Candidate State Annotation
1 1023 111 2 1
000000 0OTOO0 O
3/ [6 001 10 00 o offff | Hetewchomatn |
8 soo0 o flf8lc o 1 o
& 7 0110 11 00 00 0
c
£ 1 5@ o s 6 2 0
5 155 0 0 0
S 08 8 0 0
E 0 4 1 1 Transcriptional transition
m 5 10 1 Transcription Elongation
1 4 1 0 Weak/Poised Enhancer
0 00000 00 00 0f |LowSigna/Repetiive Element

Chromatin mark observation frequency (%) 53



STARR-seq Experiments

Massively parallel reporter assay

|dentifies transcriptional enhancers directly

based on their activity

o Fragments of the genome is transfected into

target cells in front of a luciferase gene

o The ability to increase transcription of that
fragment is quantified by measuring the
relative expression of the luciferase gene

Low transfection efficiency, low resolution,

evaluate fragments out of epigenetic
context

Provide a basis for supervised approaches

DNA fragments ——— —
~500bp — —
Capture r ﬁi Z‘
Captured
fragments e
(* SNP) ="

-

-
- (—‘SCP1 HLuciferase } -.-PonAI—)
~—

Modified STARR-seq vector

HepG2/K562
Cells

Transfection

i 290
= Q00
l/-

RNA extraction
and sequencing

2x250 bp
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Current ENCODE Dataset (hg38)

Cell Type | STARR- | ATAC- | DNase-
5eq seq seq
K562 . J J
HepG2 ' v v
A549 N4
HCT116 v
MCF-7 4

Our central hypothesis: The interactions between open chromatin and histone marks provide a
platform for TF binding and enhancer activity




Workflow/Architecture

Given only epigenetic
features and coarse
training labels, could
we produce precise
localization of
enhancers?
Operationalized
enhancer discovery
into an object
detection task

First, classify 4kb
sliding windows given
genomic features
Second, use Grad-
CAM for feature
justification and
localization

Neural Network Experimental Data

Interpretability

Epigenetic Profiles - ATAC, DNase, ChIP-seq  Novel Functional Characterization - STARR-seq

K562, HepG2,
X h —{efse}— T8 M7
e = —AAAAA— _
Histo: %%\) # SnaIT X # _ —] @ ® #
: (J/Q\G/u \ ® @ Coarse STARR-seq Peaks
’ l Backpro l
Input l O prop Output
H3K27ac Q Q Q Q ’/
H3K4me3
Chromatin = @"m‘m-’m-’ m m-’ = = -}@-& :_:
H3K9ac .
H3K4me1 5x10 5x10 5x10 5x10 1x4 1x4 LEba
conv, cony, conv conv, Pool cony, cony, conv Pool Dense Dense \
128 64 128 1x2 64 64 128' 1x2 256 1 Y ——

l—l Localization l \ /
\ /

Refine Cutoff \ / 13%

\ )
7QT - =
— Core Enhancer
Refined Labels Region

AN
f\

Feature Justifications

Binary Classifier Training Data

Object Detection
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Weakly Supervised Learning (Grad-CAM)

7 A

Feature Importance
k ConvfFilters l

5x10 -»

a, X [L Al | | >
a.X A RELU A
(a) Original Image ! ) 2 i 3
or a. X
o — 3 or
.' x4 -

k Activation Maps (A) | |

e Applying convolutional filters on a given input produces activation
maps that highlights particular features, which is a subset of the
input.

e Alinear combination of activation maps (weighed on the sum of all
activation in the maps) produces a heatmap localization of the object.

e Weakly supervised: label only indicate “existence” for classification.
No locations were provided in our model, yet they could be inferred.

(c) Grad-CAM ‘Cat’
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Cell-Line/Chromosome Cross Validation

Chromatin .y Validaton  Validation  Validation Ll imammasoirmie- Dl Dhses 2altdartion
Accessibility Accuracy auROC auPRC 0.995
ATAC-seq K562 0.9885 0.9972 0.9704 . .
HepG2 0.9908 0.9960 09536 | o
K562 0.9849 0.9984 09975 | S = o
HepG2 0.9865 0.9978 0.9972 050
DNase-seq A549 0.9818 0.9984 0.9978 e
HCT116 0.9918 0.9989 0.9981
MCF-7 0.9897 0.9983 0.9978

Data from cell-lines/chromosomes were set aside for validation

Cross cell-line validation indicate that our model can generalize predictions to new cell-lines
Cross chromosome validation indicate that our model can generalize predictions to new
genomic loci

58



Example Predictions

DNase

H3K27ac

H3K4me1‘i

LIN28B-AS1

pred  pred nrad

pred

chr6:104939031-104942031

Score = 0.99992406

pred
chr6:104939791-104942791
Score = 0.9997447

pred
chr6:104940071-104943071
Score = 0.9999944

pred
chr6:104940491-104943491
Score = 0.9999826

DNase
H3K27ac

H3K4me3

H3K4me1

' pred
chr6:105086271-105089271
'Score = 0.013451705

PM pred
chr6:105316551-105319551
Score = 1.6946955E-4

E




Transgenic Mouse Validation (Our model vs. SOTA)

auROC auPRC
W Matched Filter m Our Model W Matched Filter m Our Model
0.9 0.65
0.86 0.55
0.82 0.45
0.78 0.35
0.74 I I 0.25 I I

