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1. Foundations: Why single-cell profiling



Cellular responses can vary substantially between “identical” cells.

Differentiation trajectories

Bendall et al. (2011), Science

Within-cell-type differences

Dalerba et al. (2011), Nature Biotech 

Cellular heterogeneity

Why single cells

Overcome low input
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The average may not represent the population

Whole-sample analysis can lead to misleading views

Rare events can be lost …



Traditional technologies for single-cell analysis
Method Species? Endogenous? Real-Time? # probes? Amplification Advantages Disadvantages

MS2 or 
Spinach

RNA No Yes <5 No Spatial Info Need long UTRs

Molecular 
Beacons or 
SmartFlares

RNA No Yes <5 No Spatial Info
Lots of cells

Requires 
microinjection

Pros: we can watch dynamics and get spatial information!
Cons: we can only look at a few different known things at once!

Table adapted, in part, from: Raj & van Oudenaarden, Annu. Rev. Biophys. 2009.
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Method Species? Endogenous? Real-Time? # probes? Amplification Advantages Disadvantages

FISH DNA, RNA Yes No <5 No Spatial Info
Lots of cells

Expensive

In-Situ
Sequencing

DNA,
RNA

Yes No Many Yes Spatial Info
Lots of cells

Bias
Slow

Single-cell
(RT)-PCR 

DNA, RNA Yes No <500 Yes Simple Need to know 
targets
Bias

Single-cell
Sequencing

DNA,
RNA

Yes No Many Yes Genome wide Bias
Expensive

Pros: we can increase our multiplexing dramatically!
Cons: no dynamics!
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Foundational technology: (RT)-PCR

P Dalerba et al, Nature Biotech, 2011; 29: 1120-1127.

G Guo et al, Cell Stem Cell, 2013; 13: 492-505.

Lysed 
Single Cell

RTYes

RNA? Add Primer 
PoolNo

Population-
Like Sample

STA

(PCR)



Avital et al., Genome Biology (2014). Shalek et al., Nature (2014).

Scaling up: Single-cell RNA-Seq
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scRNA data looks like RNA-seq



Key single cell results can be validated using amplification-free methods.

RNA FISH Validates Single-Cell RNA-Seq

Shalek*, Satija* et al, Nature, 498, (2013)



We can profile the full transcriptomes of cells with SMART-Seq. 

Single-Cell RNA-Seq captures inter-cellular variability

Shalek*, Satija* et al, Nature, 498, (2013)

18 Single Dendritic Cells Stimulated with LPS



Screenshots are log scale in IGV

Term P-Value

Structural constituent of ribosome 1.66e-51

Structural molecule activity 1.16e-33

Term P-Value

Defense response 2.23e-29

Inflammatory response 7.99e-25

Housekeeping & ribosomal genes are among the least variable, 
while immune response elements are among the most variable.

Least Variable Genes Most Variable Genes

Housekeeping vs. variable genes

Shalek*, Satija* et al, Nature, 498, (2013)



2. Scaling up scRNA-seq technology



Cell numbers reported in representative publications by publication date. Key technologies are indicated.

Exponential scaling of single-cell RNA-seq in the past decade

Svensson V, Vento-Tormo R, Teichmann SA. Nat Protoc. 2018 Apr;13(4):599-604.



Evolution of methods for isolating single cells for profiling



All methods seek to: separate cells, amplify RNA, sequence

Paplexi et al. 2017



scRNA-seq technologies vary in cost and sensitivity

Paplexi et al. 2017



Drop-seq: Droplets as reaction chambers (10x)



SPLIT-seq/sci-RNA-seq: Sequential combinatorial barcoding

https://sites.google.com/uw.edu/splitseq/home

• Single cells never individually isolated
• Instead: fixed, and mRNA is manipulated in situ inside each cell
• Split cells into ~100 wells (e.g. 96 or 384-well plate) with unique barcodes in each well
• Labels all cells with a first barcode, for that well. Chance of same barcode: 1/100
• Pool cells, shuffle, split again, randomly re-assorting into same set of ~100 wells
• Add second barcode. Chance of same 2 barcodes: 1/10,000.
• Repeat: pool, shuffle, split, add 3rd barcode. Chance of same 3 barcodes: 1/1,000,000
• Can scale number of cells exponentially by number of barcoding rounds



Single-cell Profiling technologies

1. Cells in wells, traps, and valves (nanowell, Flow sorting, Fluidigm C1 )
• Screen for and retrieve single cells of interest
• Enrich for rare cells with desired properties
• Control the cellular microenvironment
• Monitor or control cell-cell interactions
• Precise/extensive manipulation of single cells

2.   Droplets (Drop-seq, ddPCR)
• Introduce distinct “packets” of reagents to single cells 

– e.g., primers, barcodes
• Perform amplification on individual cells
• Sort large populations of single cells 

3. Combinatorial indexing (SCI-seq, SPLiT-seq)
• Economic use of reagents for cell separation 
• Efficiency of handling larger populations than Drop-seq
• Maintain complexities of population without bias from droplet or well.

Passive wells Active pumps and valves 



Cell work 

Single cell 
processing 

Library 
construction, 

validation, 
HiSeq 

3. Expression Profiling

2. Single Cell Preparation
(a) C1: Cells Whole 

Transcriptome Amplification
(b) Multiwell Plates
(c) Next Gen Technologies

1. Cell Harvest

Single-Cell Expression Profiling Pipeline

We can go from single cells to aligned reads in less than a day
w/ Fluidigm, E. Macosko, S. McCarroll, A. Regev, D. Weitz, C. Love, T. Gierahn, & Others  

• Harvest cells in media
• Pre-enrich (FACS) 



3. Beyond RNA: scATAC-seq, Multi-Omics



Diverse technologies for sc profiling





Single-cell Epigenomics (scATAC-Seq)

Buenrostro et al., 2015



Trans-factors are associated with single-cell 
epigenomic variability



Integrate scATAC + scRNA using ChromVAR



Link single-cell epigenomics and single-cell transcriptomics



scMulti-Omics: Multiple profiling of the same cell



Diverse approaches for sc multi-omics
• a | Gathering cytometric single- cell measurements using 

multiparameter fluorescenceactivated cell sorting (FACS) 
before single- cell RNA sequencing (scRNA- seq) can allow 
fluorescence- based measurements of protein levels to be 
later linked to cellular transcriptomes; hence, RNA and 
protein levels can be analysed jointly in the same cell.

• b | A lyse- and-split strategy can allow parallel workflows to be 
performed on different cellular fractions. For example, the 
cytosol can be physically separated from the nucleus to allow 
measurement of cytosolic mRNAs through scRNA- seq and 
measurements of the genomic DNA using whole- genome 
sequencing or bisulfite sequencing to gather complementary 
data on the cell genotype or methylome, respectively.

• c1 | Innovative barcoding strategies can enable standard 
scRNA- seq methods to capture important additional 
information to enhance the analysis of cell transcriptomes. 
Cell surface protein abundance can be captured using 
standard scRNA- seq methods by conjugating 
polyadenylated antibody barcodes to antibodies targeting cell 
surface proteins20,21 (left panel). 

• c2 | These antibody barcode sequences can be captured 
alongside polyadenylated mRNAs and decoded to provide an 
estimate of protein levels for each cell. Allelic information can 
be encoded by the single- guide RNA (sgRNA) sequence 
used to guide Cas9 in pooled genetic screens, allowing gene 
knockout information to be associated with single- cell 
transcriptional profiles (middle panel). 

• c3 | Cell lineage can also be encoded in a polyadenylated
barcode sequence through the cumulative editing of a lineage 
array sequence by Cas9 (right panel). Over time, Cas9 will 
cut the lineage array , resulting in mutations at different points 
in the array. Cells sharing common mutations in the lineage 
array are likely to have originated from the same progenitor. 
By placing the lineage array sequence under the control of an 
RNA polymerase II promoter, these sequences can also be 
captured alongside endogenous mRNAs.

