6.874, 6.802, 20.390, 20.490, HST.506 Computational Systems Biology Deep Learning in the Life Sciences

Lecture 11: Dimensionality Reduction

Prof. Manolis Kellis Guest lecture: Joshua Welch

Slides credit: Soheil Feizi, Geoff Hinton

Today: Dimensionality Reduction for scRNA-seq

- Supervised (Classification) vs. unsupervised (Clustering)
- Supervised: Differential expression analysis
- Unsupervised: Embedding into lower dimensional space
- Linear reduction of dimensionality
 - Principle Component Analysis
 - Singular Value Decomposition
- Non-linear dimensionality reduction: embeddings
 - t-distributed Stochastic Network Embedding (t-SNE)
 - Building intuition: Playing with t-SNE parameters
- Deep Learning embeddings
 - Autoencoders

Expression Analysis Data Matrix

Measure 20,000 genes in 100s of conditions

Experiment similarity questions

Clustering

VS.

Classification

<u>Goal of Clustering</u>: <u>Group similar items</u> that likely come from the same category, and in doing so <u>reveal hidden structure</u>

Unsupervised learning

<u>Goal of Classification</u>: Extract features from the data that best <u>assign new</u> <u>elements</u> to ≥ 1 of <u>well-defined classes</u>

Supervised learning

Clustering vs Classification

- Objects characterized by one or more features
- Classification (supervised learning)
 - Have labels for some points
 - Want a "rule" that will accurately assign labels to new points
 - Sub-problem: Feature selection
 - Metric: Classification accuracy

Clustering (unsupervised learning)

- No labels
- Group points into clusters based on how "near" they are to one another
- Identify structure in data
- Metric: independent validation features

Supervised learning: differential gene expression

Statistical tests: example

 The alternative hypothesis H₁ is more expressive in terms of explaining the observed data

null hypothesis

alternative hypothesis

 We need to find a way of testing whether this difference is significant

Degrees of freedom

• How many degrees of freedom do we have in the two models?

$$H_{0}: \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} \sim N\left(\begin{bmatrix} \mu_{1} \\ \mu_{2} \end{bmatrix}, \begin{bmatrix} \sigma_{1}^{2} & 0 \\ 0 & \sigma_{2}^{2} \end{bmatrix}\right)$$
$$H_{1}: \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} \sim N\left(\begin{bmatrix} \mu_{1} \\ \mu_{2} \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}\right)$$

Degrees of freedom

How many degrees of freedom do we have in the two models?

$$\begin{aligned} H_0 : & \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim N \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix} \right) \\ H_1 : & \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim N \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \right) \end{aligned}$$

• The observed data overwhelmingly supports H_1

Test statistic

Likelihood ratio statistic

$$T(X^{(1)}, \dots, X^{(n)}) = 2\log \frac{P(X^{(1)}, \dots, X^{(n)}|\hat{H}_1)}{P(X^{(1)}, \dots, X^{(n)}|\hat{H}_0)}$$
(1)

Larger values of T imply that the model corresponding to the null hypothesis H_0 is much less able to account for the observed data

• To evaluate the P-value, we also need to know the sampling distribution for the test statistic

In other words, we need to know how the test statistic $T(X^{(1)}, \ldots, X^{(n)})$ varies if the null hypothesis H_0 is correct

Test statistic cont'd

• For the likelihood ratio statistic, the sampling distribution is χ^2 with degrees of freedom equal to the difference in the number of free parameters in the two hypotheses

 Once we know the sampling distribution, we can compute the P-value

$$p = Prob(T(X^{(1)}, \dots, X^{(n)}) \ge T_{obs} | H_0)$$
(2)

What is the right distribution for modeling read counts?

$$\lambda = \frac{\sum_{i=1}^{n} x_i}{n}$$
$$f(x; \lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$$

Poission?