0.7 0.15

Q& < <& \ Q& 2 2 Q & O N & 2 2

@\ i kfb\ \‘0 {& ,Q‘)o (bo" @\ i &'b\ & (‘} ,Q\)o (bQo

A\S) Ny S A% \8&) < 0 DS O R O <
© B < & Q@ & S

e Matched Filter utilized shape-matching filters for feature extraction and linear SVMs for
classification

e Comparison on ENCODE Enhancer Challenge Dataset (VISTA mouse enhancer database
https://enhancer.Ibl.gov/)

e Outperformed Matched filter in every mm10 tissue type, some with 15-20% margin
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Neural Progenitor Cell (NPC) Case Study

5D Grad-CAM Score

0.30 4

0.25 4

0.20 4

0.15 4

0.10 4

0.05 4

0.00 1

—— DNase
H3K27ac [\\
H3K4me3 f
—— H3K9ac |

H3K4mel | M

Candidate

Enhancers

4kb Genomic Window

1D Grad-CAM Score

0.25 1

0.20 4

0.15 1

0.10 4

0.05 4

0.00 4

refine cutoff

A

I\

4kb Genomic Window

Feature-wise score: importance score for each feature (left)

o DNase, H3K27ac, and H3K4me3 were emphasized

o Interaction of low-level features lead to high-level features
Position-wise score: importance score for each location/loci (right)

o Position-wise scores capture candidate enhancers within a subset of the 4kb input
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Prediction Statistics

Ten Million Base Pairs
N w B w =2} ~J

[

. 7Total Coverage TSS overlap PhastCons Score (p-value<0.001) Rare DAF SNP Enrichment
e
25000 \ 1.0 0.95
w
20000 71.0% g 0.8 g
e} w :
2 o
£ 15000 £ 06 = Regions
é a_n E 0.85 original
fined
10000 = 04 ¥ Bl roin
& e
A % 0.80
12.6% 5000 0.2 5
0.0 0.75
= : 0 ' ‘ ‘
Original Refined Original Refined Original Refined gnomAD  PCAWG

Source

Our refined predictions cover less area (12.6% of the original 4kb positive predictions), but is
enriched for transcriptional start sites, indicating a strong transcriptional impact from our refinement.
100-way phylogenetic PhastCons shows enriched inter-specie conservation.

Rare Derived-Allele-Frequency (DAF) SNPs enrichment indicate intra-species conservation
(through negative selection).
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Disease Causal-variant Mapping

NP C Prediction LDSC

10
0
(—g variable
| original
2 °
8) 5 . refined
T

0« | —

E o
¥ T £ 05 ~ o o o
g 5 £ g § o ¢ & &
S L L 9 o Y 9o F &®
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9 5 & B N
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y < & & 2 5
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@ S5 I
& &
2 §
O O
)
i
N4

Phenotypes

Linkage Disequilibrium Score
(LDSC) determines whether the
heritability of a phenotype is
enriched through GWAS summary
statistics.

Our original and refined NPC
enhancers are enriched mostly only
for neurodevelopmental and
psychiatric phenotypes.

Our NPC refined enhancers exhibit
higher LDSC enrichment compared
to original enhancers in relevant
GWAS phenotypes

Increase statistical power could be
attributed to our compact
annotations
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Thank you

Special Thanks to:
Mark Gerstein,
Jing Zhang,
Jason Liu,
And other members of the Gerstein Lab
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Deep Learning in Gene Expression Analysis

Xiaohui Xie
University of California, Irvine
xhx@uci.edu



Deep learning methods developed by Xie Lab

. DANQ: deep neural network for quantifying the function of DNA sequences

. FactorNet: a deep learning framework for predicting cell-type specific
transcription factor binding

. SCFAN: predicting transcription factor binding in single cells

. UFold: fact and accurate RNA secondary structure with deep learning

. D-GEX: Gene Expression Prediction from subsets of genes
. SAILER: autoencoder representation of expression and chromatin

. MVAE: multi-modal representations with variational auto-encoders


https://www.sciencedirect.com/science/article/pii/S1046202318303293
https://www.sciencedirect.com/science/article/pii/S1046202318303293
https://www.sciencedirect.com/science/article/pii/S1046202318303293
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Gene expression inference with deep learning @

Yifei Chen, Yi Li, Rajiv Narayan, Aravind Subramanian, Xiaohui Xie ™ Author Notes

Bioinformatics, Volume 32, Issue 12, 15 June 2016, Pages 1832-1839,
https://doi.org/10.1093/bioinformatics/btw074
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Connectivity Map (C-Map) Project

diseases

genes

Comprehensive characterizing of cellular states:
genome-wide mRNA expression profiles

Aravind Subramanian,
Justin Lamb & Todd
Golub (Broad Institute)

Lamb et al, Science 2006

The Connectivity Map (also known as cmap) is a collection of genome-wide transcriptional expression data from
cultured human cells treated with bioactive small molecules and simple pattern-matching algorithms that together
enable the discovery of functional connections between drugs, genes and diseases through the transitory feature o

common gene-expression changes.



