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Today: Dimensionality Reduction for scRNA-seq
• Supervised (Classification) vs. unsupervised (Clustering)
• Supervised: Differential expression analysis
• Unsupervised: Embedding into lower dimensional space
• Linear reduction of dimensionality 
– Principle Component Analysis
– Singular Value Decomposition

• Non-linear dimensionality reduction: embeddings
– t-distributed Stochastic Network Embedding (t-SNE)
– Building intuition: Playing with t-SNE parameters

• Deep Learning embeddings
– Autoencoders



Expression Analysis Data Matrix
• Measure 20,000 genes in 100s of conditions

• Study resulting matrix
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Expression profile of a gene

Each experiment measures
expression of thousands
of ‘spots’, typically genes



Clustering vs. Classification

• Supervised learning
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Proliferation genes 
in transformed cell lines

B-cell genes in 
blood cell lines

Alizadeh, Nature 2000

Lymph node genes in 
diffuse large B-cell 
lymphoma (DLBCL)

Chronic
lymphocytic 
leukemia

Goal of Clustering: Group similar items 
that likely come from the same category, 
and in doing so reveal hidden structure 

Goal of Classification: Extract features 
from the data that best assign new 
elements to ≥1 of well-defined classes

• Unsupervised learning

Known
classes:

Independent validation
of groups that emerge:
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Proteins

Clustering vs Classification
• Objects characterized by one or more 

features
• Classification (supervised learning)

– Have labels for some points
– Want a “rule” that will accurately assign 

labels to new points
– Sub-problem: Feature selection
– Metric: Classification accuracy

• Clustering (unsupervised learning)
– No labels
– Group points into clusters based on how 

“near” they are to one another
– Identify structure in data
– Metric: independent validation features

Genes

Feature X (brain expression)
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Feature X (brain expression)



Supervised learning: 
differential gene expression













What is the right distribution for modeling read counts?

Poission?



ij
2σ = ijµ + j

2s pv ip( j )q( )

Orange Line – DESeq
Dashed Orange – edgeR
Purple - Poission

Read count data is overdispersed for a Poission
Use a Negative Binomial instead



A Negative Binomial distribution is better 
(DESeq)

• i gene or isoform p condition
• j sample (experiment)        p(j)  condition of sample j
• m number of samples
• Kij number of counts for isoform i in experiment j 
• qip Average scaled expression for gene i condition p
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Hypergeometric test for gene set overlap significance

N – total # of genes 1000
n1 - # of genes in set A 20
n2 - # of genes in set B 30
k - # of genes in both A and B 3
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Bonferroni correction

• Total number of rejections of null hypothesis over all N tests denoted by 

R.

Pr(R>0) ~= Nα

• Need to set α’ = Pr(R>0) to required significance level over all tests. 

Referred to as the experimentwise error rate.

• With 100 tests, to achieve overall experimentwise significance level of 

α’=0.05:

0.05 = 100α

-> α = 0.0005

• Pointwise significance level of 0.05%.



Example - Genome wide association screens

• Risch & Merikangas (1996).
• 100,000 genes.
• Observe 10 SNPs in each gene.
• 1 million tests of null hypothesis of no 

association.
• To achieve experimentwise significance level of 

5%, require pointwise p-value less than 5 x 10-8



Bonferroni correction - problems

• Assumes each test of the null hypothesis to be 
independent.

• If not true, Bonferroni correction to significance level is 
conservative.

• Loss of power to reject null hypothesis.
• Example: genome-wide association screen across linked 

SNPs – correlation between tests due to LD between loci.



Benjamini Hochberg

• Select False Discovery Rate a
• Number of tests is m
• Sort p-values P(k) in ascending order (most significant first)
• Assumes tests are uncorrelated or positively correlated



Unsupervised learning:
dimensionality reduction



Dimensionality reduction has multiple 
applications

• Uses:
– Data Visualization
– Data Reduction
– Data Classification
– Trend Analysis
– Factor Analysis
– Noise Reduction

• Examples:
– How many unique “sub-sets” are in the 

sample?
– How are they similar / different?
– What are the underlying factors that 

influence the samples?
– Which time / temporal trends are 

(anti)correlated?
– Which measurements are needed to 

differentiate?
– How to best present what is “interesting”?
– Which “sub-set” does this new sample 

rightfully belong?