• d | Additional information can be extracted from scRNA- seq 
data beyond a typical analysis that provides only estimates of 
transcript counts in each cell. Somatic mutations can be 
identified from sequencing reads for each individual cell and 
can be used to reconstruct lineage relationships between 
cells. Retained introns can also be detected and can be used 
to give an estimate of the rate of change in transcript 
abundance (RNA velocity70). scBS- seq, single- cell bisulfite 
sequencing; scDNA- seq, single- cell DNA sequencing.



4. Dealing with noise and doublets 
in single-cell data



Dealing with rRNA contamination

T Hashimshony et al, Cell Rep, 2012; 2: 666-673.From www.biotechniques.com

Tang/Quartz-Seq | SMART-Seq | CEL-Seq CEL-Seq

Ribosomal RNA contamination
rRNA overwhelms mRNA (~98%)
polyA-selection is too inefficient 



Today: Deep Learning for Single-cell Genomics
1. Why single cells, traditional approaches, scRNA-seq
2. Scaling up single-cell technologies: evolution of scRNA-seq
3. Beyond scRNA-seq: scATAC-seq, multi-omics
4. Dealing with noise, doublets, and other sc issues
5. Computational challenges in single-cell data analysis
6. Deep learning methods for single-cell data analysis
7. Guest lecture: Fabian Theis
8. Guest lecture: Romain Lopez



Dealing w/PCR bias: Unique molecular identifiers (UMIs)

Ultra-low input RNA-seq is problematic
Bias in early PCR stages when using random priming

“PCR Jackpotting” of some RNA molecules
Suppression of some RNA molecules



scRNA data looks like RNA-seq



We can profile the full transcriptomes of cells with SMART-Seq. 

Single-Cell RNA-Seq captures inter-cellular variability

Shalek*, Satija* et al, Nature, 498, (2013)

18 Single Dendritic Cells Stimulated with LPS



Screenshots are log scale in IGV

Term P-Value

Structural constituent of ribosome 1.66e-51

Structural molecule activity 1.16e-33

Term P-Value

Defense response 2.23e-29

Inflammatory response 7.99e-25

Housekeeping & ribosomal genes are among the least variable, 
while immune response elements are among the most variable.

Least Variable Genes Most Variable Genes

Housekeeping vs. variable genes

Shalek*, Satija* et al, Nature, 498, (2013)



Key single cell results can be validated using amplification-free methods.

RNA FISH Validates Single-Cell RNA-Seq

Shalek*, Satija* et al, Nature, 498, (2013)



Two sources of noise in single cell data

Both sampling noise, and PCR bias could contribute to this result



Two sources of noise in single cell data

One way to overcome this – focus on highly expressed genes

TPM > 250 UMB > 15



• Prohibitive cost 
(~$2,000 per sample)

• Prominent batch 
effects

• Limitations to the 
number of cells that 
can be captured

• As more cells are 
captured more 
doublets appear in 
the data

Doublets increase with numbers of cells 
profiled
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Recognizing doublets with cellular barcodes

Recognizing doublets with genetic ‘barcodes’



Multiplexing Using Lipid-Tagged Indices
MULTI-Seq

McGinnis et al. Nature Methods 2019

Gene 1

Gene 2

Gene 3

Barcode 1

Barcode 2

Cell 1           Cell 2         Cell 3



24 Sz + 24 BD + 24 Ctrl = Multiplexing (batches of 9)

Frontopolar Cortex – BA10
72 individuals total

24 SZ 24 BD

24 CON

Pooled nuclear suspension
spread across eight 10x channels

Eight 10X libraries from each batch of 9
(64 total libraries, 72 individuals)

Integrate all libraries and batches into one 
dataset of 800,000 single cells

Isolate nuclei and label each sample 
with a unique oligo hashtag

Pool all material into a single nuclear suspension

8 batches, 9 individuals each, mix phenotypes

Schizo BipolarControl

Brad Ruzicka



5. Computational challenges 
in single-cell data analysis



Luecken, M. D., & Theis, F. J. (2019). Current best practices in single‐cell RNA‐seq analysis: a tutorial. Molecular 
Systems Biology, 15(6).

Gene-level analyses

Cell-level
analyses

1

Clustering similar genes

Dimensionality Reduction

Multi-
resolution 
analysis

Missing data imputation

Multi-Omics analyses

Deconvolution of bulk RNA-seq



Extracting biological insights 
from scRNA-seq data

• Cell-to-cell correlation
• Gene-to-gene correlation
• Imputation of missing values
• Cellular trajectories and differentiation



Clustering similar cells



Methods + applications of single-cell analysis

Wagner et al., Nature Biotech, 2016



From Complex Tissues to individual cell types

Can we identify the different cell types/states in a complex tissue?



Brain Case Study: The Mouse Retina

~100 cell subtypes, only some with molecular markers

Macosko et al, Cell, 161, 2015



• Drop-Seq: 49,300 cells from dissociated mouse retina (P14) (~15k reads per 
cell)

• Computational pipeline: Select 25% best coverage cells, Dimensionality 
reduction (PCA+tSNE), Project remaining cells, Identify cell types (density 
clustering), Refine clusters (differential expression)

49,300 Retina Cells Grouped Into 39 Clusters

Macosko et al, Cell, 161, 2015



• Drop-Seq: 49,300 cells from dissociated mouse retina (P14) (~15k reads per 
cell)

• Computational pipeline: Select 25% best coverage cells, Dimensionality 
reduction (PCA+tSNE), Project remaining cells, Identify cell types (density 
clustering), Refine clusters (differential expression)

49,300 Retina Cells Grouped Into 39 Clusters

Macosko et al, Cell, 161, 2015



Annotating A Cell Atlas

Macosko et al, Cell, 161, 2015



39 Clusters: Known Cell Types & Relationships

Macosko et al, Cell, 161, 2015



39 Clusters: New Markers That Can Be Validated!

Macosko et al, Cell, 161, 2015



Clustering similar genes



Identifying ‘variable’ genes



Variation is interesting



Co-variation implies co-regulation



Sparsity-based gene network inference

CO-Dependency network of genes



We can uncover cell states and circuits, as well as their markers and drivers, 
from structures in cell-to-cell variation

Cluster-disrupted
Ccr7, Ccl22,

Serpinb9, Cd83

Maturing
Tnf, Il1a,

Cxcl10, Cd88

Antiviral
Ifit1, Ifih1,
Stat2, Irf7

PCA (632 Genes)

Genes Co-Vary Across Single Cells

Shalek*, Satija* et al, Nature, 498, (2013)



POPULATIONS SINGLE CELLS

Correlation is not well-suited 
for single-cell analysis

R=0.92 R=0.89 R=0.37



Transcriptome-wide, single cells are very different.