the c-map search engine
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Valproic Acid

Histone deacetylase inhibitors (HDIs) have a long history of use in psychiatry and neurology as mood
stabilizers and anti-epileptics, for example, . In more recent times, HDIs are being studied as a
mitigator or treatment for


http://en.wikipedia.org/wiki/Valproic_acid
http://en.wikipedia.org/wiki/Neurodegenerative_diseases
http://en.wikipedia.org/wiki/Histone_deacetylase#cite_note-pmid18230051-19
http://en.wikipedia.org/wiki/Histone_deacetylase#cite_note-20

connectivity map

the promise

= small molecule gene-expression profiles reveal connections b/w
drugs&diseases<~genes

the problem

= whole-genome profiles are expensive!
= Affymetrix: ~$400 / drug in one cell line

= scaling to large chemical libraries, genotypes, cell lines efc,
prohibitively expensive

the 1000-gene solution

= measure 1000-genes at high-throughput, low cost

= use whole-genome compendium datasets to infer the remaining
genes



Dimension reduction
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NIH LINCS Program

LINCS aims to inform a network-based
understanding of biological
systems in health and disease that
can facilitate drug and biomarker
development.

. D
lincscloud
Measure 1000 'Landmark’

Rl /X 2
: transcripts on Luminex bead
Currently released L1000 data
includes 1.3 million samples
Cell

A Next Generation Connectivity Map: L1000 Platform
and the First 1,000,000 Profiles

[ L [ [ L L LS
ayi

Human cell types

- RNAi
« small molecules @ & ©
@ 27 @ o
Q (@ 0
AR
S ®
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http://lincsproject.org



Gene expression learning problem

Using the landmark genes to infer the entire transcriptome

= |

Measured: 978 landmark genes

Unknown: remaining ~21K target genes

<

Need to learn the mapping from x to y:

=)
||
~~
—
=
N



Training Data

GEO data (Gene Expression Omnibus)
Complete transcriptomes
129,158 samples after filtering and normalization

Randomly partitioned into training, validation, and testing se % mate
ratIO 8: 1:1. Gene Expression Omnibus

Training: train predictive models
Validation: model selection; parameter tuning
Testing: evaluate predictive models



Three methods

Linear Regression (LRG)

Baseline model

Other variants: SVM, ridge regression, Lasso
K Nearest Neighbor Regression (KNN)

K is tuned using validation data

Predict using average

Nonparametric nonlinear model
Deep Learning



Test performance
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Fig. 1. The overall errors of D-GEX-10% with different architectures on GEO-te.
The performance of LR is also included for comparison



9517 dots (99.97%) above diagonal 9520 dots (100%) above diagonal

0.9+ .

KNN-GE

. . . . 0.9
D-GEX D-GEX

(2) (b)
Fig. 3. The predictive errors of each target gene by GEX-10%-9000 x 3 compared with LR and KNN-GE on GEO-te. Each dot represents one out of the

9520 target genes. The x-axis is the MAE of each target gene by D-GEX, and the y-axis is the MAE of each target gene by the other method. Dots above diagonal
means D-GEX achieves lower error compared with the other method. (a) D-GEX verse LR; (b) D-GEX verse KNN-GE



Table 2. The overall errors of LR, LR-L1, LR-L2, KNN-GE and D-GEX-
25% with different architectures on GTEx-te

Number of hidden units

6000

9000

3000
Number of hidden layers
1 0.4507 = 0.1231
2 0.4586 = 0.1194
3 0.5160 = 0.1157
LR
LR-L1
LR-L2

KNN-GE

0.4428 = 0.1246
0.4446 = 0.1226
0.4595 = 0.1186
0.4702 = 0.1234
0.5667 = 0.1271
0.4702 = 0.1234
0.6520 = 0.0982

0.4394 = 0.1253
0.4393 = 0.1239

0.4492 = 0.1211
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Fig. 5. The overall error decreasing curves of D-GEX-9000 x 2 on GTEx-te with
different dropout rates. The x-axis is the training epoch and the y-axis is the
overall error. The overall error of LR is also included for comparison



Linear regression
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Deep learning vs. linear regression
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Summary Statistics

Percentage of genes on which deep learning does better than
linear Regression: 99.98%

Percentage of genes on which deep learning does better than
KNN: 97.90%



Deep Generative Models for
Genomics



Manifold hypothesis

—_— B L ko

. . , NDR Low-dimensional
High-dimensional data (Manifold Learning) embedding

Manifold hypothesis: high dimensional data (measurement) lie on low dimensional manifold
embedded within the high-dimensional space.

Need to discover the low dimensional representations (smooth manifold).

Although biological data are complex and high-dimensional, we may understand them better if
we study them within low-dimensional embedded spaces.

Address these issues thorough manifold learning

Manifold - smoothly varying low-dimensional structure embedded within high-dimensional
ambient measurement space.

Utilize manifold, representation, deep learning to understand large biomedical datasets.
Give insights into diverse biological systems



Discover latent representation through autoencoder

Input Output
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Encoder Decoder

Disadvantages of traditional autoencoder:

1. No constraints on the latent representations, e.g., gaps in latent space.
2. Susceptible to overfitting, e.g., memorize the input.