Read count data is overdispersed for a Poission Use a Negative Binomial instead

Anders and Huber Genome Biology 2010, 11:R106 http://genomebiology.com/2010/11/10/R106

A Negative Binomial distribution is better (DESeq)

- i gene or isoform p condition
- j sample (experiment) p(j) condition of sample j
- m number of samples
- K_{ii} number of counts for isoform i in experiment j
- q_{ip} Average scaled expression for gene i condition p

$$q_{ip} = \frac{1}{\# \text{ of replicates } \sum_{j \text{ in replicates }} \frac{K_{ij}}{S_j}}$$

$$\mu_{ij} = q_{ip(j)} s_j \qquad \sigma_{ij}^2 = \mu_{ij} + s_j^2 v_p (q_{ip(j)})$$

$$K_{ij} \sim NB(\mu_{ij}, \sigma_{ij}^2)$$

Hypergeometric test for gene set overlap significance

$$P(k) = \frac{\binom{n1}{k}\binom{N-n1}{n2-k}}{\binom{N}{n2}}$$

$$P(x \ge k) = \sum_{i=k}^{\min(n1,n2)} P(i)$$

3

Bonferroni correction

 Total number of rejections of null hypothesis over all N tests denoted by R.

 $Pr(R>0) \simeq N\alpha$

- Need to set α' = Pr(R>0) to required significance level over all tests. Referred to as the experimentwise error rate.
- With 100 tests, to achieve overall experimentwise significance level of $\alpha'=0.05$:

 $0.05 = 100\alpha$

 $-> \alpha = 0.0005$

• **Pointwise** significance level of 0.05%.

Example - Genome wide association screens

- Risch & Merikangas (1996).
- 100,000 genes.
- Observe 10 SNPs in each gene.
- 1 million tests of null hypothesis of no association.
- To achieve experimentwise significance level of 5%, require pointwise p-value less than 5 x 10⁻⁸

Bonferroni correction - problems

- Assumes each test of the null hypothesis to be **independent**.
- If not true, Bonferroni correction to significance level is **conservative**.
- Loss of power to reject null hypothesis.
- Example: genome-wide association screen across linked SNPs – correlation between tests due to LD between loci.

Benjamini Hochberg

- Select False Discovery Rate $\boldsymbol{\alpha}$
- Number of tests is *m*
- Sort p-values P_(k) in ascending order (most significant first)
- Assumes tests are uncorrelated or positively correlated
- 1. For a given lpha, find the largest k such that $P_{(k)} \leq rac{k}{m} lpha$.

2. Reject the null hypothesis (i.e., declare discoveries) for all $H_{(i)}$ for $i=1,\ldots,k$.

Unsupervised learning: dimensionality reduction

Dimensionality reduction has multiple applications

- Uses:
 - Data Visualization
 - Data Reduction
 - Data Classification
 - Trend Analysis
 - Factor Analysis
 - Noise Reduction

- Examples:
 - How many unique "sub-sets" are in the sample?
 - How are they similar / different?
 - What are the underlying factors that influence the samples?
 - Which time / temporal trends are (anti)correlated?
 - Which measurements are needed to differentiate?
 - How to best present what is "interesting"?
 - Which "sub-set" does this new sample rightfully belong?

A manifold is a topological space that locally resembles Euclidean space near each point

A manifold embedding is a structure preserving mapping of a high dimensional space into a manifold

Manifold learning learns a lower dimensional space that enables a manifold embedding

Principal Component Analysis

Example data

 Example: 53 Blood and urine measurements (wet chemistry) from 65 people (33 alcoholics, 32 nonalcoholics)

	•	Triva	riate	plot
--	---	-------	-------	------

	H-WBC	H-RBC	H-Hgb	H-Hct	H-MCV	H-MCH	H-MCHC
A1	8.0000	4.8200	14.1000	41.0000	85.0000	29.0000	34.0000
A2	7.3000	5.0200	14.7000	43.0000	86.0000	29.0000	34.0000
A3	4.3000	4.4800	14.1000	41.0000	91.0000	32.0000	35.0000
A4	7.5000	4.4700	14.9000	45.0000	101.0000	33.0000	33.0000
A5	7.3000	5.5200	15.4000	46.0000	84.0000	28.0000	33.0000
A6	6.9000	4.8600	16.0000	47.0000	97.0000	33.0000	34.0000
A7	7.8000	4.6800	14.7000	43.0000	92.0000	31.0000	34.0000
A8	8.6000	4.8200	15.8000	42.0000	88.0000	33.0000	37.0000
A9	5.1000	4.7100	14.0000	43.0000	92.0000	30.0000	32.0000