A manifold is a topological space that locally resembles 
Euclidean space near each point

A manifold embedding is a structure preserving mapping of 
a high dimensional space into a manifold

Manifold learning learns a lower dimensional space that 
enables a manifold embedding



Principal Component Analysis



Example data

• Example: 53  Blood and 
urine measurements (wet 
chemistry) from 65 people 
(33 alcoholics, 32 non-
alcoholics)

• Trivariate plot

H-WBC H-RBC H-Hgb H-Hct H-MCV H-MCH H-MCHCH-MCHC
A1 8.0000 4.8200 14.1000 41.0000 85.0000 29.0000 34.0000 
A2 7.3000 5.0200 14.7000 43.0000 86.0000 29.0000 34.0000 
A3 4.3000 4.4800 14.1000 41.0000 91.0000 32.0000 35.0000 
A4 7.5000 4.4700 14.9000 45.0000 101.0000 33.0000 33.0000 
A5 7.3000 5.5200 15.4000 46.0000 84.0000 28.0000 33.0000 
A6 6.9000 4.8600 16.0000 47.0000 97.0000 33.0000 34.0000 
A7 7.8000 4.6800 14.7000 43.0000 92.0000 31.0000 34.0000 
A8 8.6000 4.8200 15.8000 42.0000 88.0000 33.0000 37.0000 
A9 5.1000 4.7100 14.0000 43.0000 92.0000 30.0000 32.0000 
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This is accomplished by rotating the axes.

Suppose we have a population measured on p random 
variables X1,…,Xp. Note that these random variables 
represent the p-axes of the Cartesian coordinate system in 
which the population resides. Our goal is to develop a new 
set of p axes (linear combinations of the original p axes) in 
the directions of greatest variability:

X1

X2

Principal Component = axis of greatest variability



Data projected onto PC1



• Given m points in a n dimensional space, for large n, how does 
one project on to a 1 dimensional space?

• Formally, minimize sum of squares of distances to the line.

• Why sum of squares? Because it allows fast minimization, 
assuming the line passes through 0

Selecting Principal Components



Linear Algebra Review

• Eigenvectors (for a square m´m matrix S)

• How many eigenvalues are there at most?

only has a non-zero solution if

this is a m-th order equation in λ which can have at most m
distinct solutions (roots of the characteristic polynomial) – can be 
complex even though S is real.

eigenvalue(right) eigenvector

Example



Eigenvalues & Eigenvectors

0 and , 2121}2,1{}2,1{}2,1{ =•Þ¹= vvvSv lll

§ For symmetric matrices, eigenvectors for distinct
eigenvalues are orthogonal

ÂÎÞ==- lll TSS and 0 if ,complex for IS

§ All eigenvalues of a real symmetric matrix are real.

0vSv if then ,0, ³Þ=³ÂÎ" llSwww Tn

§ All eigenvalues of a positive semidefinite matrix
are non-negative



• Let                  be a square matrix with m
linearly independent eigenvectors (a “non-
defective” matrix)

• Theorem: Exists an eigen decomposition

– (cf. matrix diagonalization theorem)

• Columns of U are eigenvectors of S
• Diagonal elements of     are eigenvalues of 

Eigen/diagonal Decomposition

diagonal Unique 
for 

distinct 
eigen-
values

v1 v2 v3 … vm

λ1
λ2

λ3
… 

λm

S =     U          Λ U-1



• If                  is a symmetric matrix:
• Theorem: Exists a (unique) eigen

decomposition
• where Q is orthogonal:
– Q-1= QT

– Columns of Q are normalized eigenvectors
– Columns are orthogonal.
– (everything is real)

Symmetric Eigen Decomposition

TQQS L=



Singular value decomposition
(general m x n matrices)



Singular Value Decomposition

TVUA S=

m´m m´n V is n´n

For an m´ n matrix A of rank r there exists a factorization
(Singular Value Decomposition = SVD) as follows:

The columns of U are orthogonal eigenvectors of AAT.