3. Not clear how to generate a new sample.



Autoencoder model architecture

Reconstructed
IR - == PEER AR Ideally they are identical. --------- B > input

X~ x

Bottleneck!
Encoder Decoder
X /
9¢ fo &

An compressed low dimensional
representation of the input.

Disadvantages of traditional autoencoder:

1. No constraints on the latent representations, e.g., gaps in latent space.

2. Susceptible to overfitting, e.g., memorize the input.

3. Not clear how to generate a new sample. https://lilianweng.github.io/lil-log/




Generative models with latent variables
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Given dataset: D {x(l)jx@), L. :X(n)}

Model marginal likelihood with latent variable z:
po(x) = Eznp(z) [po(x|2)]

Negative log-likelihood (NLL) function as a loss:
n
L=— Z log pe(x®)
i=1

Variational lower bound on the marginal likelihood:

log po(x) > B, g, (z|x) 108 Po(X|2)] — Dx1(q4(2]%) || p(2))

q4(z|x) is a variational approximation of the intractable posterior pe(z|x)



Variational autoencoder (VAE)

-
L—) Encoder |=2» ¥4 =2 Decoder =—>

Sample from P(z)
Standard Gaussian

Lvag = —ELBO = Ey(x) [_Eq¢(Z|X)p9(X | Z) + KL{qs(Z | X)||p(Z)}]

The first term is reconstruction error
The second term is the Kullback-Leibler divergence between the . _
posterior and prior distributions of the latent variables (Z ). Kingma and Welling, 2013



VAE with Gaussian prior, reparameterization trick

Reconstructed
L e Ideally they are identical. ~ ---------------------- - :
o input
X R X
Probabilistic Encoder
q4(2[x)
Mean © Sampled
latent vector
Probabilistic
X > J;. »| Decoder 5| /
po(x|2)
o
Std. dev
_ An compressed low dimensional

zZ=p+o0OE€ representation of the input.
e ~N(0,I)

https://lilianweng.github.io/lil-log/



beta-VAE

Lpeta(@, f) = —Ezey v log po(x|z) + fDx1.(q4(2|X)||po(2))

Motivations:
 Emphasize the disentanglement between different latent variables, z1, z2,..., zn.
« The prior of p(z) assumes different latent variables are independent.

« Larger weight beta on the second term leads to better disentanglement between latent
variables.

Higgins et al, ICLR 2017



Deep Learning for scRNA-seq

* SAUCIE

* DCA (Denoising, Imputation)

* scVI

* totalVl

* Solo (Doublet Identification)

* Deeplmpute (Imputation)

* scAlign (Batch effect, Integration)



DCA—Denoising Count Autoencoder

Binomial (ZINB) loss function

dispersion 6 of RNA-seq count

dropout events

pseudo time analysises.

Autoencoder (AE) with Zero-inflated Negative
Negative binomial models the mean y and
Zero inflation with a point mass ™ models the

ZINB provides great denoising performance,
which benefits downstream analysis, including
clustering, time course modeling, differential
expression, protein-RNA co-expression and

NB(x; p, 0) = F(Jrc(_g)e) (9 -?— y) 9 (9 :t- #)x

ZINB(x; 7, u4,0) = n8y(x) + (1 — m)NB(x; u, 0)

ZINB (x| e ,0,7)
Input x Output

Bottleneck %
.\. layer /
. .

o /’ M.R\'%

Denoised output
&
E

Dropout =
ispersion ¢

Mean u

Encoder Decoder

Eraslan, Gokcen, et al. "Single-cell RNA-seq denoising using a deep count autoencoder." Nature communications 10.1 (2019): 1-



scVI—Single cell variational inference

* Variational Autoencoder (VAE) with Zero-inflated Negative Binomial (ZINB) likelihood

accounting for the count nature of RNA-seq data and dropout events during sequencing
process

* Exceptional performance for imputation with ZINB loss function

* Generative modeling for Imputation and data simulation

Lopez, Romain, et al. "Deep generative modeling for single-cell transcriptomics." Nature methods 15.12 (2018): 1053-
1058.



Regulatory and Functional Genomics

SAILER: Scalable and Accurate Invariant
Representation Learning for Single-Cell ATAC-Seq

Processing and Integration

Yingxin Cao'®8T Laiyi Fu 2T, Jie Wu?, Qinke Peng?, Qing Nie*>®, Jing Zhang' ",
Xiaohui Xie!"




scATAC-seq (single cell ATAC-seq)

Chromatin accessibility
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* High dimension, difficult to interoperate
« First step, dimensional reduction, clustering

while remain invariant to confounding factors

« Goal: Learn a representation informative on biological variations,




Input Data SAILER Method
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Fig. 1 The overall design of the SAILER method. SAILER takes scATAC-seq data from multiple batches as
input. Raw data is pushed through the encoder network to obtain a latent representation. Confounding
factors for each single cell are concatenated and fed to the decoder along with the latent representation.
Batch information is indicated by a one-hot embedding, and read depth is subject to log transform and
standard normalization. To learn a latent representation invariant to changes in confounding factors, mutual
information between the latent variables and confounding factors are minimized during training.



