Deep Learning in the Life Sciences 6.874, 6.802, 20.390, 20.490, HST.506

Lecture 09: Predicting gene expression and splicing Prof. Manolis Kellis

Guest lectures:

Flynn Chen, Mark Gerstein Lab, Yale Prof. Xiaohui Xie, UC Irvine Dr. Kyle Kai-How Farh, Illumina

Today: Predicting gene expression and splicing

- 0. Intro: Expression, unsupervised learning, clustering
- 1. Up-sampling: predict 20,000 genes from 1000 genes
- 2. Compressive sensing: Composite measurements
- 3. DeepChrome+LSTMs: predict expression from chromatin
- 4. Predicting splicing from sequence: 1000s of features
- 5. Guest Lecture: Flynn Chen, Mark Gerstein Lab, Yale
 - Predicting Reporter Expression from Chromatin Features
- 6. Guest Lecture: Xiaohui Xie, UC Irvine
 - Predicting Gene Expression from partial subsets sampling
 - Representation learning for multi-omics integration
- 7. Guest Lecture: Kyle Kai-How Farh, Illumina
 - Predict splicing from sequence

RNA-Seq: De novo tx reconstruction / quantification

Microarray technology

- Synthesize DNA probe array, complementary hybridization
- Variations:
 - One long probe per gene
 - Many short probes per gene
 - Tiled k-mers across genome
- Advantage:
 - Can focus on small regions, even if few molecules / cell

RNA-Seq technology:

- Sequence short reads from mRNA, map to genome
- Variations:
 - Count reads mapping to each known gene
 - Reconstruct transcriptome *de novo* in each experiment
- Advantage:
 - Digital measurements, de novo

Expression Analysis Data Matrix

Measure 20,000 genes in 100s of conditions

Experiment similarity questions

Clustering

VS.

Classification

<u>Goal of Clustering</u>: <u>Group similar items</u> that likely come from the same category, and in doing so <u>reveal hidden structure</u>

- Unsupervised learning
- Goal of Classification:Extract featuresfrom the data that best $\underline{assign new}$ elementsto ≥ 1 of \underline{well} -defined classes
- Supervised learning

PCA, Dimensionality reduction

Geometric interpretation of SVD

Low-rank Approximation

Solution via SVD

$$A_k = U \operatorname{diag}(\sigma_1, \dots, \sigma_k, \underbrace{0, \dots, 0})V^T$$

set smallest r-k singular values to zero

• Error: $\min_{X:rank(X)=k} ||A-X||_F = ||A-A_k||_F = \sigma_{k+1}$

PCA of MNIST digits

t-SNE of MNIST digits

t-SNEs of single-cell Brain data

scRNA-seq in 48 individuals, 84k cells, Nature, 2019

Autoencoder: dimensionality reduction with neural net

- Tricking a supervised learning algorithm to work in unsupervised fashion
- Feed input as output function to be learned. **But!** Constrain model complexity
- Pretraining with RBMs to learn representations for future supervised tasks. Use RBM output as "data" for training the next layer in stack
- After pretraining, "unroll" RBMs to create deep autoencoder
- Fine-tune using backpropagation

[Hinton *et al*, 2006]

Today: Predicting gene expression and splicing

- 0. Intro: Expression, unsupervised learning, clustering
- 1. Up-sampling: predict 20,000 genes from 1000 genes
- 2. Compressive sensing: Composite measurements
- 3. DeepChrome+LSTMs: predict expression from chromatin
- 4. Predicting splicing from sequence: 1000s of features
- 5. Guest Lecture: Flynn Chen, Mark Gerstein Lab, Yale
 - Predicting Reporter Expression from Chromatin Features
- 6. Guest Lecture: Xiaohui Xie, UC Irvine
 - Predicting Gene Expression from partial subsets sampling
 - Representation learning for multi-omics integration
- 7. Guest Lecture: Kyle Kai-How Farh, Illumina
 - Predict splicing from sequence

1. Up-sampling gene expression patterns

Challenge: Measure few values, infer many values

Multirate interpolation filter

- Digital signal upscaling
 - Interpolating low-pass filter (e.g. FIR finite impulse response)
 - Low-dim. capture of higher-dim. signal
 - Nyquist rate (discrete) / freq. (contin.)

- Gene expression measurements
 - Measure 1000 genes, infer the rest
 - Rapid, cheap, reference assay
 - Apply to millions of conditions

- Image up-scaling
 - Inverse of convolution (de-convolution)
 - Transfer learning from corpus of images
 - Low-dim. re-projection to high-dim. img

- Which 1000 genes? Compressed sensing
 - Measure few *combinations* of genes
 - Better capture high-dimensional vector

Deep Learning architectures for up-sampling images

- Representation/abstract learning
- Enables compression, re-upscaling, denoising
- Example: autoencoder bottleneck. High-low-high
- Modification: de-compression, up-scaling, low-high only

D-GEX - Deep Learning for up-scaling L1000 gene expression

of hidden layers

Momentum coefficient

Initial learning rate ^a

Minimum learning rate

Weights initial range ^c

Learning rate decay factor

Dropout rate

Learning scale ^b

Mini-batch size

Training epoch

of hidden units in each hidden layer

943 landmark genes

4760 target genes

Gene expression inference with deep learning

Yifei Chen, Yi Li, Rajiv Narayan, Aravind Subramanian, Xiaohui Xie 🐱 Author Notes

Bioinformatics, Volume 32, Issue 12, 15 June 2016, Pages 1832–1839, https://doi.org/10.1093/bioinformatics/btw074 Published: 11 February 2016 Article history •

Multi-task Multi-Layer Feed-Forward Neural Net

[1, 2, 3]

0.5

1e-5

0.9

3.0

200

200

[3000, 6000, 9000]

[0%, 10%, 25%]

5e-4 or 3e-4

Non-linear activation function (hyperbolic tangent)

 $\left[-\frac{\sqrt{6}}{\sqrt{n_i+n_o}}, \frac{\sqrt{6}}{\sqrt{n_i+n_o}}\right]$

Input: 943 genes, Output: 9520 targets (partition to fit in memory)