Principal Component = axis of greatest variability

Suppose we have a population measured on p random variables $X_1, ..., X_p$. Note that these random variables represent the p-axes of the Cartesian coordinate system in which the population resides. Our goal is to develop a new set of p axes (linear combinations of the original p axes) in the directions of greatest variability:

This is accomplished by rotating the axes.

Data projected onto PC1

Selecting Principal Components

- Given m points in a n dimensional space, for large n, how does one project on to a 1 dimensional space?
- Formally, minimize sum of squares of distances to the line.

• Why sum of squares? Because it allows fast minimization, assuming the line passes through 0

Linear Algebra Review

Eigenvectors (for a square *m×m* matrix S)

How many eigenvalues are there at most?

$$\mathbf{Sv} = \lambda \mathbf{v} \iff (\mathbf{S} - \lambda \mathbf{I}) \mathbf{v} = \mathbf{0}$$

only has a non-zero solution if $|\mathbf{S} - \lambda \mathbf{I}| = 0$

this is a *m*-th order equation in λ which can have at most *m* distinct solutions (roots of the characteristic polynomial) - <u>can be</u> <u>complex even though S is real.</u>

Eigenvalues & Eigenvectors

• For symmetric matrices, eigenvectors for distinct eigenvalues are **orthogonal**

$$Sv_{\{1,2\}} = \lambda_{\{1,2\}}v_{\{1,2\}}, \text{ and } \lambda_1 \neq \lambda_2 \Longrightarrow v_1 \bullet v_2 = 0$$

- All eigenvalues of a real symmetric matrix are real. for complex λ , if $|S - \lambda I| = 0$ and $S = S^T \Longrightarrow \lambda \in \Re$
- All eigenvalues of a positive semidefinite matrix are non-negative

 $\forall w \in \Re^n, w^T S w \ge 0$, then if $Sv = \lambda v \Longrightarrow \lambda \ge 0$

Eigen/diagonal Decomposition

- Let $S \in \mathbb{R}^{m \times m}$ be a square matrix with *m* linearly independent eigenvectors (a "nondefective" matrix) $S = \bigcup_{\lambda_1 \\ \lambda_2 \\ \lambda_3} \bigwedge_{\lambda_3} \bigcup_{\lambda_4 \\ \lambda_4 \\ \lambda_5 \\ \lambda_5$
- Theorem: Exists an eigen decomposition Unique $\mathbf{S} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{-1}$

values

– (cf. matrix diagonalization theorem)

- Columns of *U* are eigenvectors of *S*
- Diagonal elements of Λ are eigenvalues of \mathbf{S} $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_m), \ \lambda_i \geq \lambda_{i+1}$

Symmetric Eigen Decomposition

- If $\mathbf{S} \in \mathbb{R}^{m \times m}$ is a symmetric matrix:
- Theorem: Exists a (unique) eigen decomposition $S = Q\Lambda Q^T$
- where **Q** is **orthogonal**:

 $- Q^{-1} = Q^{T}$

- Columns of \boldsymbol{Q} are normalized eigenvectors
- Columns are orthogonal.
- (everything is real)

Singular value decomposition (general m x n matrices)

Singular Value Decomposition

For an $m \times n$ matrix **A** of rank *r* there exists a factorization (Singular Value Decomposition = **SVD**) as follows:

The columns of **U** are orthogonal eigenvectors of AA^{T} . The columns of **V** are orthogonal eigenvectors of $A^{T}A$. Eigenvalues $\lambda_{1} \dots \lambda_{r}$ of AA^{T} are the eigenvalues of $A^{T}A$.

$$\sigma_i = \sqrt{\lambda_i}$$

$$\Sigma = diag(\sigma_1 \dots \sigma_r) \longrightarrow Singular values.$$

Geometric interpretation of SVD

Singular Value Decomposition

Illustration of SVD dimensions and

Singular Value Decomposition-example

• Let
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Thus m=3, n=2. Its SVD is

$$\begin{bmatrix} 0 & 2/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & -1/\sqrt{3} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{3} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

Typically, the singular values arranged in decreasing order.