Confounding factors: batch effect

10X
snATAC




Confounding factors: read depth




Conditional VAE

Cells

Cells
z compressed
code
w Encoder Cond. Dec. ¢
é X q A T X e
X o
q(z|z) p(z|z,c)
c
Enhanced data

Raw data

Goal:
To learn a representation informative on biological variations, while remain invariant to

confounding factors

Method : _ Moyer,D. et al. NIPS, 2018
Invariant Coding through VAE

Objective:
Maximize a log-likelihood conditioned on the confounding factors, while max E, . [log p(z|c)] — M (z, c).

minimize the mutual information between latent variable z and confounding
factor c.



Learning invariant representations

Variational loss LVAE — EX,CNQ(X,C) [_E2wq¢(z|x) [logpg (X‘Z: C)} + DKL (qé(Z‘X) ” p{Z))}

Minimizing both variation
loss and mutual
information between
latent and conditional
variables

LVAE + )\I(Z C) QQfJ(Zt X, C) — Q(X* C)q¢(Z|X}

Approximation of the loss L(o.0)

. = Ex~qx) [PKL(00(2]%) || p(z)) + ADkL(94(2]X) || 94(2))]
function:

~ (14 NExcngxe) [Eanay(alx)[l0g po(x|2, €)]]

D (g5(21%) || g4(2)) ZZDKL(%(zm ) || g4(2|x"))

Moyer et al, NeurlPS, 2018



SAILER learns robust latent cell representations invariant to
various confounding factors

Simulated data

A: 1 sample, 5 cell types,

B: 1 sample, 9 cell types,

C: 2 samples, 6 cell types,

1 rare type, varying depth varying depth 2 rare types, 2 batches
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Table 1 Mutual Information between the latent representation and

confounding factors on simulation datasets.

I(z,c) Sim1 Sim2 Sim3
Method
LSI 0.610 0.500 0.130
SCALE 0.290 0.224 0.087
SAILER 0.107 0.100 0.005




SAILER learns robust latent cell representations invariant to
various confounding factors

* Mouse Atlas Data « Merging two mouse brain datasets
A
Table 2 Evaluation results on the mouse atlas dataset 10X - MOs-M1
Method ARI NMI 1(z,©) o , W
SAILER 0.575 0.799 0.040 1@*4, &
SnapATAC 0.538 0.748 0.127 5 u‘%_ﬂ 5
SCALE 0315 0557 0279 ! w7 G
A{.-I_..g‘ ) 5k
Lol
SAILER || SnapATAC || SCALE 2
Al : (a) SCALE (b) SAILER (c) SAILER clustering
s * £y B

sst

High




SAILER reconstructs a chromatin accessibility landscape free of
various confounding factors
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MVAE for Jointly Profiled scRNA-seq and scATAC-seq Data

« MVAE Framework

ScRNA-seq scATAC-seq

0 o, Inferenc
\ e Model
V4
/s, & Generativ
e Model

scRNA-seq scATAC-seq

shared information

e
.

private information of modality 1

private information of modality 2

i Factorized latent space for

different downstream tasks

o Private latent space for modality

specific tasks (e.g. imputation)

u Shared latent space for common

tasks (e.g. cell states, cell identity)

ScRNA-seq scATAC-seq

s
NG

SCRNA-seq

ScRNA-seq scATAC-seq

scRNA-seq

Cross Generation

= Generate
corresponding missing
modality

Synergy

= Betterinference on
single modality when
both are observed (e.g.
better clustering,
imputations)



Datasets: g, genes ~ 10k b, peaks ~30k

n = 34,774 cells for SHARE-seq
n ~ 10k cells for PBMC 10x n, cell [ log(x+1) ] n, cell [ y {0,1} ]
l Encoder l Encoder
n Z1 n 22
10 10
n Cq l Decoder Decoder l Co
\ /
l | l p
P h
N— —— — Black: Tensors
—: Neural
Networks
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Variational Graph Autoencoders for Spatial Transcriptome Analysis
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Representation |:>
Slide-seq SeqFISH+ @

~10,000 cells, ~10,000 genes ~1,000 cells, ~10,000 genes

[ Decoder Networks ]
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bulb

Cell Identity
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Reconstructed Data

Kidney Liver
Eng, Chee-Huat Linus, et al. "Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+." Nature 568.7751 (2019): 235-239.

Rodriques, Samuel G., et al. Science 2019 Eng, Chee-Huat Linus, et al. Nature 2019 Rodriques, Samuel G., et al. "Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution." Science 363.6434 (2019): 1463-1467.



A

Today: Predicting gene expression and splicing

Intro: Expression, unsupervised learning, clustering
Up-sampling: predict 20,000 genes from 1000 genes
Compressive sensing: Composite measurements
DeepChrome+LSTMs: predict expression from chromatin
Predicting splicing from sequence: 1000s of features

Guest Lecture: Flynn Chen, Mark Gerstein Lab, Yale

* Predicting Reporter Expression from Chromatin Features
Guest Lecture: Xiaohui Xie, UC Irvine

* Predicting Gene Expression from partial subsets sampling
 Representation learning for multi-omics integration

/.