D-GEX outperforms Linear Regression or K-nearest-Neighbors

Lower error than LR or KNN
 Training rapidly converges

• Deeper = better

• Strictly better for nearly all genes

However: performance still not great, computational limitations

Today: Predicting gene expression and splicing

- 0. Intro: Expression, unsupervised learning, clustering
- 1. Up-sampling: predict 20,000 genes from 1000 genes
- 2. Compressive sensing: Composite measurements
- 3. DeepChrome+LSTMs: predict expression from chromatin
- 4. Predicting splicing from sequence: 1000s of features
- 5. Guest Lecture: Flynn Chen, Mark Gerstein Lab, Yale
 - Predicting Reporter Expression from Chromatin Features
- 6. Guest Lecture: Xiaohui Xie, UC Irvine
 - Predicting Gene Expression from partial subsets sampling
 - Representation learning for multi-omics integration
- 7. Guest Lecture: Kyle Kai-How Farh, Illumina
 - Predict splicing from sequence

2. Composite measurements for compressed sensing

Key insight: Composite measurements better capture modules

gene expression matrix $X \in \mathbb{R}^{gxn}$ module dictionary $U \in \mathbb{R}^{gxd}$ module activity matrix $W \in \mathbb{R}^{dxn}$ $\min_{U,W} ||X - UW||^2 + \lambda ||U||_1$ such that $u_{ij} \ge 0, ||u_{ij}|| = 1, and ||w_i||_0 \le k \forall i \in \{1, ..., n\}$

Sparse Module Activity Factorization (SMAF)

Algorithm: Sparse Module Activity Factorization

- 1. SMAF(X, d, λ , k)
- 2. Initialize $U \in \mathbb{R}^{g \times d}$ and $W \in \mathbb{R}^{d \times n}$ randomly.
- 3. For 10 iterations:
- a. Update the module dictionary as $U = LassoNonnegative(X, W, \lambda)$.
- b. Normalize each module so that $||u_i||_2 = 1$.
- c. Update the activity levels as W = OMP(X, U, k).
- 4. Return *U*, *W*.

Making composite measurements in practice

- Combinations of probes + barcodes for measurement
- More consistent signal-to-noise ratios

Today: Predicting gene expression and splicing

- 0. Intro: Expression, unsupervised learning, clustering
- 1. Up-sampling: predict 20,000 genes from 1000 genes
- 2. Compressive sensing: Composite measurements
- 3. DeepChrome+LSTMs: predict expression from chromatin
- 4. Predicting splicing from sequence: 1000s of features
- 5. Guest Lecture: Flynn Chen, Mark Gerstein Lab, Yale
 - Predicting Reporter Expression from Chromatin Features
- 6. Guest Lecture: Xiaohui Xie, UC Irvine
 - Predicting Gene Expression from partial subsets sampling
 - Representation learning for multi-omics integration
- 7. Guest Lecture: Kyle Kai-How Farh, Illumina
 - Predict splicing from sequence

3. Predicting Expression from Chromatin

Can we predict gene expression from chromatin information?

- DNA methylation vs. gene expression
- Promoters: high. Gene body: low

a	b	С	d	е	f	g	h	i	j	k
e type	Cell type/			le <mark>1</mark> le3 me3 me3 re3	8 0	-Seq	lethyl	xpr.	narks	states
ampl	tissue			8K4m 8K4m 8K36 8K36 8K36 8K36	3K27 3K9ad	Vase-	NA m	e ele	del n	Lon.
S	group	EID E017	Epigenome name	꼬물물포포	ΫΫ	ā		Ğ	¥ 21	ð
	ES cell	E002 E008	ES-WA7 cells H9 cells	-2					21	
Ires		E015 E014	HUES6 cells HUES48 cells							
cult		E016 E003	HUES64 cells H1 cells						20	
mary		E024 E020	ES-UCSF4 cells							
Ē	iPSC	E019 E018 E021	iPS-16 cells iPS-16b cells							
σ		E022 E007	IPS DF 19.11 cells H1 derived neuronal progenitor cultured cells						13	
erive		E009 E010 E013	H9 derived neuronal progenitor cultured cells H9 derived neuron cultured cells HUES64 derived CD56 ⁺ mesoderm						1	
cell d	ES-deriv.	E012 E011	HUES64 derived CD56 ⁺ ectoderm HUES64 derived CD184 ⁺ endoderm							
ន		E004 E005	H1 BMP4 derived mesendoderm H1 BMP4 derived trophoblast						11	
		E062 E034	Primary T cells from primary blood (from PB)	_					1.3	
		E045 E033	Primary T cells effector/memory enriched (PB) Primary T cells from cord blood							
	Blood &	E044 E043 E039	Primary T regulatory cells (from PB) Primary T helper cells (from PB) Primary T helper naive cells (from PB)							
	I cell	E041 E042	Primary T helper cells PMA-I stimulated Primary T helper 17 cells PMA-I stimulated							
ø		E040 E037	Primary I helper memory cells (from PB) Primary T helper memory cells (from PB) Primary T CDP4 memory cells (from PD)							
ry ce		E038 E047	Primary T helper naive cells (from PB) Primary T CD8 ⁺ naive cells (from PB)							
rima 🛛		E029 E031	Primary monocytes (from PB) Primary B cells from cord blood							
-	HSC &	E051 E050	Primary HSCs G-CSF-mobilized male							
	B cell	E036 E032	Primary HSCs short term culture Primary B cells (from PB)							
		E046 E030	Primary neutrophils (from PB) Primary neutrophils (from PB)							
S	Mesench.	E049 E025	Adipose-derived mesenchymal stem cells							
ultur	Myosat.	E023 E052	Muscle satellite						1	
ary c		E056 E059	Foreskin fibroblast Foreskin melanocyte							
Prin	Epithelial	E061 E057	Foreskin melanocyte Foreskin keratinocyte							
		E028 E027	Breast vHMEC mammary epithelial Breast myoepithelial		Γ.					
	Neurosph.	E054 E053	Ganglion eminence derived neurospheres Cortex derived neurospheres							
	Thymus	E093 E071	Fefal thymus Brain hippocampus middle							
	Brain	E074 E068	Brain substantia nigra Brain anterior caudate							
		E072 E067	Brain inferior temporal lobe Brain angular gyrus							
		E073 E070	Brain dorsolateral prefrontal cortex Brain germinal matrix							
	Adipose	E081 E063	Fetal brain male Adipose nuclei							
		E100 E108	Psoas muscle Skeletal muscle female							
	wuscie	E089 E090	Fetal muscle trunk Fetal muscle leg							
	1. La sud	E083 E104	Fetal heart Right atrium							
nes	Heart	E105 E065	Right ventricle Aorta							
y tise	Smooth	E078 E076	Duodenum smooth muscle Colon smooth muscle							
Time i	muscle	E103 E111 E092	Stomach smooth muscle							
æ		E085 E084	Fetal intestine small Fetal intestine large							
	Digestive	E109 E106	Sigmoid colon Colonic mucosa							
		E101 E102	Rectal mucosa donor 29 Rectal mucosa donor 31							
		E110 E077 E079	Stomach mucosa Duodenum mucosa							
		E094 E099	Gastric Placenta amnion							
	Other	E086 E088	Fetal kidney Fetal lung							
		E087 E080	Pancreatic islets Fetal adrenal gland							
		E091 E066	Placenta Liver							
		E098 E096	Pancreas Lung Soleen							
		E114 E115	A549 EtOH 0.02pct lung carcinoma Dnd41 T cell leukaemia						4	
		E116 E117	GM12878 lymphoblastoid HeLa-S3 cervical carcinoma						44	
	ENCODE	E119 E120	HMEC mammary epithelial HSMM skeletal muscle myoblasts						44	
	2012	E121 E122	HSMM-derived skeletal muscle myotubes HUVEC umbilical vein endothelial	12472					4	
		E123 E124 E125	Nonocytes-CD14 ⁺ RO01746 NH-A astrocyte						5 4 4	
		E126 E127	NHDF-ad adult dermal fibroblast NHEK-epidermal keratinocyte						45	
		E128 E129				0		6	4	
<u>B</u>	Prim. culture ES cell derive	noise	100% or WGBS Data set count	666666	හි හි	ŝ	ർ	~	18	2
eidu	Primary cell Prim. tissue	I-to-I	$50\% \qquad \qquad$	ighest-quality (epigen	iom	ies (n =	: 60	J) eđ
R	Cell line	Sign a	$m_{\text{CRF}} = m_{\text{CRF}} = \frac{b_{\text{CRF}}}{m_{\text{CRF}}} = $	temaining epige	enome	es (r	n = (67)		(المحمد