The columns of V are orthogonal eigenvectors of ATA.

ii ls =

( )rdiag ss ...1=S Singular values.

Eigenvalues l1 … lr of AAT are the eigenvalues of ATA.



Geometric interpretation of SVD

Mx = M(x) = U( S( V*(x) ) )

Rotation

Scaling

Rotation

Shearing



Singular Value Decomposition
§ Illustration of SVD dimensions and 

sparseness



Singular Value Decomposition-example

§ Let
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Typically, the singular values arranged in decreasing order.



• SVD can be used to compute optimal low-
rank approximations.

• Approximation problem: Find Ak of rank k
such that

Ak and X are both m´n matrices.

Typically, want k << r.

Low-rank Approximation

Frobenius norm
(aka Euclidian norm)F

kXrankX
k XAA -=

=
min

)(:



• Solution via SVD
Low-rank Approximation

set smallest r-k
singular values to zero

T
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column notation: sum 
of rank 1 matrices
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PCA of MNIST digits



Non-linear embeddings: t-SNE



Neighbor PreservationDistance Preservation



Neighborhood not preserved



Neighborhood preserved



Measure pairwise distances in high 
dimensional space

Shannon entropy of Pi



We want to choose an embedding that 
minimizes divergence between low and 

high dimension similarities



Low dimensional embedding using a Student 
t-distribution to avoid overcrowding

Red – Student t-distribution (1 degree of freedom)
Blue - Gaussian



We can use gradient methods to find an 
embedding

pij = New (low) dimension distance

qij = Original (high) dimension D

(okay to separate nearby points)
(not okay to bring distant points closer)



Interpretation of SNE (left) and t-SNE (right) 
gradients 



t-SNE of MNIST digits
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t-SNEs of single-cell Brain data

scRNA-seq in 48 individuals, 84k cells, Nature, 2019

CA1

Subiculum

Dentate Gyrus
(DG)

CA2-4

16 Sz/16 BP/16 Controls, 300k cells

Brain Hippocampus sub-structures

scATAC-seq of 262k cells
across 7 brain regions



Playing with t-SNE parameters



Perplexity matters

https://distill.pub/2016/misread-tsne/

Recommended range by Van Der Maaten and Hinton



Number of steps matter

“pinched”:
Not enough

steps

Too tight Spread
again

Tight
again

https://distill.pub/2016/misread-tsne/



Cluster sizes are not meaningful
Original data: 2 Gaussians
Widely different (10-fold) dispersion

t-SNE loses that notion of distance. 
By design, it adapts to regional variations in distance. 

https://distill.pub/2016/misread-tsne/



Between-cluster distance is not always 
preserved

Equidistant Equidistant Captured CapturedEquidistant

https://distill.pub/2016/misread-tsne/



False clusters may appear

https://distill.pub/2016/misread-tsne/



Relationships are not always preserved

https://distill.pub/2016/misread-tsne/



Different runs produce surprisingly similar results…

(… but not at very low perplexity)

https://distill.pub/2016/misread-tsne/



Demo of t-SNE in action

(learning rate)

(#neighbors)

https://distill.pub/2016/misread-tsne/

https://distill.pub/2016/misread-tsne/


Computational challenges 
in single-cell data analysis



Luecken, M. D., & Theis, F. J. (2019). Current best practices in single-cell RNA-seq analysis: a tutorial. Molecular 
Systems Biology, 15(6).

Gene-level analyses

Cell-level
analyses

1

Clustering similar genes

Dimensionality Reduction

Multi-
resolutio

n 
analysis

Missing data imputation

Multi-Omics analyses

Deconvolution of bulk RNA-seq



Extracting biological insights 
from scRNA-seq data

• Cell-to-cell correlation
• Gene-to-gene correlation
• Imputation of missing values
• Cellular trajectories and differentiation



Clustering similar cells



Methods + applications of single-cell analysis

Wagner et al., Nature Biotech, 2016



From Complex Tissues to individual cell types

Can we identify the different cell types/states in a complex tissue?