Guest Lecture: Kyle Kai-How Farh, l[llumina
* Predict splicing from sequence




Predicting Splicing fro

|
Kyle Farh, MD, PhD (kfarh @ illumina.com)

Principal Investigator, lllumina Al Lab |

illumina



Current State: Our Understanding of the Genome is Nascent
Level of actionability of whole genome is < 1% of its potential

Rare genetic disease

- Most cases remain unsolved despite WGS Fraction of

- 99% of variants are VUS (unknown significance) — Variants Known
~ 0.1%

Oncology (=0.1%)

- ) i i i Variants of
99% of the genome is noncoding, and largely uninterpreted 70 million protein- Unpe o
General Population coding variants ;. ificance

(~ 99.9%)

- Minimal actionability for common diseases
- Little incentive for patients to be sequenced in routine care



Unlock the diagnostic yield of the noncoding genome

Deeply conserved sequence, PhyloP > 3

o Currently, 99% of the genome
that is noncoding is ignored for
diagnostic sequencing.

o Current diagnostic yield with

exome alone for rare disease ~ '
25-30%

m Coding (65%) = Splicing (8%)
= Promoters (4%) = Enhancers (14%)
m microRNAs (9%)




Deep learning/Al for genomics

TTGATGATCAGGTGGTGTCTCTGCCCGTCCTTCTTGAACCGGTATTTGAAGGTCTCCTCCCGGGT
CAGCTCCACCCCGTCCTTCAGCCTAGCCGGGTGGGETGGGETGGCAAGTGCTGTGGCCTCTTCTGGG
CAGATGCCCCCAACACCCATGCCCCGTGCTTCTGGAACTCACCATTTGACTTGCGCCCCCTCCTC
CGATACTTCACACTCAAACTCCACCCGCTGCCCCACCATCACCAGCTGGTCCTCCAAGGGGCGCG
TGATGAGCACAGGGGGCTCTGTCCAGGCAGGGTGAGCATGAGGGTTGGCTCCCCTGAGGCCATCT
CCTCCCCAGGTTCCCACATCCTCAGGTCCCAGGCCCACCTTTCACAAAGAGCTCCGTGCTACACT
TCTCGCCACCCACCACGCACTGGTAGGCTGCGTCGTCCGCCAATGAGCACTGGCTGATGGTCAGG
GTACGCTTGGCACCGATGGACTCAAAGATGTACCTGGGTGGGGEGECTGCAGGGAAGTGGCAGGAAA
GCTGCGGACACCCCTCCGGGCCCAGTGCGCCCCATGATAATCCCTGTGCCCCCCACCCCAAGCCA
TCCAGAGGGGAACTTACTTGCTGTAGAACAGAAGGGGCCGTTGAAGTGTTCCCGACGGGAGGAAG
TGAGCCCGAGACAAAAGGAGAGAGAGAGAGGGACCGGCAGGAGCAAAAGGATGGGAAATTAGGCC
CAGAGAGATGGGGCTGAGAGCCACACCGAGTCAGAGATACGCATGTGGAGAGGGGCAGGAGGCAA
GGCTATGGGGGTCCCCACCTCCACCCGAGCCCCCCTCCCCACCCCAGGCTGCACCTGCCGCTCAT
CTGGATCTCCTGGCCATTCTTGAGCCATTTGACCTCAGCGTCATGGTCAGCCAGTTCCACGGTCA
GCCGGATCTTGTGGCCTTTGCTCACCTGGTAGGCCGGCTCCAGCTTCTTCTGAAAGGCTGAGCAC



Splice variants in disease

Exon Intron Exon
- _m _____ n p-
LI L
splice donor splice acceptor

Jaganathan et al, Cell 2019



< > <« >
G
INPUT: ]
pre-mRNA SpliceAl
nucleotide
sequence s T
dilated I :
con\llglstion  Input: 10K nucleotides
dilated
convolution « Labels: 3-way classification, based on
C?‘— GENCODE annotations & RNA-seq
* Architecture: 32-layer convolutional
+ neural network, 700K parameters
* Trained on half of chromosomes, withheld
gruegifez other half for testing, excluding paralogs

score

Jaganathan et al, Cell 2019



SpliceAl model

SpliceAl-80nt SpliceAl-400nt SpliceAl-2k SpliceAl-10k

Conv(32, 1,1)
onv(32, 1, 1)

onv(32, 1,1

Sequence-to-sequence model using dilated
convolutions + residual blocks

Trained four models with context sequence
size: 80nt, 400nt, 2000nt, and 10000nt

RB(N, W, D)

Conv(32, 1,1)
[+

Batch Normalization|

WaveNet, VVan den Oord et al 2016




Decoding splicing with deep learning

Best previous - chr7:117,120,017-117,308,719 188,703 nt B Splice acceptor Ml Splice donor
algorithm I v vy “"Y vy ' 'l' ""'Y Y‘ v w v VH v V "' vlm v v LA J m

1ol m 1
Lia
AAAM A A

(18% accuracy) I | |

MaxEntScan score

lllumina deep

neural network o YA A LR P TR : 3 i
(95% accuracy) | | | 1 N N I . Il
chr5:74,652,154-74,657,153 5,000 nt Long range determinants up to
O = —m- 10kb are crucial for splicing
e cdre b adoad bl ad & g% specificity
23
K562 nucleosome signal 2
Lk NG bl ) THT 59 Intron / exon length,
SpliceNet-10K score °’§ nucleosome positioning play

major roles
Jaganathan et al, Cell 2019



SpliceAl performance

n=859 n=976 n=12,947

% 0.4+

Top-k f% 0.2-
accuracy

109
5084 \
Test accuracy % 06-

0.0-01 0.1-0.9 0.9-1.0

SpliceAl-80nt 0.57 —_— y Exon inclusion rate
SpliceAl-400nt  0.90 Accurate prediction of splicing

SpliceAl-2k 0.93 requires very long input sequence .