Strong enhancers (+H3K27ac) vs. weak enhancers (H3K4me1 only)

DeepChrome: positional histone features predictive of expression

- Convolution, pooling, drop-out, Multi-Layer Perceptron (MLP) alternating lin/non-linear
- Meaningful features selected

AttentiveChrome: Selectively attend to specific marks/positions

Consistent improvement
over DeepChrome

	Baselines	AttentiveChrome Variations					
Model	DeepChrome (CNN) [29]	LSTM	CNN- Attn	$\begin{array}{c} \text{CNN-} \\ \alpha, \beta \end{array}$	LSTM- Attn	$LSTM \alpha$	LSTM- α, β
Mean Median Max Min	0.8008 0.8009 0.9225 0.6854	0.8052 0.8036 0.9185 0.7073	$\begin{array}{c} 0.7622 \\ 0.7617 \\ 0.8707 \\ 0.6469 \end{array}$	0.7936 0.7914 0.9059 0.7001	0.8100 0.8118 0.9155 0.7237	0.8133 0.8143 0.9218 0.7250	0.8115 0.8123 0.9177 0.7215
Improve	ement over DeepChrome [29] (out of 56 cell types)	36	0	16	49	50	49

Guest lecture: Xiaohui Xie Deep Learning for Expression/Chromatin Prediction

Xiaohui Xie Professor, UC Irvine

Today: Predicting gene expression and splicing

- 0. Intro: Expression, unsupervised learning, clustering
- 1. Up-sampling: predict 20,000 genes from 1000 genes
- 2. Compressive sensing: Composite measurements
- 3. DeepChrome+LSTMs: predict expression from chromatin
- 4. Predicting splicing from sequence: 1000s of features
- 5. Guest Lecture: Flynn Chen, Mark Gerstein Lab, Yale
 - Predicting Reporter Expression from Chromatin Features
- 6. Guest Lecture: Xiaohui Xie, UC Irvine
 - Predicting Gene Expression from partial subsets sampling
 - Representation learning for multi-omics integration
- 7. Guest Lecture: Kyle Kai-How Farh, Illumina
 - Predict splicing from sequence

4. Predicting Reporter Expression from Chromatin Features

Traditional regulatory element "bashing"

Bottlenecks:

- 1. Generating/cloning individual variants is tedious
- 2. Enzymatic/fluorescent reporters limit multiplexing

- Flexible assay format: Promoters, enhancers, silencers, Insulators, RNA stability elements, ++
- Data is directly comparable to traditional reporter assays:

 Throughput increased by 3 orders of magnitude

Systematic motif disruption for 5 activators and 2 repressors in 2 human cell lines

HiDRA: High-Definition Reporter Assay

Key features:

- No synthesis \rightarrow 7M fragments tested in 1 expt
- No synthesis, size-selection → Test long fragments
- Select accessible DNA regions \rightarrow High sensitivity
- 3'UTR integration → self-transcribing → No
 barcode
- Densely-overlapping fragments \rightarrow Region tiling
- Unbiased, random starts/ends → Sharpr dissection

Putting it all together:

- Testing 7M fragments in 1 experiment
- High sensitivity, high specificity, quantitative assay
- High-res inference pinpoints driver nucleotides
HiDRA data overview: DNA, RNA, Regulatory Activity, Sharpr2

1. Sequence DNA library

• Effectively a DNase/ATAC-Seq expt

2. Sequence RNA output

• How much expression does this drive

3. Take RNA/DNA ratio

Measures regulatory activity

4. Pinpoint boundaries of active region

• FDR<0.05

5. Study activity of individual fragments

Random start/end cuts (Transposase)

6. Infer high-resolution driver nucleotides

- Sharpr2 deconvolution algorithm
- Exploit diffs btw overlapping fragments

a. Compare with evolutionary conservation

Capture evolutionarily-conserved nts

b. Compare with bound regulatory motifs

Driver nucleotides are highly accurate

Guest lecture: Flynn Chen, Mark Gerstein Lab Deep Learning for Reporter Expression Prediction