Brain Case Study: The Mouse Retina

~100 cell subtypes, only some with molecular markers

Macosko et al, Cell, 161, 2015



• Drop-Seq: 49,300 cells from dissociated mouse retina (P14) (~15k reads 
per cell)

• Computational pipeline: Select 25% best coverage cells, Dimensionality 
reduction (PCA+tSNE), Project remaining cells, Identify cell types (density 
clustering), Refine clusters (differential expression)

49,300 Retina Cells Grouped Into 39 Clusters

Macosko et al, Cell, 161, 2015



• Drop-Seq: 49,300 cells from dissociated mouse retina (P14) (~15k reads 
per cell)

• Computational pipeline: Select 25% best coverage cells, Dimensionality 
reduction (PCA+tSNE), Project remaining cells, Identify cell types (density 
clustering), Refine clusters (differential expression)

49,300 Retina Cells Grouped Into 39 Clusters

Macosko et al, Cell, 161, 2015



Annotating A Cell Atlas

Macosko et al, Cell, 161, 2015



39 Clusters: Known Cell Types & Relationships

Macosko et al, Cell, 161, 2015



39 Clusters: New Markers That Can Be Validated!

Macosko et al, Cell, 161, 2015



Clustering similar genes



Identifying ‘variable’ genes



Gene 1

Variation is interesting



Gene 1 Gene 2

Co-variation implies co-regulation



Sparsity-based gene network inference

CO-Dependency network of genes



We can uncover cell states and circuits, as well as their markers and drivers, 
from structures in cell-to-cell variation

Cluster-disrupted
Ccr7, Ccl22,

Serpinb9, Cd83

Maturing
Tnf, Il1a,

Cxcl10, Cd88

Antiviral
Ifit1, Ifih1,
Stat2, Irf7

PCA (632 Genes)

Genes Co-Vary Across Single Cells

Shalek*, Satija* et al, Nature, 498, (2013)
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POPULATIONS SINGLE CELLS

Correlation is not well-suited 
for single-cell analysis

R=0.92 R=0.89 R=0.37



Transcriptome-wide, single cells are very different.

Expression levels are ln(TPM + 1)

r=0.98 r=0.54 r=0.80

10,000 cells (Rep. 1)
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scRNA-Seq data has many many zeros

Shalek*, Satija* et al, Nature, 498, (2013)



Variability due to sampling vs. biology

Shalek*, Satija* et al., Nature, 2013

Sampling Bias Cellular Variation

Many zeros are due 
to under-sampling



Dimensionality reduction



Dimensionality Reduction
l Curse of dimensionality

l Easier to visualize/process

l Reduce noise

l Linear methods: PCA
- Identifying batch/cell cycle 

effects effects

l Nonlinear methods: t-distributed 
stochastic neighbor embedding (t-
SNE)
- Exploratory data analysis



PCA – 300 cell dataset



Important consideration for PCA

• Input gene list
– Can dramatically alter output

• Interpretation:
– ‘Assigning ‘biology’ or function requires prior knowledge
– PCs often correlate with technical quality
– Not all PCs are significant (Chung, Storey, arXiv.org)

• Limitations/extensions:
– PCs represent linear combination of individual features

Analysis strategies:
Dimensional reduction 
Differential expression
Supervised/unsupervised learning

Practical tutorial
Guided analysis of three recent 



Anavy et al, Development, 2014 Trapnell et al, Nat. Biotech., 2014

Interpreting dimensionality reduction



Zero-inflated negative binomial model (ZINB-WaVE)

● A generalized linear factor analysis model

From: Risso et al., 
2018



Dropping factor analysis in favor of deep autoencoders

● Single-cell Variational Inference (scVI)
● Deep count autoencoder (DCA)



From: V. SVENSSON, 2018



Dinstinguishing 
different cell types



Discrete cell type identification
l Based on traditional clustering approaches: 

k-means, hierarchical, and graph-based clustering techniques
l tSNE + k-means (traditional)

l SINCERA (Guo et al. 2015)
- Based on hierarchical clustering
- Data is converted to z-scores before clustering

l SNNCliq (C. Xu and Su 2015)
- Identifies the k-nearest-neighbours of each cell according to the distance measure. 
- Clusters are defined as groups of cells with many edges between them using a “clique” 

method.