Expression levels are ln(TPM + 1)

scRNA-Seq data has many many zeros

Shalek*, Satija* et al, Nature, 498, (2013)



Variability due to sampling vs. biology

Shalek*, Satija* et al., Nature, 2013

Sampling Bias Cellular Variation

Many zeros are due 
to under-sampling



Dimensionality reduction



Dimensionality Reduction
 Curse of dimensionality

 Easier to visualize/process

 Reduce noise

 Linear methods: PCA

− Identifying batch/cell cycle 
effects effects

 Nonlinear methods: t-distributed 
stochastic neighbor embedding (t-
SNE)

− Exploratory data analysis



PCA – 300 cell dataset



Important consideration for PCA

• Input gene list
– Can dramatically alter output

• Interpretation:
– ‘Assigning ‘biology’ or function requires prior knowledge
– PCs often correlate with technical quality
– Not all PCs are significant (Chung, Storey, arXiv.org)

• Limitations/extensions:
– PCs represent linear combination of individual features

 
  

 
 

 
     



Anavy et al, Development, 2014 Trapnell et al, Nat. Biotech., 2014

Interpreting dimensionality reduction



Zero-inflated negative binomial model (ZINB-WaVE)

● A generalized linear factor analysis model

From: Risso et al., 
2018



Dropping factor analysis in favor of deep autoencoders

● Single-cell Variational Inference (scVI)
● Deep count autoencoder (DCA)



From: V. SVENSSON, 2018



Dinstinguishing 
different cell types



Discrete cell type identification
 Based on traditional clustering approaches: 

k-means, hierarchical, and graph-based clustering techniques
 tSNE + k-means (traditional)
 SINCERA (Guo et al. 2015)

− Based on hierarchical clustering
− Data is converted to z-scores before clustering

 SNNCliq (C. Xu and Su 2015)
− Identifies the k-nearest-neighbours of each cell according to the distance measure. 
− Clusters are defined as groups of cells with many edges between them using a “clique” 

method.

 PCAReduce (žurauskienė and Yau 2016)
− Combines PCA, k-means and “iterative” hierarchical clustering. 
− Starting from a large number of clusters pcaReduce iteratively merges similar clusters
− After each merging event it removes the principle component explaning the least variance in 

the data.

 SC3 (Kiselev et al. 2017)
− Based on PCA and spectral dimensionality reductions
− Utilises k-means
− Additionally performs the consensus clustering



Single-Cell Consensus Clustering (SC3)

Kiselev et al., Nature Methods, 
2017



Continuous cell states: diffusion map

Angerer et al, Bioinformatics 2016



Archetypal-analysis for Cell type 
indentificaTION (ACTION)

Mohammadi et al., BioRxiv 2016, Nature Communications, under review



Combine discrete + continuous: archetype analysis

Hart et al, Nature Methods 2015



Matching cell types across datasets

Alignment of PBMC vs. Tumor scRNA



Multi-resolution analysis
ACTIONet



Main issues with parametric methods
How many archetypes?

How many factors?
How many clusters?



Optimal number of factors differs by celltype/age
(Ex.: Mouse retina development -- similar results with other species/tissues)

Choosing one “optimal” k is dominated by the major cell type
(defeating the whole purpose of single-cell analysis)



Recently developed method: ACTIONet



Complementary approaches

● Identifies hidden cell states/gene programs
○ Biological
○ Technical

● Deconvolves complex biological processes
● Uncovers discriminating/marker genes

● Reconstruct the topography of cell space
● Rich set of graph-based algorithms

○ Visualization (UMAP)
○ Clustering (Louvain/Leiden)
○ Imputation (PageRank)

ACTION

ACTIONet



Step 1: Define a metric cell space



Jensen-Shannon divergence

Kullback–Leibler divergence

Square-root of JSD is a metric (we love metric space ... Triangle 
inequality rocks! => Efficient proximity search)

How?

p q

cells
Step 1: Define a metric cell space



Density-dependent adaptive nearest neighbor graph

● Uses k*-nearest neighbor algorithm
● Automatically identifies an optimal number of nearest neighbors for each 

cell
○ Depends on the heterogeneity of the neighbors

How?

Step 2: Construct a network representation of the cell space



Step 2: Construct a network representation of the cell space

Adaptive 
nearest 
neighbor graph



Step 3:  Visualize cell-cell network (layout)

● Adopted from UMAP and 
reimplemented to work 
with the ACTIONet graph

● Force-directed layout
○ Stochastic-gradient 

descent (SGD)-based



Step 4:  Color-coding 
cells

● Idea: Use de novo
coloring to fill the gap 
between 2D and 3D 
embeddings

● Projecting 3D coordinates 
onto a Perceptually 
uniform color space
○ CIE L*a*b*



Interpreting cell-to-cell 
variabilities using known 

genesets/pathways



Pathway and gene set overdispersion analysis (PAGODA)

From: Fan et al., 2016



VISION method

From: DeTomaso et al., 2018



Trajectories through cell space



Cell-cycle phase prediction

Scialdone et al., 2015



Trajectory inference

 Identify key branching points in development/disease
 Regulatory circuits that drive these transitions

Bargaje et al, PNAS 2017



Trajectory inference methods
 Start with dimension reduction

 Build a graph among cells/inferred 
cell types
 Typically underlying structure 

is based on minimum 
spanning tree (MST) or k-
nearest neighborhood (kNN) 
graph.

 Either infer a linear (pseudo-time) 
ordering, or identify branching 
points

TSCAN pseudotime reconstruction with monocle

Ji et al, NAR 2016



Overview of trajectory identification methods

hemberg-lab.github.io/scRNA.seq.course

First 
Author Marco Bendall Setty Welch Matsumoto Shin Chen Ji Trapnell Marco

Last 
Author GC Yuan Dana Pe’erDana Pe’erHartemink, 

Prins Kiryu Hongjun 
Song Poidinger Ji Rinn GC Yuan

Journal PNAS Cell
Nature 
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BMC 
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Cell Stem 
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Nature 
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Nature 
Biotechnol

ogy
PNAS

Year 2014 2014 2016 2016 2016 2015 2016 2016 2014 2014



Trajectory identification: meta-method view

hemberg-lab.github.io/scRNA.seq.course



Dataset completion & 
missing data imputation



Spatial reconstruction of single-cell gene expression

Satija Nature Biotech 2015



Missing value imputation with MAGIC
(Markov Affinity-based Graph Imputation of Cells)

Random walk on 
cell-cell similarity graph

- uses neighborhood-based Markov-affinity matrix
- shares weight information across cells
- generate an imputed count matrix



Imputation reveals gene-gene correlation patterns





Integrating multiple 
single-cell datasets



Canonical Correlation Analysis (CCA)

From: Butlet et al., 2018



Mutual nearest neighbors (MNN) correction

From: Haghverdi et al., 2018



Summary and 
Method comparison 



Tian, L., Dong, X., Freytag, S., Lê Cao, K.-A., Su, S., JalalAbadi, A., … Ritchie, M. E. (2019). Benchmarking single 
cell RNA-sequencing analysis pipelines using mixture control experiments. Nature Methods, 16(6), 479–487.
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Soneson, C., & Robinson, M. D. (2018). Bias, robustness and scalability in single-cell differential expression analysis. Nature Methods, 15(4), 255–
261.

Found Limma-trend, MAST, edgeR, also t-test and 
Wilcoxon to perform well

Comparison of differential 
expression methods



Vieth, B., Parekh, S., Ziegenhain, C., Enard, W., & Hellmann, I. (2019). A systematic evaluation of single cell RNA-seq analysis pipelines. Nature Communications, 10(1), 4667.



Summary

● Normalization
○ Scran and Linnorm

● Imputation
○ SAVER

● Batch-correction
○ [fast]MNN and Harmony

● Clustering
○ ACTIONet and Seurat

● Trajectory detection
○ Monocle3 and Slingshot

● Differential expression
○ Limma-trend



6. Deep Learning methods for scRNA-seq



MMD-ResNet: Autoencoder for batch correction

Autoencoder ResNet arch.