Flynn Chen Yale University Statistics and Data Science

Prof. Mark Gerstein Yale University ENCODE, Data Science

Today: Predicting gene expression and splicing

- 0. Intro: Expression, unsupervised learning, clustering
- 1. Up-sampling: predict 20,000 genes from 1000 genes
- 2. Compressive sensing: Composite measurements
- 3. DeepChrome+LSTMs: predict expression from chromatin
- 4. Predicting splicing from sequence: 1000s of features
- 5. Guest Lecture: Flynn Chen, Mark Gerstein Lab, Yale
 - Predicting Reporter Expression from Chromatin Features
- 6. Guest Lecture: Xiaohui Xie, UC Irvine
 - Predicting Gene Expression from partial subsets sampling
 - Representation learning for multi-omics integration
- 7. Guest Lecture: Kyle Kai-How Farh, Illumina
 - Predict splicing from sequence

4. Predicting splicing from sequence

Deciphering tissue-specific splicing code

[Barash et al., 2010]

Bayesian neural network splicing code

1014 RNA features x 3665 exons

Bayesian neural network:

- # hidden units follows Poisson(λ)
- Network weights follows spike-andslab prior Bern(1 – a)
- Likelihood is crossentropy
- Network weights are sampled from the posterior

[Xiong et al., 2011]

Predicts diseasing causing mutations from splicing code

[Xiong et al., 2011]

Predicts diseasing causing mutations from splicing code

Scoring splicing changes due to SNP $\Delta \psi$:

- Train splice code model on 10,689 exons to predict the 3 splicing classes over 16 human tissues using 1393 sequence features (motifs & RNA structures)
- Score both the reference ψ_{ref} and alternative ψ_{alt} sequences harboring one of the 658,420 common variants
- Calculate $\Delta \psi t = \psi^t_{ref} \psi^r_{alt}$ over each tissue t
- Obtain largest absolute or aggregate $\Delta \psi_t$ to score effects of SNPs

[Xiong et al., 2011]

Predicted scores are indicative of disease causing mutations

Predicted scores are indicative of disease causing mutations

Predicted mutations in MLH1,2 in nonpolyposis colorectal cancer patients are validated via RT-PCR

Splice code goes deep

Architecture of the new network to predict alternative splicing between two tissues. It contains three hidden layers, with hidden variables that jointly represent genomic features and tissue types.

[Leung et al., 2014]

Limitations of the splice code model

- Require threshold to define discrete splicing targets
- Not taking into account exon expression level in specific tissue types
- Fully connected neural network potentially impose a large number of parameters: (1393 inputs + 13 outputs)
 × 10 hidden units = 13000 parameters
- Although authors showed that neural network performs the best a softplus/Dirichlet multivariate linear regression may achieve similar performance
- The features are pre-defined and thus may be completely reflect the underlying splicing mechanism
- Interpretation of the importance of features is not trivial

Guest lecture: Kyle Farh, Illumina Deep Learning for Splicing Prediction

Dr. Kyle Kai-How Farh Illumina Harvard/MIT/Broad alum

Today: Predicting gene expression and splicing

- 0. Intro: Expression, unsupervised learning, clustering
- 1. Up-sampling: predict 20,000 genes from 1000 genes
- 2. Compressive sensing: Composite measurements
- 3. DeepChrome+LSTMs: predict expression from chromatin
- 4. Predicting splicing from sequence: 1000s of features
- 5. Guest Lecture: Flynn Chen, Mark Gerstein Lab, Yale
 - Predicting Reporter Expression from Chromatin Features
- 6. Guest Lecture: Xiaohui Xie, UC Irvine
 - Predicting Gene Expression from partial subsets sampling
 - Representation learning for multi-omics integration
- 7. Guest Lecture: Kyle Kai-How Farh, Illumina
 - Predict splicing from sequence

Where before What, a Weakly Supervised Framework (DECODE) for Precise Enhancer Localization

-- Zhanlin (Flynn) Chen

https://www.biorxiv.org/content/10.1101/2021.01.27.428477v2.full.pd

Enhancer Discovery

- Enhancers are a type of regulatory element that increases the transcription of a particular gene
- Mapping out cell-type specific regulatory landscape allows us to find genetic drivers for various diseases
- Earliest methods for enhancer discovery like ChromHMM focused on **unsupervised** approaches

Chromatin mark observation frequency (%)

STARR-seq Experiments

- Massively parallel reporter assay
- Identifies transcriptional enhancers directly based on their activity
 - Fragments of the genome is transfected into target cells in front of a luciferase gene
 - The ability to increase transcription of that fragment is quantified by measuring the relative expression of the luciferase gene
- Low transfection efficiency, low resolution, evaluate fragments out of epigenetic context
- Provide a basis for **supervised** approaches

Current ENCODE Dataset (hg38)

Cell Type	STARR-	ATAC-	DNase-	H3K27ac	H3K4me3	H3K4me1	H3K9ac
	seq	seq	seq	ChIP-seq	ChIP-seq	ChIP-seq	ChIP-seq
K562	\checkmark						
HepG2	\checkmark						
A549	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HCT116	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
MCF-7	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Our central hypothesis: <u>The interactions between open chromatin and histone marks provide a</u> <u>platform for TF binding and enhancer activity</u>

Workflow/Architecture

- Given only epigenetic features and coarse training labels, could we produce precise localization of enhancers?
- Operationalized enhancer discovery into an **object** detection task
- First, classify 4kb sliding windows given genomic features
- Second, use Grad-CAM for feature justification and localization

Weakly Supervised Learning (Grad-CAM)

(a) Original Image

(i) Grad-CAM 'Dog'

(c) Grad-CAM 'Cat'

- Applying convolutional filters on a given input produces activation maps that highlights particular features, which is a subset of the input.
- A linear combination of activation maps (weighed on the sum of all activation in the maps) produces a heatmap localization of the object.
- **Weakly supervised**: label only indicate "existence" for classification. No locations were provided in our model, yet they could be inferred.