SpliceAl-10k 0.95 lincRNA accuracy
GeneSplicer 0.30

MaxEntScan 0.22 Top-k
NNSplice 0.22 accuracy

SpliceAl-80nt 0.51
Accurate prediction of SpliceAl-400nt  0.70

. . SpliceAl-2k 0.82

noncoding transcripts SplicoAl-10k 0.84

GeneSplicer 0.33

MaxEntScan 0.33

Jaganathan et al, Cell 2019 NNSplice 0.32
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What features does SpliceAl use?

chr3:142,740,137-142,740,263 127 nt

0.75

0i| o ____WAJCTAATATT Tc.chTTTTCTCCCcTTLAA Al RN CATCAA AA A, A_C_ Cr TAAT PO o I T

- L

Score N

U2SURP A
chr3:142,740,192

Impact of in-silico mutating each nucleotide around a
splice acceptor

Jaganathan et al, Cell 2019



What features does SpliceAl use?

0.93- -0.43
o o
o o
3 S
= =
© 0.89- 0.39 2
5 S
Q o
E_ -
(d))]

0-85 | | I 1 1 rrrrrrrerrni I T T T | I T 1rrrri 0-35

100 200 103 104

Exon length Intron length

Exon/intron lengths confer additional specificity to splice sites




What features does SpliceAl use?

chrb:74,652,154-74,657,153 5,000 nt

HMGCR
= _ ] e
q 0O
T
WUTTIOY YO IYW T R TWY T WYY W G
K562 nucleosome signal g g
G S
C -+
bk B DL AR WA R JES
SpliceAl-10k score §

Nucleosome positioning is a specificity determinant for splicing




What features does SpliceAl use?

Acceptor -0.40 Donor _
0.905 044
0.915-
o o
o] % 8 g
3 g8 & 8
S 037 = S 041 i
T 0.890 o
I E < 0900+ =
k! 8 9 8
3 St S
L0.34 L0.38
0.875 : . 0.885
05 2.0 35 5.0 05 20 35 50
Nucleosome enrichment Nucleosome enrichment

Nucleosome positioning is a specificity determinant for splicing




Scoring variants with SpliceAl

Splicing prediction

MYBP |_|
c3 deep neural

' GCGGCCC ' —il—+—a.—
5\ \— VAVACE etwork —> .
Wildtype

|deep neura||

5\ \U—GCAGCCC— N\ —p NGNS, S ——
network
chr11:47364709 G>A Mutant

i

Acceptor 0.92

score I
.

GCGGCCCCCACCCAGGTACA

Acceptor 0.94
score o

—
ecadeccccacecadeTaca

Acceptor gain  Acceptor loss
A=0.94 A=0.92

4 scores: acceptor gain, acceptor loss, donor gain, and donor loss

®
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Validation of predicted cryptic splice variants in GTEXx

Enrichment of private SNVs around
private novel acceptors or donors

40—
2 304
©
n 20=
=
O 10-
e N
0- | | 1 1 1 |
-100 0 100 -100 0 100
Ref > > > 5 >
Alt (novel

junction)



Validation of predicted cryptic splice variants in GTEXx

1.0 - n=3612 n=1131

0.6 1
0.4 4
0.2+
0.0

Validation rate

A Score
0.20-0.35 0.35-0.50 0.50-0.80 0.80-1.00

A Score A Score
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— Essential loss

B Acceptor gain
Acceptor loss

M Donor gain
Donor loss

Validation rate

A Score 0.8

M SpliceAl
GeneSplicer

M NNSplice

M MaxEntScan

A Score 0.5

A Score 0.2

0.2

1 1
04 0.6 0.8
Sensitivity

llumina



Most cryptic splice-altering variants have partial effects

O

Coverage

Coverage

chr20:25261715 C>T
A Score =0.77

v
Alt GTGTGGTGAGGA. .
Ref GTGTGGCGAGGA. .

Relative usage of novel junction

(AC+ BC )mut ( AC+BC )w.z

25261748

27
27+263

Individual
with variant

Control
individual

Novel junction

Known junction

v
.GTCGGTGTGAGT
«.GTCGGTGTGAGT

A

- 0=0.09

Effect size

1.0+
0.8+
0.6 -
0.4+
0.2+
0.0 -

W Acceptor gain
Acceptor loss

M Donor gain
Donor loss

[ NP

Li iHiJ‘ |I;I L' il

it

Essential
losses

A Score A Score A Score A Score
0.20-0.35 0.35-0.50 0.50-0.80 0.80-1.00

Effect size generally under-estimated due
to noise, NMD, unaccounted for effects.