Shaham et al., Bioinf, 2017 t-SNE plots before (left) and after (right) calibration

Train ResNet with loss MMD score function 

Maximum Mean Discrepancy 
(MMD) loss function

MMD-ResNet outperforms PCA, Combat, and 

MMD-ResNet P-value distribution
shifted to high KS P-values 
(more similar distributions)

MMD-ResNet

Prkca-high cells Combat MMD-ResNet



DESC: Deep embedding for cell-type-specific batch correction

DESC (Deep Embedding for single-cell clustering): 
- Stacked auto-encoder learns cluster-specific gene 

expression representation and cluster assignments 
for scRNA-seq data clustering 

- Initialize clustering obtained from autoencoder
- Learn non-linear mapping from original space to a 

low-dimensional space
- iteratively optimize clustering objective function

- Move each cell to nearest cluster
- balance biological and technical differences 

between clusters
- reduce influence of batch effect

- Enables soft clustering by assigning cluster-specific 
probabilities to each cell

- Facilitates clustering of cells with high confidence

DESC avoids cluster-specific batch effects found in other methods

Iterative approach progressively removes cluster-specific batch effects

Rand Index (RI) = measure of the similarity between two data clusterings
ARI = Adjusted Rand Index, adjusted for the chance grouping of elements



AutoImpute: Overcomplete autoencoder for filling in zeros

AutoImpute
Filter raw gene expression data for bad genes
(normalize by library size, prune by gene-selection, log transform)
Feed processed matrix to AutoImpute model
- learn expression data representation
- reconstruct imputed matrix
Use overcomplete autoencoders to capture distribution of sparse
gene expression data, and regenerate complete version of it
- Feeding sparse gene expression matrix as input to autoencoder
- train it to learn the encoder and decoder functions that best 

regenerate imputed expression with no dropouts
- back-propagating errors only for non-zero counts in sparse matrix

Autoimpute captures more non-zero values for highly-expressed genes

Iterative approach progressively removes cluster-specific batch effects

Fewer zeros



scVI: Use NN to estimate params in variational inference

scVI: Learn non-linear embedding of cells for multiple analysis tasks
NN=Neural networks used to compute embedding and expr. distribution
fw,fh: functional representations NN5,6 to capture parameters of Gaussians

Modeled observed expression xng (gene g, cell n) as sample
Drawn from zero-inflated negative binomial (ZINB) distribution
Conditioned on the batch annotation sn of each cell (if available)
And on two additional, unobserved random variables: 
- ρg

n nuisance variation, 1-D Gaussian, model differences in capture 
efficiency & sequencing depth, cell-specific scaling factor

- zn, remaining variation, 10-D Gaussian, model biological differences 
between cells. 

Represent each cell as point in low-dimensional latent space (for 
visualization and clustering). 
Neural network maps the latent variables to ZINB distribution parameters 
(Fig. 1a, neural networks 5 and 6). 
This mapping goes through intermediate variables: 
- batch-corrected, normalized estimate of the percentage of transcripts 

in each cell n that originate from each gene g
Use these estimates for differential expression analysis 
Use scaled version (multiplying by estimated library size) for imputation. 
Derived approximation for posterior distribution of latent variables q by 
training another neural network using variational inference and a scalable 
stochastic optimization procedure (NN1-NN4).

scVI retains biological signal in diverse datasets

scVI enables differential expression analysis



7. Guest Lecture: Fabian Theis



 

IN AT THE DEEP END
Applying deep-learning methods in 
computational genomics

Keeping options open
Induced pluripotent stem cells as 
models of human disease

GENETICS
July 2019 volume 20 no. 7     
www.nature.com/nrg

Deep representation learning in single cell genomics


Fabian J. Theis


Institute of Computational Biology, Helmholtz Munich &  
Department of Mathematics, TU Munich & Wellcome Trust Sanger Institute


www.comp.bio              @fabian_theis
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unbiased description of cellular state

Angerer et al, 

Curr Op Sys Bio 2017

single-cell genomicsbulk genomics

adapted from Shalek & Regev & G Zheng (10X Genomics)

single-cell genomics 
is becoming big data

oilsingle cellsgel beads



single-cell transcriptome analysis

dow
nstream

 

analysis

pre-processing
annotation

Luecken & T, Mol Sys Bio 2019

github.com/theislab/scanpy

Wolf et al, Genome Biology 2018

latent space learning



neural networks for robust latent space learning in scRNA-seq

Deep learning for genomics

Eraslan & Avsec et al, Nat Rev Genetics 2019

as principal component analysis, t-distributed stochastic  
neighbour embedding (t-SNE) or latent variable models. 
Neural networks are able to generalize some of these 
approaches. For example, autoencoders113,114,115,116 embed 
the data into a low-dimensional space with a hidden 
layer, called the bottleneck layer, and reconstruct the orig-
inal input data (FIG. 6a). This approach forces the network 
to extract useful features of data, as the bottleneck layer 
makes it infeasible to learn the perfect reconstruction. 
Reconstructing the data is often interpreted as denois-
ing because the unimportant variations are automati-
cally left out (FIG. 6b). Principal component analysis is 
equivalent to a linear autoencoder117,118,119, in which the 
principal components correspond to the representations 
in the bottleneck layer. Multiple nonlinear layers gener-
alize linear autoencoders to a nonlinear dimensionality 
reduction method.

Autoencoders have been used to impute missing 
data120, extract gene expression signatures121–123 and 
detect expression outliers124 in microarray data and bulk  
RNA sequencing gene expression data. In the field of 

single-cell genomics, autoencoders have been used for 
imputation, dimensionality reduction and representa-
tion learning125–130. Furthermore, prior biological knowl-
edge has been incorporated into the autoencoder 
architecture in order to infer a new representation that 
improves clustering and visualization of cells from single- 
cell RNA sequencing (scRNA-seq) data131. Specific noise 
characteristics of scRNA-seq data, such as sparse count 
data, are also addressed with tailored loss functions 
within the autoencoder framework130.

Neural networks have also greatly contributed to 
the toolbox of generative models. Unlike the approaches 
described earlier, generative models aim to learn the 
data-generating process. Variational autoencoders132 
(VAEs) and GANs133 are two powerful generative 
approaches that have emerged in the deep learning 
field. VAEs are autoencoders with additional distribu-
tion assumptions that enable them to generate new ran-
dom samples11, and they have been applied to single-cell 
and bulk RNA sequencing data to find meaningful pro-
babilistic latent representations134–137. These methods 
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Reconstructing the data is often interpreted as denois-
ing because the unimportant variations are automati-
cally left out (FIG. 6b). Principal component analysis is 
equivalent to a linear autoencoder117,118,119, in which the 
principal components correspond to the representations 
in the bottleneck layer. Multiple nonlinear layers gener-
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layer, called the bottleneck layer, and reconstruct the orig-
inal input data (FIG. 6a). This approach forces the network 
to extract useful features of data, as the bottleneck layer 
makes it infeasible to learn the perfect reconstruction. 
Reconstructing the data is often interpreted as denois-
ing because the unimportant variations are automati-
cally left out (FIG. 6b). Principal component analysis is 
equivalent to a linear autoencoder117,118,119, in which the 
principal components correspond to the representations 
in the bottleneck layer. Multiple nonlinear layers gener-
alize linear autoencoders to a nonlinear dimensionality 
reduction method.

Autoencoders have been used to impute missing 
data120, extract gene expression signatures121–123 and 
detect expression outliers124 in microarray data and bulk  
RNA sequencing gene expression data. In the field of 

single-cell genomics, autoencoders have been used for 
imputation, dimensionality reduction and representa-
tion learning125–130. Furthermore, prior biological knowl-
edge has been incorporated into the autoencoder 
architecture in order to infer a new representation that 
improves clustering and visualization of cells from single- 
cell RNA sequencing (scRNA-seq) data131. Specific noise 
characteristics of scRNA-seq data, such as sparse count 
data, are also addressed with tailored loss functions 
within the autoencoder framework130.