Cell-Line/Chromosome Cross Validation

Chromatin Accessibility	Cell Type	Validation Accuracy	Validation auROC	Validation auPRC	Leave-One-Chromosome-Out Cross Validation
ATAC-seq	K562	0.9885	0.9972	0.9704	
	HepG2	0.9908	0.9960	0.9536	
DNase-seq	K562	0.9849	0.9984	0.9975	
	HepG2	0.9865	0.9978	0.9972	0.980 -
	A549	0.9818	0.9984	0.9978	0.975 -
	HCT116	0.9918	0.9989	0.9981	4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5
	MCF-7	0.9897	0.9983	0.9978	රාගාව පිදුවි සිදුවි සිදුවි සිදුවි සිදුවි සිදුවි Chromosomes

- Data from cell-lines/chromosomes were set aside for validation
- Cross cell-line validation indicate that our model can generalize predictions to new cell-lines
- Cross chromosome validation indicate that our model can generalize predictions to new genomic loci

Example Predictions

Transgenic Mouse Validation (Our model vs. SOTA)

- **Matched Filter** utilized shape-matching filters for feature extraction and linear SVMs for classification
- Comparison on ENCODE Enhancer Challenge Dataset (VISTA mouse enhancer database <u>https://enhancer.lbl.gov/</u>)
- Outperformed Matched filter in every mm10 tissue type, some with 15-20% margin

Neural Progenitor Cell (NPC) Case Study

- Feature-wise score: importance score for each feature (left)
 - DNase, H3K27ac, and H3K4me3 were emphasized
 - Interaction of low-level features lead to high-level features
- Position-wise score: importance score for each location/loci (right)
 - Position-wise scores capture candidate enhancers within a subset of the 4kb input

Prediction Statistics

- Our refined predictions cover less area (12.6% of the original 4kb positive predictions), but is enriched for transcriptional start sites, indicating a strong transcriptional impact from our refinement.
- 100-way phylogenetic PhastCons shows enriched inter-specie conservation.
- Rare Derived-Allele-Frequency (DAF) SNPs enrichment indicate intra-species conservation (through negative selection).

Disease Causal-variant Mapping

- Linkage Disequilibrium Score (LDSC) determines whether the heritability of a phenotype is enriched through GWAS summary statistics.
- Our original and refined NPC enhancers are enriched mostly only for neurodevelopmental and psychiatric phenotypes.
- Our NPC refined enhancers exhibit higher LDSC enrichment compared to original enhancers in relevant GWAS phenotypes
- Increase statistical power could be attributed to our **compact** annotations

Thank you

Special Thanks to: Mark Gerstein, Jing Zhang, Jason Liu, And other members of the Gerstein Lab

Today: Predicting gene expression and splicing

- 0. Intro: Expression, unsupervised learning, clustering
- 1. Up-sampling: predict 20,000 genes from 1000 genes
- 2. Compressive sensing: Composite measurements
- 3. DeepChrome+LSTMs: predict expression from chromatin
- 4. Predicting splicing from sequence: 1000s of features
- 5. Guest Lecture: Flynn Chen, Mark Gerstein Lab, Yale
 - Predicting Reporter Expression from Chromatin Features
- 6. Guest Lecture: Xiaohui Xie, UC Irvine
 - Predicting Gene Expression from partial subsets sampling
 - Representation learning for multi-omics integration
- 7. Guest Lecture: Kyle Kai-How Farh, Illumina
 - Predict splicing from sequence

Deep Learning in Gene Expression Analysis

Xiaohui Xie University of California, Irvine xhx@uci.edu

Deep learning methods developed by Xie Lab

- **1. DANQ**: deep neural network for quantifying the function of DNA sequences
- **2.** FactorNet: a deep learning framework for predicting cell-type specific transcription factor binding
- **3.** scFAN: predicting transcription factor binding in single cells
- 4. uFold: fact and accurate RNA secondary structure with deep learning
- 5. **D-GEX:** Gene Expression Prediction from subsets of genes
- 6. SAILER: autoencoder representation of expression and chromatin
- 7. MVAE: multi-modal representations with variational auto-encoders

Multimodal Deep Learning for Single Cell Multimodal Omics

• Multimodal deep generative model

Multimodal single cell omics methods

Zhu, Chenxu, Sebastian Preissl, and Bing Ren. *Nature methods* 2020

- Shi, Yuge, et al. "Variational mixture-of-experts autoencoders for multi-modal deep generative models." Advances in Neural Information Processing Systems. 2019.
- Zhu, Chenxu, Sebastian Preissl, and Bing Ren. "Single-cell multimodal omics: the power of many." Nature methods 17.1 (2020): 11-14.

D-GEX

Gene expression inference with deep learning 🚥

Yifei Chen, Yi Li, Rajiv Narayan, Aravind Subramanian, Xiaohui Xie 🐱 🛛 Author Notes

Bioinformatics, Volume 32, Issue 12, 15 June 2016, Pages 1832–1839, https://doi.org/10.1093/bioinformatics/btw074 Published: 11 February 2016 Article history ▼

The Connectivity Map (also known as cmap) is a collection of genome-wide transcriptional expression data from cultured human cells treated with bioactive small molecules and simple pattern-matching algorithms that together enable the discovery of functional connections between drugs, genes and diseases through the transitory feature or common gene-expression changes.

Histone deacetylase inhibitors (HDIs) have a long history of use in psychiatry and neurology as mood stabilizers and anti-epileptics, for example, <u>valproic acid</u>. In more recent times, HDIs are being studied as a mitigator or treatment for <u>neurodegenerative diseases</u>.^{[19][2}

connectivity map

the promise

 small molecule gene-expression profiles reveal connections b/w drugs chiseases chigenes

the problem

- whole-genome profiles are expensive!
- Affymetrix: ~\$400 / drug in one cell line
- scaling to large chemical libraries, genotypes, cell lines *etc*, prohibitively expensive

the 1000-gene solution

- measure 1000-genes at high-throughput, low cost
- use whole-genome compendium datasets to infer the remaining genes
Dimension reduction

NIH LINCS Program

Resource

LINCS aims to inform a **network-based understanding of biological systems** in health and disease that can facilitate drug and biomarker development.

C⊃ lincscloud ■ ≪ ₽ 0

Measure 1000 'Landmark' transcripts on Luminex bead

Currently released L1000 data includes 1.3 million samples

Cell

A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles

Gene expression learning problem

X

y

Using the landmark genes to infer the entire transcriptome

Measured: 978 landmark genes

Unknown: remaining ~21K target genes

Need to learn the mapping from *x* to *y*:

 $\vec{y} = f(\vec{x})$

Training Data

GEO data (Gene Expression Omnibus)
 Complete transcriptomes
 129,158 samples after filtering and normalization
 Randomly partitioned into training, validation, and testing se ratio 8:1:1.
 Training: train predictive models
 Validation: model selection; parameter tuning
 Testing: evaluate predictive models

Three methods

Linear Regression (LRG) Baseline model Other variants: SVM, ridge regression, Lasso K Nearest Neighbor Regression (KNN) K is tuned using validation data Predict using average Nonparametric nonlinear model Deep Learning