l PCAReduce (žurauskienė and Yau 2016)
- Combines PCA, k-means and “iterative” hierarchical clustering. 
- Starting from a large number of clusters pcaReduce iteratively merges similar clusters
- After each merging event it removes the principle component explaning the least variance in 

the data.

l SC3 (Kiselev et al. 2017)
- Based on PCA and spectral dimensionality reductions
- Utilises k-means
- Additionally performs the consensus clustering



Single-Cell Consensus Clustering (SC3)

Kiselev et al., Nature Methods, 
2017



Continuous cell states: diffusion map

Angerer et al, Bioinformatics 2016



Archetypal-analysis for Cell type 
indentificaTION (ACTION)

Mohammadi et al., BioRxiv 2016, Nature Communications, under review



Combine discrete + continuous: archetype analysis

Hart et al, Nature Methods 2015



Matching cell types across datasets

Alignment of PBMC vs. Tumor scRNA



Multi-resolution analysis
ACTIONet



Main issues with parametric methods
How many archetypes?

How many factors?
How many clusters?



Optimal number of factors differs by celltype/age
(Ex.: Mouse retina development -- similar results with other species/tissues)

Choosing one “optimal” k is dominated by the major cell type
(defeating the whole purpose of single-cell analysis)



Recently developed method: ACTIONet



Complementary approaches

● Identifies hidden cell states/gene programs
○ Biological
○ Technical

● Deconvolves complex biological processes
● Uncovers discriminating/marker genes

● Reconstruct the topography of cell space
● Rich set of graph-based algorithms

○ Visualization (UMAP)
○ Clustering (Louvain/Leiden)
○ Imputation (PageRank)

Network 
analysis

Facto
r  a

nalys
is ACTION

ACTIONet



Step 1: Define a metric cell space



Jensen-Shannon divergence

Kullback–Leibler divergence

Square-root of JSD is a metric (we love metric space ... Triangle 
inequality rocks! => Efficient proximity search)

How?

p q

cells
Step 1: Define a metric cell space



Density-dependent adaptive nearest neighbor graph

● Uses k*-nearest neighbor algorithm
● Automatically identifies an optimal number of nearest neighbors for each 

cell
○ Depends on the heterogeneity of the neighbors

How?

Step 2: Construct a network representation of the cell space



Step 2: Construct a network representation of the cell space

Adaptive 
nearest 
neighbor graph



Step 3:  Visualize cell-cell network (layout)

● Adopted from UMAP and 
reimplemented to work 
with the ACTIONet graph

● Force-directed layout
○ Stochastic-gradient 

descent (SGD)-based



Step 4:  Color-coding 
cells

● Idea: Use de novo
coloring to fill the gap 
between 2D and 3D 
embeddings

● Projecting 3D coordinates 
onto a Perceptually 
uniform color space
○ CIE L*a*b*



Interpreting cell-to-cell 
variabilities using known 

genesets/pathways



Pathway and gene set overdispersion analysis (PAGODA)

From: Fan et al., 2016



VISION method

From: DeTomaso et al., 2018



Trajectories through cell space



Cell-cycle phase prediction

Scialdone et al., 2015



Trajectory inference

l Identify key branching points in development/disease
l Regulatory circuits that drive these transitions

Bargaje et al, PNAS 2017



Trajectory inference methods
l Start with dimension reduction

l Build a graph among cells/inferred 
cell types

l Typically underlying structure 
is based on minimum 
spanning tree (MST) or k-
nearest neighborhood (kNN) 
graph.

l Either infer a linear (pseudo-time) 
ordering, or identify branching 
points

TSCAN pseudotime reconstruction with monocle

Ji et al, NAR 2016



Overview of trajectory identification methods

hemberg-lab.github.io/scRNA.seq.course
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Trajectory identification: meta-method view

hemberg-lab.github.io/scRNA.seq.course



Dataset completion & 
missing data imputation



Spatial reconstruction of single-cell gene expression

Satija Nature Biotech 2015



Missing value imputation with MAGIC
(Markov Affinity-based Graph Imputation of Cells)

Random walk on 
cell-cell similarity graph

- uses neighborhood-based Markov-affinity matrix
- shares weight information across cells
- generate an imputed count matrix
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