Neural networks have also greatly contributed to 
the toolbox of generative models. Unlike the approaches 
described earlier, generative models aim to learn the 
data-generating process. Variational autoencoders132 
(VAEs) and GANs133 are two powerful generative 
approaches that have emerged in the deep learning 
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tion assumptions that enable them to generate new ran-
dom samples11, and they have been applied to single-cell 
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as principal component analysis, t-distributed stochastic  
neighbour embedding (t-SNE) or latent variable models. 
Neural networks are able to generalize some of these 
approaches. For example, autoencoders113,114,115,116 embed 
the data into a low-dimensional space with a hidden 
layer, called the bottleneck layer, and reconstruct the orig-
inal input data (FIG. 6a). This approach forces the network 
to extract useful features of data, as the bottleneck layer 
makes it infeasible to learn the perfect reconstruction. 
Reconstructing the data is often interpreted as denois-
ing because the unimportant variations are automati-
cally left out (FIG. 6b). Principal component analysis is 
equivalent to a linear autoencoder117,118,119, in which the 
principal components correspond to the representations 
in the bottleneck layer. Multiple nonlinear layers gener-
alize linear autoencoders to a nonlinear dimensionality 
reduction method.

Autoencoders have been used to impute missing 
data120, extract gene expression signatures121–123 and 
detect expression outliers124 in microarray data and bulk  
RNA sequencing gene expression data. In the field of 

single-cell genomics, autoencoders have been used for 
imputation, dimensionality reduction and representa-
tion learning125–130. Furthermore, prior biological knowl-
edge has been incorporated into the autoencoder 
architecture in order to infer a new representation that 
improves clustering and visualization of cells from single- 
cell RNA sequencing (scRNA-seq) data131. Specific noise 
characteristics of scRNA-seq data, such as sparse count 
data, are also addressed with tailored loss functions 
within the autoencoder framework130.

Neural networks have also greatly contributed to 
the toolbox of generative models. Unlike the approaches 
described earlier, generative models aim to learn the 
data-generating process. Variational autoencoders132 
(VAEs) and GANs133 are two powerful generative 
approaches that have emerged in the deep learning 
field. VAEs are autoencoders with additional distribu-
tion assumptions that enable them to generate new ran-
dom samples11, and they have been applied to single-cell 
and bulk RNA sequencing data to find meaningful pro-
babilistic latent representations134–137. These methods 
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neighbour embedding (t-SNE) or latent variable models. 
Neural networks are able to generalize some of these 
approaches. For example, autoencoders113,114,115,116 embed 
the data into a low-dimensional space with a hidden 
layer, called the bottleneck layer, and reconstruct the orig-
inal input data (FIG. 6a). This approach forces the network 
to extract useful features of data, as the bottleneck layer 
makes it infeasible to learn the perfect reconstruction. 
Reconstructing the data is often interpreted as denois-
ing because the unimportant variations are automati-
cally left out (FIG. 6b). Principal component analysis is 
equivalent to a linear autoencoder117,118,119, in which the 
principal components correspond to the representations 
in the bottleneck layer. Multiple nonlinear layers gener-
alize linear autoencoders to a nonlinear dimensionality 
reduction method.

Autoencoders have been used to impute missing 
data120, extract gene expression signatures121–123 and 
detect expression outliers124 in microarray data and bulk  
RNA sequencing gene expression data. In the field of 

single-cell genomics, autoencoders have been used for 
imputation, dimensionality reduction and representa-
tion learning125–130. Furthermore, prior biological knowl-
edge has been incorporated into the autoencoder 
architecture in order to infer a new representation that 
improves clustering and visualization of cells from single- 
cell RNA sequencing (scRNA-seq) data131. Specific noise 
characteristics of scRNA-seq data, such as sparse count 
data, are also addressed with tailored loss functions 
within the autoencoder framework130.

Neural networks have also greatly contributed to 
the toolbox of generative models. Unlike the approaches 
described earlier, generative models aim to learn the 
data-generating process. Variational autoencoders132 
(VAEs) and GANs133 are two powerful generative 
approaches that have emerged in the deep learning 
field. VAEs are autoencoders with additional distribu-
tion assumptions that enable them to generate new ran-
dom samples11, and they have been applied to single-cell 
and bulk RNA sequencing data to find meaningful pro-
babilistic latent representations134–137. These methods 
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Figure 2. Count based loss function is necessary to identify celltypes in simulated data with high 

levels of dropout noise. Panel A depicts plots of principal components 1 and 2 derived from simulated 

data without dropout, with dropout, denoised using DCA and MSE based autoencoder from left to right. 

Panel B shows heatmaps of the underlying gene expression data. Grey color indicates zero value entries. 

Panel C illustrates tSNE visualization of simulated scRNA-seq data with six celltypes. Cells are colored by 

celltype.  
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ground truth dropout added

DCA denoised MSE denoised

github.com/theislab/DCA

 

Figure 3. DCA captures population structure in 68,579 peripheral blood mononuclear cells. Panel             

A shows the tSNE visualization reproduced from Zheng et al. ​10 ​. Panel B illustrates the activations from the                 

two-dimensional bottleneck layer of the DCA. Colors represent celltype assignment from Zheng et al. ​10              

where CD4+ and CD8+ cells are combined into coarse groups. Silhouette coefficients are -0.01 and 0.07                

for tSNE and DCA visualizations. Panels C-F show two-dimensional bottleneck layer colored by the              

log-transformed expression of cell type marker genes CD8A (CD8+ T cells), CD14 (CD14+ Monocytes),              

NKG7 (CD56+ natural killer cells) and FCER1A (dendritic cells), respectively.  

 

  

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/300681doi: bioRxiv preprint first posted online Apr. 13, 2018; 

neural networks for robust latent space learning in scRNA-seq

L Simon G Eraslan

 

Figure 7. DCA scales linearly with the number of cells. Plot shows the runtimes for denoising of                 

various matrices with different numbers of cells down-sampled from 1.3 million mouse brain cells ​35 ​. Colors               

indicate different methods. 
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Figure 7: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are
averaged. Arithmetic was then performed on the mean vectors creating a new vector Y . The center
sample on the right hand side is produce by feeding Y as input to the generator. To demonstrate
the interpolation capabilities of the generator, uniform noise sampled with scale +-0.25 was added
to Y to produce the 8 other samples. Applying arithmetic in the input space (bottom two examples)
results in noisy overlap due to misalignment.

Further work is needed to tackle this from of instability. We think that extending this framework
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scGen predicts single-cell perturbation 

effects for unseen phenotypes 


unstimulated + IFN-β-stimulated PBMCs (Kang et al. Nature Biotech, 2018)
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Figure 2 | scGen accurately predicts single-cell perturbation effects for unseen phenotypes. a,
Distributions of condition, cell type and data split for the prediction of stimulated CD4-T cells. b, Comparison

of there generative and linear approaches to predict unseen single cell perturbations. At the first row, the plot

for every model shows average log-fold change of 6998 genes used for training between predicted stimulated

and real stimulated while second row depicts violin plot which shows expression distribution of top uniform

marker (response) gene to IFN-� , ISG15, reported in [15] between control, predicted and real stimulated.c,
dot plot for predicted cell types from Kang et al. shows the predicted cells show similar expression compared

to real stimulated cell.

such a distribution is by using vector arithmetic in the latent space of VAE. After training a VEA
(Supplemental Note 3.3), Next, using following equation we can predict the latent representation of
cells in cell type A and condition p = 1:

Ẑp=1 = Zp=0 + � (2)

where Zp=0 and Ẑp=1 are the latent representation of all cells with cell type A and condition p = 0
and p = 1, respectively and � is the latent difference vector between cells in condition 1 and 0
. Subsequently, we will map all predicted cells, ẐP=1 in equation (2) to high-dimensional gene
expression space using generator network (Figure 1).

scGEN outperforms linear and neural network based methods.