Test performance

Fig. 3. The predictive errors of each target gene by GEX-10%-9000 \times 3 compared with LR and KNN-GE on GEO-te. Each dot represents one out of the 9520 target genes. The *x*-axis is the MAE of each target gene by D-GEX, and the *y*-axis is the MAE of each target gene by the other method. Dots above diagonal means D-GEX achieves lower error compared with the other method. (a) D-GEX verse LR; (b) D-GEX verse KNN-GE

Table 2. The overall errors of LR, LR-L1, LR-L2, KNN-GE and D-GEX-25% with different architectures on GTEx-te

	Number of hidden units			
	3000	6000	9000	
Number	of hidden layers			
1	0.4507 ± 0.1231	0.4428 ± 0.1246	0.4394 ± 0.1253	
2	0.4586 ± 0.1194	0.4446 ± 0.1226	0.4393 ± 0.1239	
3	0.5160 ± 0.1157	0.4595 ± 0.1186	0.4492 ± 0.1211	
LR		0.4702 ± 0.1234		
LR-L1		0.5667 ± 0.1271		
LR-L2		0.4702 ± 0.1234		
KNN-GE	l	0.6520 ± 0.0982		

Fig. 5. The overall error decreasing curves of D-GEX-9000 \times 2 on GTEx-te with different dropout rates. The *x*-axis is the training epoch and the *y*-axis is the overall error. The overall error of LR is also included for comparison

RMSE on Each Gene

Deep learning vs. linear regression

Summary Statistics

Percentage of genes on which deep learning does better than linear Regression: 99.98%

Percentage of genes on which deep learning does better than KNN: 97.90%

Deep Generative Models for Genomics

- Manifold hypothesis: high dimensional data (measurement) lie on low dimensional manifold embedded within the high-dimensional space.
- Need to discover the low dimensional representations (smooth manifold).
- Although biological data are complex and high-dimensional, we may understand them better if we study them within low-dimensional embedded spaces.
- Address these issues thorough manifold learning
- Manifold smoothly varying low-dimensional structure embedded within high-dimensional ambient measurement space.
 - Utilize manifold, representation, deep learning to understand large biomedical datasets.
- Give insights into diverse biological systems

Discover latent representation through autoencoder

 $egin{aligned} \phi &: \mathcal{X} o \mathcal{F} \ \psi &: \mathcal{F} o \mathcal{X} \ \phi, \psi &= rgmin_{\phi,\psi} \|X - (\psi \circ \phi)X\|^2 \end{aligned}$

Disadvantages of traditional autoencoder:

- 1. No constraints on the latent representations, e.g., gaps in latent space.
- 2. Susceptible to overfitting, e.g., memorize the input.
- 3. Not clear how to generate a new sample.

Autoencoder model architecture

Disadvantages of traditional autoencoder:

- 1. No constraints on the latent representations, e.g., gaps in latent space.
- 2. Susceptible to overfitting, e.g., memorize the input.
- 3. Not clear how to generate a new sample.

https://lilianweng.github.io/lil-log/

Generative models with latent variables

Given dataset:

$$\mathcal{D} = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \cdots, \mathbf{x}^{(n)}\}$$

Model marginal likelihood with latent variable z:

 $p_{\theta}(\mathbf{x}) = \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})}[p_{\theta}(\mathbf{x}|\mathbf{z})]$

Negative log-likelihood (NLL) function as a loss:

$$\mathcal{L} = -\sum_{i=1}^{n} \log p_{\theta}(\mathbf{x}^{(i)})$$

Variational lower bound on the marginal likelihood:

$$\log p_{\theta}(\mathbf{x}) \geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z})\right] - D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p(\mathbf{z}))$$

 $q_{\phi}(\mathbf{z}|\mathbf{x})$ is a variational approximation of the intractable posterior $p_{\theta}(\mathbf{z}|\mathbf{x})$

Variational autoencoder (VAE)

 $L_{\text{VAE}} = -\text{ELBO} = E_{q(X)} \left[-E_{q_{\phi}(Z|X)} p_{\theta}(X \mid Z) + \text{KL} \left\{ q_{\phi}(Z \mid X) || p(Z) \right\} \right]$

The first term is reconstruction error The second term is the Kullback-Leibler divergence between the posterior and prior distributions of the latent variables (Z).

Kingma and Welling, 2013

VAE with Gaussian prior, reparameterization trick

https://lilianweng.github.io/lil-log/

beta-VAE

$L_{\text{BETA}}(\phi, \beta) = -\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \log p_{\theta}(\mathbf{x}|\mathbf{z}) + \beta D_{\text{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p_{\theta}(\mathbf{z}))$

Motivations:

- Emphasize the disentanglement between different latent variables, z1, z2,..., zn.
- The prior of p(z) assumes different latent variables are independent.
- Larger weight beta on the second term leads to better disentanglement between latent variables.

Higgins et al, ICLR 2017

Deep Learning for scRNA-seq

- SAUCIE
- DCA (Denoising, Imputation)
- scVI
- totalVI
- Solo (Doublet Identification)
- DeepImpute (Imputation)
- scAlign (Batch effect, Integration)

DCA—Denoising Count Autoencoder

- Autoencoder (AE) with Zero-inflated Negative Binomial (ZINB) loss function
- Negative binomial models the mean μ and dispersion θ of RNA-seq count
- Zero inflation with a point mass π models the dropout events
- ZINB provides great denoising performance, which benefits downstream analysis, including clustering, time course modeling, differential expression, protein-RNA co-expression and pseudo time analysises.

$$NB(x;\mu,\theta) = \frac{\Gamma(x+\theta)}{\Gamma(\theta)} \left(\frac{\theta}{\theta+\mu}\right)^{\theta} \left(\frac{\mu}{\theta+\mu}\right)^{x}$$

$$ZINB(x; \pi, \mu, \theta) = \pi \delta_0(x) + (1 - \pi)NB(x; \mu, \theta)$$

Eraslan, Gökcen, et al. "Single-cell RNA-seq denoising using a deep count autoencoder." *Nature communications* 10.1 (2019): 1-14.

scVI—Single cell variational inference

- Variational Autoencoder (VAE) with Zero-inflated Negative Binomial (ZINB) likelihood accounting for the count nature of RNA-seq data and dropout events during sequencing process
- Exceptional performance for imputation with ZINB loss function
- Generative modeling for Imputation and data simulation

Lopez, Romain, et al. "Deep generative modeling for single-cell transcriptomics." *Nature methods* 15.12 (2018): 1053-1058.