Cryptic splice variants are strongly deleterious

Fraction of deleterious variants (%)

100+

80-

60+

404

20+

ExAC near exonic variants

(OR-1)/OR

Singlet Common
Ingleton — (AF > 0.1%)
SNVs with
Ascorez0.8 10,369 212
SNVswith 4 687 004 158 177

A score < 0.1

Odds Ratio (OR) = 4.58 (P < 10-127)

P <1035 P < 10124
P <1077
Protein A score A score
truncatingI 0.2-0.5 0.5-0.8

P <107

B Acceptor gain
Acceptor loss

M Donor gain
Donor loss

A score

0.8-1.0 |

Predicted cryptic splice

Number of rare variants per individual

125

Fraction deleterious variants:

M Nonsense

B Frameshift

M Essential acceptor
Bl Essential donor

Exonic
Near intronic
Deep intronic

11.3

46

Predicted

Protein
truncating cryptic splice



SpliceAl performance in rare disease cohorts

Identify cryptic splice mutations

NNA—CGE—- N — —> . —
reference
SpliceAl
* *
NN\ A—CAG—~-N" — .
alternative

1.51X (P=0.000416)

| I
1.3X (P=0.0203)

Proportion as cryptic splice mutations
DDD ASD

T

M Cryptic splice

0.04

Cryptic splice de novos per person

DDD ASD controls
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SpliceAl examples - exon skipping

v exon
chr3:73112821 T>G  splice region of PPP4R2  TCTTATAGEM

score dlstance 2000 1 chr3:73112821 ;frzg-mc
536 273
acceptor gain 0.34 1 » 1000+
g’ 30
acceptor loss 0.97 3 5 0
3 2000 t
donor gain 0.00 209 © s
10001 "
donor loss 0.45 77 L ~ m

exon
chr10:27431317 T>C  synonymous in YMEL1 ATACEHGEEE

chr10:27431317 T>C

score distance 4000 mutared

acceptor gain  0.00 -1 20001 : —%
o g 249 " =

acceptor loss 0.47 97 0 date J

167 202 682

Covera
>
o
o
o
;

donor gain 0.00 -24

2000 A
donor loss 0.71 -1
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SpliceAl examples - novel junctions
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chr6:146266701 T>C SHPRH p.Tyr465Cys (73 bp from exon end)

score distance

acceptor gain 0.46 -87
acceptor loss 0.02 -25
donor gain 0.99 1

donor loss 0.38 -3

Coverage

chr1:241676892 T>C intron variant in FH

score distance

acceptor gain 0.00 121
acceptor loss 0.00 105
donor gain 0.99 1
donor loss 0.07 11

4000+
2000 1

ge

4000

Covera

chr6:146266701 T>C

v exon
ATCACCTCCTACEEE

chr1:241676892 T>C

llumina
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SpliceAl examples - intron retained

exon v
chr1:43829811 A>C  splice region of MED73  [BEICTAGGAT

chr1:43829811 A>C

mutated

score distance 3000 -

acceptor gain 0.33 40

acceptor loss 0.65 -3

>
donor gain 0.01  -198 330001 -

2000 - 1o
0

v exon
chr11:117098927 C>T splice region of PCSK7  CCACTCACEE

600 chr11:117008927 C>T 444

score distance

acceptor gain  0.00 -144

acceptor loss 0.00 139 2 00
o A control

donor gain 0.55 100 © 400-
139

donor loss 0.39 5 200 'm
0_
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MEN1 - Multiple Endocrine Tumors

GEL case with noncoding mutation identified with deep learning

168 Vert. Cons
8

133

Scale 18 bases|
chrii: | 64,574,690|
A G c T

64,574,695|
T A G G

| heta

64,574,708| 64,574,705| 64,574,710|
G (o] C G f A G G A G A G A

UCSC Genes (Ref3ed, GenBank, CCDS, Rfam, TRNAsS & Comparative Genomics)

-4,5

donor

T . _____'.|-r'I|T11

188 vertebrates Basewise Conserwvation by PhuloP

acceptor

T L

exon intron
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exon

VV¥VV:::$$

chr11:64574700 C > T variant creates

new splice acceptor upstream of

canonical acceptor, frameshifting the
MEN1 tumor suppressor, and causing

multiple tumors.
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SpliceAl — predicting pathogenic noncoding splice variants

Table of precomputed SNVs available online
- basespace.illumina.com/s/5u6ThOblecrh
- scores for SNVs genome-wide
- table of sites with high spliceAl scores

Code available online
- qithub.com/illumina/spliceAl
Install via command line
- pip install spliceai
Run on command line
- spliceai -| sample.vcf -A grch37 -R genome.fa
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https://basespace.illumina.com/s/5u6ThOblecrh
http://github.com/illumina/spliceAI
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Today: Predicting gene expression and splicing

Intro: Expression, unsupervised learning, clustering
Up-sampling: predict 20,000 genes from 1000 genes
Compressive sensing: Composite measurements
DeepChrome+LSTMs: predict expression from chromatin
Predicting splicing from sequence: 1000s of features
Unsupervised deep learning: Restricted Boltzmann mach.
Multi-modal learning: Expr+DNA+miRNA RBMs in Cancer
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