We compared scGEN with four candidate models including two generative and two linear models.
The first competing model, is a modified GAN (Supplemental Notes 2.3) similar to adversarial style
transfer models used for unsupervised image to image translation[16, 17]. This model learns how to
transfer a single cell from one condition to another by using adversarial training. Since attaining
paired single cell data in two different conditions is not technically feasible, model does not include
supervised training, unlike the biological manifold aligning model (MAGAN)[18]. Another exist-
ing method is based on conditional variational autoencoder (CVAE) (Supplemental Notes 2.4)[19].
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such a distribution is by using vector arithmetic in the latent space of VAE. After training a VEA
(Supplemental Note 3.3), Next, using following equation we can predict the latent representation of
cells in cell type A and condition p = 1:

Ẑp=1 = Zp=0 + � (2)

where Zp=0 and Ẑp=1 are the latent representation of all cells with cell type A and condition p = 0
and p = 1, respectively and � is the latent difference vector between cells in condition 1 and 0
. Subsequently, we will map all predicted cells, ẐP=1 in equation (2) to high-dimensional gene
expression space using generator network (Figure 1).

scGEN outperforms linear and neural network based methods.

We compared scGEN with four candidate models including two generative and two linear models.
The first competing model, is a modified GAN (Supplemental Notes 2.3) similar to adversarial style
transfer models used for unsupervised image to image translation[16, 17]. This model learns how to
transfer a single cell from one condition to another by using adversarial training. Since attaining
paired single cell data in two different conditions is not technically feasible, model does not include
supervised training, unlike the biological manifold aligning model (MAGAN)[18]. Another exist-
ing method is based on conditional variational autoencoder (CVAE) (Supplemental Notes 2.4)[19].
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such a distribution is by using vector arithmetic in the latent space of VAE. After training a VEA
(Supplemental Note 3.3), Next, using following equation we can predict the latent representation of
cells in cell type A and condition p = 1:

Ẑp=1 = Zp=0 + � (2)

where Zp=0 and Ẑp=1 are the latent representation of all cells with cell type A and condition p = 0
and p = 1, respectively and � is the latent difference vector between cells in condition 1 and 0
. Subsequently, we will map all predicted cells, ẐP=1 in equation (2) to high-dimensional gene
expression space using generator network (Figure 1).

scGEN outperforms linear and neural network based methods.

We compared scGEN with four candidate models including two generative and two linear models.
The first competing model, is a modified GAN (Supplemental Notes 2.3) similar to adversarial style
transfer models used for unsupervised image to image translation[16, 17]. This model learns how to
transfer a single cell from one condition to another by using adversarial training. Since attaining
paired single cell data in two different conditions is not technically feasible, model does not include
supervised training, unlike the biological manifold aligning model (MAGAN)[18]. Another exist-
ing method is based on conditional variational autoencoder (CVAE) (Supplemental Notes 2.4)[19].
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applications

• cross study integration & prediction

• batch effect removal

• cross species effect prediction

limitations

• rigid model, empirical linearity in latent space

• only single perturbation



Using a reference cell atlases

challenges in using reference atlases

• mapping own data on top of references, 

without loosing biological variability

• dealing with distributed reference data sets

• efficiency & ease-of-use

• making learnt maps accessible

Stuart et al. Cell 2019

COVID19 lung atlas with population variation

Sungnak et al, Nat Med 2020, Ziegler et al, Cell 2020 
                              Muus&Lücken et al, Nat Med 2021, Ailee et al, medrxiv 2020



Query-to-reference data integration by transfer learning

 M Lotfallahi 

Lotfollahi et al, biorxiv 2020.07.16.205997

github.com/theislab/scArches
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CD8+ T cells

Macrophages

CXCL10

ex
pr

es
si

on

high

low

FABP4

TRAMs

CCL2
MoMs

TRAMs

TRAMs MoMs

reference

ISG15Querying an atlas for disease:

COVID19 on lung lavage

query

github.com/theislab/scArches

Lotfollahi et al, biorxiv 2020.07.16.205997



query (RNA only)

impute query proteins using reference

from Sergei Rybakov (T lab) & Adam Gayoso (Yosef lab); data sets from 10x Genomics; totalVI for analysis of CITE-seq data (Gayoso et al 2020)

reference (RNA+protein via CITE-seq)

reference and query

idea: use multi-modal latent space model (totalVI from 
Yosef lab) on reference to reconstruct query proteins

scArches allows construction of multi-modal reference atlases



gene expression 
space

how to easily use neural networks? → manifold & atlas idea

f1

eg. organ1 eg. organ2

f2

eg. immune

cells

issues: #samples, analyst bias, speed

fi

counts pre-processing PCA

UMAP,

clustering

cluster

annotation

exploration

of disease

effects etc.

sfaira: pre-learned embeddings

counts sfaira embedding

sfaira cell types

exploration

of disease

effects etc.



sfaira model API: 
facilitate architecture re-use

sfaira dataset API: facilitate data re-use

sfaira parameter API: facilitate parameter re-use

sfaira - single-cell model zoo

aim: comparable, reproducible & easy access 
to annotated single-cell data sets and trained 
network models

local private 
data

custom sfaira  
data loader

model parameters

sfaira cloud parameter 
storage

(1
) e

m
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published sfaira  
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downloaded 
public data

external cloud data 
storage

count matrices

sfaira = (dataset, annotation, model, parameters)

David Fischer Leander Dony

github.com/theislab/sfaira

Fischer et al, biorxiv 2020



sfaira - data sets

240 data sets, 55 organs, 3.2M cells


can easily stream eg. all human cells 

(2.7M, 20k genes, 200 GB h5ad file) 

using mini batching from sfaira.data import mouse


ds = mouse.DatasetGroupLung(path, meta_path)

# Load all data sets into a single anndata object in memory:

ds.load_all()

ds.adata  # streamlined adata object

# Or memory-saving assembly of a backed anndata object:

ds.load_all_tobacked(…)



sfaira - easily use trained latent space embeddings to facilitate 
standard single-cell workflows

Fischer et al, biorxiv 2020



variational mixture of posterior priors (VAMP)

example application: evaluate priors in single-cell VAEs


VAMP prior - Tomczak & Welling, AISTATS 2018

Leander Dony et al, ICML-WCB 2020

sfaira enabled 
quick evaluation 
on 16 public 
scRNA-seq data 
sets across 9 
tissues and 700k 
cells

github.com/theislab/sfaira



conclusion


» latent space learning in single-cell genomics: using 
autoencoders


» scgen: model perturbations as linear shifts in latent space


» scArches: use single-cell atlases to query own data via 
architectural surgery


» sfaira: model zoo with pre-learned embeddings and easy data 
loaders


outlook


» extension towards spatial data & models (CNN + graph CNNs) - 
squidpy


» interpreting latent spaces, including dynamic information

github.com/theislab
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8. Guest Lecture: Romain Lopez



Deep Generative Models for

Single-cell Transcriptomics

Romain Lopez

University of California, Berkeley

Slide credits: Jeffrey, Nir & Romain



The scVI collaboration

Romain Lopez Pierre Boyeau Adam Gayoso Chenling Xu

Galen Xing Jeff Regier Mike Jordan Nir Yosef

& Maxime Langevin, Edouard Melhman, Jules Samaran, Achille Nazaret,

Gabriel Misrachi, Oscar Clivio, Yining Liu
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Outline

1 Background & Review

Single-cell Transcriptomics

Bayesian Modeling

Deep Generative Models

2 Single-cell Variational Inference (scVI)

3 Probabilistic Annotation (scANVI)

4 Information constraints on Auto-Encoding Variational Bayes (HCV)

5 Decision-making with Auto-Encoding Variational Bayes

6 Open-source scientific research: making VI more accessible
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Background & Review

Single-cell Transcriptomics



Cells share the same DNA but have distinct functions

Complex Tissue

H&E stain of the spinal cord of

mice with a multiple sclerosis

model.