Regulatory and Functional Genomics

SAILER: Scalable and Accurate Invariant Representation Learning for Single-Cell ATAC-Seq Processing and Integration

Yingxin Cao^{1,5,6,†}, Laiyi Fu^{1,2,†}, Jie Wu³, Qinke Peng², Qing Nie^{4,5,6}, Jing Zhang^{1,*}, Xiaohui Xie^{1,*}

https://www.biorxiv.org/content/10.1101/2021.01.28.428689v1.abstract

Chromatin accessibility

Dimension Reduction / Visualization / Clustering

scATAC-seq (single cell ATAC-seq)

Fig. 1 The overall design of the SAILER method. SAILER takes scATAC-seq data from multiple batches as input. Raw data is pushed through the encoder network to obtain a latent representation. Confounding factors for each single cell are concatenated and fed to the decoder along with the latent representation. Batch information is indicated by a one-hot embedding, and read depth is subject to log transform and standard normalization. To learn a latent representation invariant to changes in confounding factors, mutual information between the latent variables and confounding factors are minimized during training.

Confounding factors: batch effect

Confounding factors: read depth

Conditional VAE

Goal:

To learn a representation informative on biological variations, while remain invariant to confounding factors

Method:

Invariant Coding through VAE

Moyer, D. et al. NIPS, 2018

Objective:

Maximize a log-likelihood conditioned on the confounding factors, while minimize the mutual information between latent variable z and confounding factor c.

 $\max \mathbb{E}_{(x,c)}[\log p(x|c)] - \lambda I(z,c).$

Learning invariant representations

Variational loss

$$L_{\text{VAE}} = \mathbb{E}_{\mathbf{x}, \mathbf{c} \sim q(\mathbf{x}, \mathbf{c})} \left[-\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} | \mathbf{x})} \left[\log p_{\theta}(\mathbf{x} | \mathbf{z}, \mathbf{c}) \right] + D_{\text{KL}}(q_{\phi}(\mathbf{z} | \mathbf{x}) \parallel p(\mathbf{z})) \right]$$

Minimizing both variation loss and mutual information between latent and conditional variables

 $L_{\text{VAE}} + \lambda I(\mathbf{z}; \mathbf{c})$

$$q_{\phi}(\mathbf{z}, \mathbf{x}, \mathbf{c}) = q(\mathbf{x}, \mathbf{c})q_{\phi}(\mathbf{z}|\mathbf{x})$$

Approximation of the loss function:

$$L(\phi, \theta) = \mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p(\mathbf{z})) + \lambda D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel q_{\phi}(\mathbf{z})) \right] -(1+\lambda) \mathbb{E}_{\mathbf{x},\mathbf{c} \sim q(\mathbf{x},\mathbf{c})} \left[\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z},\mathbf{c}) \right] \right]$$

$$D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel q_{\phi}(\mathbf{z})) \approx \sum_{\mathbf{x}} \sum_{\mathbf{x}'} D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel q_{\phi}(\mathbf{z}|\mathbf{x}'))$$

Moyer et al, NeurIPS, 2018

SAILER learns robust latent cell representations invariant to various confounding factors

• Simulated data

 Table 1
 Mutual Information between the latent representation and confounding factors on simulation datasets.

	e		
<i>I</i> (z , c)	Sim1	Sim2	Sim3
Method			
LSI	0.610	0.500	0.130
SCALE	0.290	0.224	0.087
SAILER	0.107	0.100	0.005

SAILER learns robust latent cell representations invariant to various confounding factors

• Mouse Atlas Data

Table 2 Evaluation results on the mouse atlas dataset					
Method	ARI	NMI	l(z , c)		
SAILER	0.575	0.799	0.040		
SnapATAC	0.538	0.748	0.127		
SCALE	0.315	0.557	0.279		

• Merging two mouse brain datasets

SAILER reconstructs a chromatin accessibility landscape free of various confounding factors

Multimodal Deep Learning for Single Cell Multimodal Omics

• Multimodal deep generative model

Multimodal single cell omics methods

Zhu, Chenxu, Sebastian Preissl, and Bing Ren. *Nature methods* 2020

- Shi, Yuge, et al. "Variational mixture-of-experts autoencoders for multi-modal deep generative models." Advances in Neural Information Processing Systems. 2019.
- Zhu, Chenxu, Sebastian Preissl, and Bing Ren. "Single-cell multimodal omics: the power of many." Nature methods 17.1 (2020): 11-14.

MVAE for Jointly Profiled scRNA-seq and scATAC-seq Data

Filtered ~15,000 genes

Raw

RNA

ATAC
Variational Graph Autoencoders for Spatial Transcriptome Analysis

Rodriques, Samuel G., et al. Science 2019

Eng, Chee-Huat Linus, et al. "Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+." Nature 568.7751 (2019): 235-239. Rodriques, Samuel G., et al. "Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution." Science 363.6434 (2019): 1463-1467.

Eng, Chee-Huat Linus, et al. Nature 2019

Today: Predicting gene expression and splicing

- 0. Intro: Expression, unsupervised learning, clustering
- 1. Up-sampling: predict 20,000 genes from 1000 genes
- 2. Compressive sensing: Composite measurements
- 3. DeepChrome+LSTMs: predict expression from chromatin
- 4. Predicting splicing from sequence: 1000s of features
- 5. Guest Lecture: Flynn Chen, Mark Gerstein Lab, Yale
 - Predicting Reporter Expression from Chromatin Features
- 6. Guest Lecture: Xiaohui Xie, UC Irvine
 - Predicting Gene Expression from partial subsets sampling
 - Representation learning for multi-omics integration
- 7. Guest Lecture: Kyle Kai-How Farh, Illumina
 - Predict splicing from sequence

Predicting Splicing from Primary Sequence

Kyle Farh, MD, PhD (kfarh @ illumina.com) Principal Investigator, Illumina Al Lab

Current State: Our Understanding of the Genome is Nascent

Level of actionability of whole genome is < 1% of its potential

Rare genetic disease

- Most cases remain unsolved despite WGS
- 99% of variants are VUS (unknown significance)

Oncology

- 99% of the genome is noncoding, and largely uninterpreted

General Population

- Minimal actionability for common diseases
- Little incentive for patients to be sequenced in routine care

Unlock the diagnostic yield of the noncoding genome

- Currently, 99% of the genome that is noncoding is ignored for diagnostic sequencing.
- Current diagnostic yield with exome alone for rare disease ~ 25-30%

Deeply conserved sequence, PhyloP > 3

Deep learning/AI for genomics

TTGATGATCAGGTGGTGTCTCTGCCCGTCCTTCTTGAACCGGTATTTGAAGGTCTCCTCCCGGGT CAGATGCCCCCAACACCCATGCCCCGTGCTTCTGGAACTCACCATTTGACTTGCGCCCCCTCCTC CGATACTTCACACTCAAACTCCACCCGCTGCCCCACCATCACCAGCTGGTCCTCCAAGGGGGCGCG TGATGAGCACAGGGGGCTCTGTCCAGGCAGGGTGAGCATGAGGGTTGGCTCCCCTGAGGCCATCT CCTCCCCAGGTTCCCACATCCTCAGGTCCCAGGCCCACCTTTCACAAAGAGCTCCGTGCTACACT TCTCGCCACCCACCACGCACTGGTAGGCTGCGTCGTCCGCCAATGAGCACTGGCTGATGGTCAGG TCCAGAGGGGAACTTACTTGCTGTAGAACAGAAGGGGCCGTTGAAGTGTTCCCCGACGGGAGGAAG TGAGCCCGAGACAAAAGGAGAGAGAGAGAGGGGACCGGCAGGAGCAAAAGGATGGGAAATTAGGCC CAGAGAGATGGGGGCTGAGAGCCACACCGAGTCAGAGATACGCATGTGGAGAGGGGGCAGGGGGCAA CTGGATCTCCTGGCCATTCTTGAGCCATTTGACCTCAGCGTCATGGTCAGCCAGTTCCACGGTCA GCCGGATCTTGTGGCCCTTTGCTCACCTGGTAGGCCGGCTCCAGCTTCTTCTGAAAGGCTGAGCAC

Splice variants in disease

Jaganathan et al, Cell 2019

SpliceAl

- Input: 10K nucleotides
- Labels: 3-way classification, based on GENCODE annotations & RNA-seq
- Architecture: 32-layer convolutional neural network, 700K parameters
- Trained on half of chromosomes, withheld other half for testing, excluding paralogs

Jaganathan et al, Cell 2019

SpliceAl model

- Sequence-to-sequence model using dilated convolutions + residual blocks
- Trained four models with context sequence size: 80nt, 400nt, 2000nt, and 10000nt

WaveNet, Van den Oord et al 2016

Decoding splicing with deep learning

Jaganathan et al, Cell 2019

- Long range determinants up to 10kb are crucial for splicing specificity
- Intron / exon length, nucleosome positioning play major roles

SpliceAl performance

Test accuracy

Jaganathan et al, Cell 2019

0.32

n=859

NNSplice

1.0-

n=976

n=12.947

Impact of in-silico mutating each nucleotide around a splice acceptor

Jaganathan et al, Cell 2019

Exon/intron lengths confer additional specificity to splice sites

Nucleosome positioning is a specificity determinant for splicing

Nucleosome positioning is a specificity determinant for splicing

Scoring variants with SpliceAl

4 scores: acceptor gain, acceptor loss, donor gain, and donor loss

Validation of predicted cryptic splice variants in GTEx

Validation of predicted cryptic splice variants in GTEx

Most cryptic splice-altering variants have partial effects

Relative usage of novel junction

$$\left(\frac{AC}{AC+BC}\right)_{mut} \left(\frac{AC}{AC+BC}\right)_{ctrl} = \frac{27}{27+263} - 0 = 0.09$$

Effect size generally under-estimated due to noise, NMD, unaccounted for effects.

Cryptic splice variants are strongly deleterious

	Singleton	Common (AF ≥ 0.1%)
SNVs with ∆ score ≥ 0.8	10,369	212
SNVs with ∆ score < 0.1	1,687,004	158,177

ExAC near exonic variants

Fraction deleterious variants: (OR - 1) / OR

SpliceAl performance in rare disease cohorts

Identify cryptic splice mutations

SpliceAl examples - exon skipping

chr10:27431317 T>C	synonymous in YMEL1	ATACCTGGCC
--------------------	---------------------	------------

	score	distance	4000 -	mutated
acceptor gain	0.00	-1	_w 2000 -	6
acceptor loss	0.47	97		249 12 162 167 202 682 metrol
donor gain	0.00	-24	6 ⁴⁰⁰⁰ -	
donor loss	0.71	-1	2000 -	7 102 107
			0 -	1298 1318 2209

SpliceAl examples - novel junctions

chr6:146266701 T>C SHPRH p.Tyr465Cys (73 bp from exon end)

SpliceAl examples - intron retained

120

chr11:117098927 C>T splice region of *PCSK*7

mutated

MEN1 - Multiple Endocrine Tumors

chr11:64574700 C > T variant creates new splice acceptor upstream of canonical acceptor, frameshifting the **MEN1** tumor suppressor, and causing multiple tumors.

SpliceAI – predicting pathogenic noncoding splice variants

- Table of precomputed SNVs available online
 - basespace.illumina.com/s/5u6ThOblecrh
 - scores for SNVs genome-wide
 - table of sites with high spliceAl scores
- Code available online
 - github.com/illumina/spliceAl
- Install via command line
 - pip install spliceai
- Run on command line
 - spliceai -I sample.vcf -A grch37 -R genome.fa

Acknowledgements

Kyle Farh, MD, PhD Principal Investigator Illumina AI Lab

Internships, postdocs, research positions? <u>kfarh@illumina.com</u>

Kishore Jaganathan

Illumina Artificial Intelligence Laboratory

Sofia Kyriazopoulou Panagiotopoulou

Jeremy McRae

Serafim Batzoglou

UCSF

Stephan Sanders Siavash Fazel Darbandi Juan Arbelaez Grace B. Schwartz Eric D. Chow

Stanford

Jonathan Pritchard David Knowles Yang I. Li

Genomics England

Mark Caulfield Damien Smedley Augusto Rendon

Today: Predicting gene expression and splicing

- 0. Intro: Expression, unsupervised learning, clustering
- 1. Up-sampling: predict 20,000 genes from 1000 genes
- 2. Compressive sensing: Composite measurements
- 3. DeepChrome+LSTMs: predict expression from chromatin
- 4. Predicting splicing from sequence: 1000s of features
- 5. Unsupervised deep learning: Restricted Boltzmann mach.
- 6. Multi-modal learning: Expr+DNA+miRNA RBMs in Cancer