Biological questions

• What type of cells are

present in the tissue?

• Which functions do these

cells carry?

• How are these functions

different from the healthy

tissue?

Peters et al, Immunity (2011)
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scRNA-seq measures gene expression at the cellular scale

scRNA-seq datasets

(one displayed here)

Several exciting technological advances:

• Sequencing of one million cells (10x Genomics, 2017)

• Multi-modal data: CITE-Seq (2017), Slide-seq (2019) and others

5



scRNA-seq yields quantitative answers to biological questions

Most biological questions can be casted into either cell-level or

gene-cell-level algorithmic queries.

Comp. Bio. Tasks Definition

Stratification via Embedding Project the cells for identification

(e.g., clustering/trajectory analy-

sis)

Harmonization Provide a batch-effect-free embed-

ding to compare across conditions

Annotation Transfer cell type labels from one

dataset to another

Normalization/Imputation Compute average expression levels

while removing technical artifacts

Differential Expression Find gene expression discrepancies

between cell types

6



Overarching goal: probabilistic stratification

and annotation of single-cell transcriptomes

Approach: learning cell-level and

gene-cell-level similarity while correcting for

technical biases

6



scRNA-seq data analysis remains challenging

1. scRNA-seq measurements are affected by technical noise

• variable sequencing depth

• batch-effects

2. Data is generated from a multivariate count distributions

(non-Gaussian measurements)

3. Analysis requires scalable methods

7



scRNA-seq workflows combine many standard ML methods

1. Normalize the data adequately; there exists at least 30 possible

combinations,

2. Reduce the dimension of the data (e.g., using PCA),

3. Apply an ad-hoc algorithm to correct for batch-effects,

4. Cluster the data to identify cell states,

5. Perform differential expression to match the clusters to known cell

types (e.g., using DESeq2 on the raw counts),

How to find unifying modeling assumptions across the whole pipeline?

8



Starting point: improving the PCA

z ∼ Normal(0, I )
x ∣ z ∼ Normal(Wz + v , σ2I )

(1)

Probabilistic intepretation of PCA suggests why it is inadequate for

scRNA-seq data:

1. The expression levels are not Gaussian: data must be normalized.

2. There is no basis for assuming linearity between latent variables

and gene expression levels.

3. PCA is for σ2 → 0. This is not a fully probabilistic model and

cannot carry uncertainty of the measurements.

9



Room for improvement: a scalable and

consistent framework for fully-probabilistic

analysis of scRNA-seq data

scVI: a deep generative model that addresses

all tasks and scales easily by leveraging

stochastic optimization

9



Background & Review

Bayesian Modeling



A graphical model shows a factorization of a joint distribution

p(a,b, c) = p(c ∣ a,b)p(b ∣ a)p(a)

10



Omit edges to represent conditional independence

p(a,b, c) = p(c ∣ b)p(b ∣ a)p(a)
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Solid dots represent unknown constants

p(a,b, c) = p(c ∣ a,b)p(b ∣ a)pθ(a)
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Rectangles denote independent replication

p(a,b, c) =
N

∏
n=1

[p(cn ∣ a,bn)p(bn ∣ a)]p(a)
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Shaded nodes are observed.

Empty nodes are latent.

p(a,b ∣ c)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

posterior

∝ p(c ∣ a,b)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

likelihood

p(b ∣ a)p(a)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

prior
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Bayes rule usually cannot be applied

Let z denote the latent random variables. The posterior distribution of z

typically is intractable:

p(z ∣ x) = p(x ∣ z)p(z)
p(x)

where

p(x) = ∫ p(x ∣ z)p(z)dz .

15



Variational inference approximates the posterior

We cast the inference problem into an optimization one!

16



Variational inference is based on a mathematical trick

The optimization problem can be written without p(x) or p(z ∣ x):

q⋆ = arg min
q∈Q

KL(q(z) ∥p(z ∣ x) ) (2)

= arg min
q∈Q

Eq [log q(z) − log p(z ∣ x)] (3)

= arg min
q∈Q

Eq [log q(z) − log p(z , x)] + log p(x) (4)

= arg min
q∈Q

Eq [log q(z) − log p(z , x)] . (5)

17



Background & Review

Deep Generative Models



Idea: Use neural networks to encode conditional probabilities!

zn ∼ N (0, I)

xn ∣ zn ∼ N (µ(zn), σ(zn))

Example
zn = [0.1,−0.5,0.2,0.1]⊺

µ(zn) =

σ(zn) =

xn =

18



Variational inference maximizes a lower bound

Learning the model parameters

log p(x) = logEq [
p(x , z)
q(z ∣ x)

] ≥ Eq log [ p(x , z)
q(z ∣ x)

] .

VI maximizes this lower bound w.r.t. the parameters of p(x , z) and

q(z ∣ x).

Auto-encoding Variational Bayes With several observations, one must

maintain a posterior approximation for each datapoint. Instead, we use

neural networks to parameterize its variational approximation q(z ∣ x):

q(z ∣ x) ∼ N(µ̂(x), σ̂(x)).

This is usually referred to as “amortized VI” or AEVB.

19



Outline

1 Background & Review

2 Single-cell Variational Inference (scVI)

3 Probabilistic Annotation (scANVI)

4 Information constraints on Auto-Encoding Variational Bayes (HCV)

5 Decision-making with Auto-Encoding Variational Bayes

6 Open-source scientific research: making VI more accessible

20



scVI is a Bayesian model that

separates biological signal from technical effects

The process that generated the gene expression count xng for a cell n,

with batch identifier sn and a gene g is

zn ∼ Normal(0, I ) Cell embedding

`n ∼ LogNormal(`µ, `2
σ) Library size

ρn = fw(zn, sn) Normalized expression

xng ∼ NegativeBinomial (`nρng , θg) Raw data

where fw is a neural network with a softmax non-linearity in its last layer.

zn is made invariant to sn as well as `n.

Lopez et al., Nature Methods, 2018
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The same model can be used for

several downstream analysis tasks

Our set of modeling hypothesis is now common to each task. This

ensure reproducibility and avoid statistical artifacts.

Comp Bio Bayesian Statistics

Embedding Posterior sampling for zn

Harmonization Conditioning on batch-information sn

Normalization Conditioning on hidden scalar `n

Imputation Posterior sampling for ρng

Differential Expression Bayesian Hypothesis testing for ρng

Lopez et al., Nature Methods, 2018
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scVI is an algorithm

Inference can be done with Auto-encoding Variational Bayes!

All CompBio tasks are well defined!

Lopez et al., Nature Methods, 2018
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Latent variable zn effectively recovers biological structure...

Versatile stratification thanks to the embedding Eq(zn ∣xn)[zn].

24



... and corrects for batch-effects

25



Latent variable ρn permits differential expression assessment

Example with PBMCs

Bayesian estimates of fold-change

p (∣log
ρag

ρbg
∣ > δ ∣ xa, xb)

Approximated with q(z ∣ x)

Evaluation

Reproducibility between scRNA-seq

analysis and microarray reference

Results

LFC estimation: Boyeau et al. (2019) 26



scVI scales to large datasets

Dataset: 1.3M mouse cortex cells 10x Genomics

27
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The problem of data annotation

Data harmonization scenarios:

• Multiple samples

• Across labs

• Across technologies

Objective:

• Batch mixing

• Retain original structure

• Use one data set to accurately

annotate the other

Formulation: a domain adaptation prob-

lem, with possible semi-supervision

Xu*, Lopez*, Melhman*, Regier, Jordan and Yosef, Molecular Systems Biology, 2021
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Existing methods and limitations

Harmonization and Annotation are well studied in machine learning and

computer vision, with applications to single-cell data

• Mutual Nearest Neighbors (Nature Biotechnology, 2018)

• Seurat Anchors (Cell, 2019)

• LIGER (Cell, 2019)

These methods make use of combinations of algorithms and heuristics

(matching clusters or relying on PCA). These might require manual

intervention to work well and cannot perform DE without querying the

raw data.

We propose scANVI as an end-to-end probabilistic method.
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scANVI annotates data sets using semi-supervised learning

Raw data

Annotation Scenarios

• One dataset partially annotated

• Transfer labels across datasets

Motivation De-novo annotation is

tedious and prone to errors

scANVI’s approach

• Change the prior for z from

isotropic normal to a mixture

model

• Treat the semi-supervision as a

missing value problem for

mixture assignment (i.e., cell

type) c

Xu*, Lopez*, Melhman*, Regier, Jordan and Yosef, Molecular Systems Biology, 2021
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Application of scANVI to propagation of seed labels in T cells

Seed labels based on specific genes (0.5% annotated)

Possible approaches

• Supervised learning

• Clustering plus majority assignment

• Semi-supervision with scANVI

Xu*, Lopez*, Melhman*, Regier, Jordan and Yosef, Molecular Systems Biology, 2021

32



Application of scANVI to propagation of seed labels in T cells

Xu*, Lopez*, Melhman*, Regier, Jordan and Yosef, Molecular Systems Biology, 2021
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The problem of learning invariant representations

• How to obtain a representation Epdata(X) [q(Z ∣ X )] independent

from an observed nuisance parameter S ?

• Statistician’s answer: Condition on S and learn p(Z ∣ X ,S)!

s: angle between the

camera and the light

source

One image x for a

given lighting condition

s and person y

x

sz1

yz2

Complete graphical

model

• In practice: Epdata(X ,S) [q(Z ∣ X ,S)] is still correlated with S

Lopez et al., Neural Information Processing Systems, (2018)
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AEVB might not be satisfactory

for non-trivial modeling purposes

• Sampling from the aggregated posterior q̂(Z) = Epdata(X) [q(Z ∣ X )]
is common to recover a representation used for downstream analysis

• Graphical model assumptions of conditional independence might not

be respected in the aggregated posterior q̂(Z) due to

over-flexibility of neural networks (Louizos et al. 2015).

• Modeling instances :

x

uv

Learning Interpretable

Representations

x

sz

Learning Invariant

Representations

x

u

s

z

Learning Denoised

Representations

Lopez et al., Neural Information Processing Systems, (2018)
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Information constraints on AEVB

• We restrain the search space for the variational distribution: in

particular, we wish to enforce statements of the form q(u) á q(v).

• Problem: any measure of mutual information is intractable from the

current graphical model and its variational approximation.

• Solution: we compute on each mini-batch a non-parametric measure

of dependence from kernel embedding of joint distributions :

−λĤSIC(q(u, v)),

where ĤSIC is the empirical estimate of the Hilbert-Schmidt norm of the

cross-covariance operator Cq(u,v) that embeds the joint.

We call this modification HSIC Constrained VAEs (HCV).

Lopez et al., Neural Information Processing Systems, (2018)
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scVI performs differential expression via

Bayesian model selection.

Setup: Let (a,b) be two cells, (xa, xb) their respective measurements

and (ρa, ρb) the normalized gene expression levels. For every gene g , we

have at disposal two models of the world:

Mg
1 ∶ ∣log

ρga
ρgb

∣ > δ and Mg
0 ∶ ∣log

ρga
ρgb

∣ ≤ δ. (6)

In scVI, we select the most likely model based on the Bayes factor:

BFg =
pθ (Mg

1 ∣ xa, xb)
pθ (Mg

0 ∣ xa, xb)
, (7)

and we define a gene g to be differentially expressed if BFg > 10.
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Limitations of this approach

There are two clear limitations to this formulation:

1. this approach is potentially biased, as we use the variational

distribution to compute the posterior probability of differential

expression:

pg ∶= pθ (Mg
1 ∣ xa, xb) ≈ Eqφ(za ∣xa)Eqφ(zb ∣xb)1{∣log

ρga
ρgb

∣ > δ} . (8)

2. applicability is limited as Bayes factor are not intuitive for

practitioners. Rather, we would like to control the posterior

expected False Discovery Rate.
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Estimating posterior expectations with VAEs

Either problem reduces to calculating posterior expectations accurately,

of the form:

Q(f , x) = Epθ(z ∣x)f (z).

We have access to samples (zi)1≤i≤n from the variational distribution

qφ(z ∣ x). A naive but practical approach is to consider a plugin

estimator:

Q̂n
P(f , x) =

1

n

n

∑
i=1

f (zi). (9)

or as a proposal for self-normalized importance sampling (SNIPS):

Q̂n
IS(f , x) =

∑n
i=1 w(x , zi)f (zi)
∑n

j=1 w(x , zj)
. (10)

Here the importance weights are w(x , z) ∶= pθ(x,z)/qφ(z ∣x).

41



Estimating posterior expectations with VAEs (continued)

These approaches may fail for two reasons:

1. the model fit by the VAE may not be equal to the underlying data

distribution,

2. there may be strong discrepancies between the variational

distribution and the posterior.

More specifically, variational approximations often underestimate the

variance of the posterior (Turner et al., 2011). Consequently, they may

yield poor proposals for importance sampling.
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Background: variational bounds for Bayesian inference

There are many decomposition of the evidence used for variational

inference:

log pθ(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

evidence

= Eqφ(z ∣x) log
pθ(x , z)

qφ(z ∣ x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ELBO

+∆KL(qφ ∥ pθ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

reverse KL VG

, (VI)

log pθ(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

evidence

= logEpθ(z ∣x)
pθ(x , z)

qφ(z ∣ x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

EUBO

−∆KL(pθ ∥ qφ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

forward KL VG

, (RWS)

log pθ(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

evidence

=
1

2
logEqφ(z ∣x) (

pθ(x , z)

qφ(z ∣ x)
)

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CUBO

−
1

2
log (1 +∆χ2(pθ ∥ qφ))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

χ2 VG

. (CHIVI)

One may also apply importance sampling to tighten some of those

bounds (i.e., IWAE).
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Our three-step procedure

We propose a simple three-step procedure for Bayesian decision-making

with VAEs:

(a) Fit multiple VAEs, each with a different variational distribution (e.g.,

IWAE, RWS, CHIVAE);

(b) Keep the best model based on a surrogate of the likelihood;

(c) Learn several variational approximations to the model posterior;

(d) Estimate the optimal decision via multiple importance sampling;

Lopez et al., Neural Information Processing Systems, (2020)
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Other content of the paper

• A more general presentation of these ideas for Bayesian

decision-making,

• Further theoretical developments on the pPCA model,

• Our novel formulation of the VAE learned via CHIVI,

• Supplementary experiments on pPCA and MNIST,

• A full-fledged application to differential expression.

Lopez et al., Neural Information Processing Systems, (2020)
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We aim at making VI more accessible:

scvi-tools is a public open-source repository

https://scvi-tools.org

• Our codebase contains multiple algorithms for

single-cell omics analysis (scRNA-seq, CITE-seq,

spatial transcriptomics, ATAC-seq) as well as

tutorials;

• We conceived a high-level interface to probabilistic

programming languages (Pyro, PyTorch). It is simple

to prototype new methods;

Come contribute !

Gayoso*, Lopez*, Xing* et al. In Preparation, (2021)
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We aim at making VI more accessible:

review on DGMs for molecular biology

We recently published a review on applications of deep generative models

in molecular biology.

Lopez et al. Mol Sys Bio, (2020)
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