Low-rank Approximation

- SVD can be used to compute optimal **lowrank approximations**.
- Approximation problem: Find A_k of rank k
 such that

$$A_{k} = \min_{X:rank(X)=k} \|A - X\|_{F} - Frobenius norm (aka Euclidian norm) \\ \|A\|_{F} \equiv \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}}.$$

A_k and X are both *m×n* matrices. Typically, want *k* << *r*.

Low-rank Approximation

• Solution via SVD

$$A_k = U \operatorname{diag}(\sigma_1, \dots, \sigma_k, \underbrace{0, \dots, 0}) V^T$$

set smallest r-k singular values to zero

• Error: $\min_{X:rank(X)=k} ||A-X||_F = ||A-A_k||_F = \sigma_{k+1}$

Principle Component Analysis (PCA)

- How do we find the eigenvectors v_i ?
- We use singular value decomposition to decompose Σ into an orthogonal rotation matrix U and a diagonal scaling matrix S:

$$\Sigma = USU^T \tag{22}$$

$$\Sigma U = (USU^T)U \tag{23}$$

$$= US$$
 (24)

- The columns of U are the $v_i,$ and S is the diagonal matrix of eigenvalues λ_i^2

PCA of MNIST digits

Non-linear embeddings: t-SNE

Distance Preservation

Neighbor Preservation

High Dim

Neighborhood not preserved

Neighborhood preserved

Measure pairwise distances in high dimensional space

High Dim

Low Dim

$$p_{j|i} = \frac{\exp(-||x_i - x_j||^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-||x_i - x_k||^2 / 2\sigma_i^2)}$$

Set the bandwidth σ_i such that the conditional has a fixed perplexity (effective number of neighbors) $Perp(P_i) = 2^{H(P_i)}$, typical value is about 5 to 50

We want to choose an embedding that minimizes divergence between low and high dimension similarities

Similarity of datapoints in High Dimension

$$p_{ij} = \frac{\exp(-||x_i - x_j||^2/2\sigma^2)}{\sum_{k \neq l} \exp(-||x_l - x_k||^2/2\sigma^2)}$$

Similarity of datapoints in Low Dimension

$$q_{ij} = rac{(1+||y_i-y_j||^2)^{-1}}{\sum_{k
eq l} (1+||y_k-y_l||^2)^{-1}}$$

Low dimensional embedding using a Student t-distribution to avoid overcrowding

Red – Student t-distribution (1 degree of freedom) Blue - Gaussian

We can use gradient methods to find an embedding

p_{ij} = New (low) dimension distance

Cost function

$$C = KL(P||Q) = \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

q_{ij} = Original (high) dimension D

- Large p_{ij} modeled by small q_{ij}: Large penalty(not okay to bring distant points closer)
- Small p_{ij} modeled by large q_{ij}: Small penalty (okay to separate nearby points)
- t-SNE mainly preserves local similarity structure of the data
- Gradient

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j \neq i} (p_{ij} - q_{ij})(1 + ||y_i - y_j||^2)^{-1}(y_i - y_j)$$

Interpretation of SNE (left) and t-SNE (right) gradients

t-SNE of MNIST digits

t-SNEs of single-cell Brain data

Playing with t-SNE parameters

Perplexity matters

Recommended range by Van Der Maaten and Hinton

Number of steps matter

Cluster sizes are not meaningful

Original data: 2 Gaussians Widely different (10-fold) dispersion

t-SNE loses that notion of distance.

By design, it adapts to regional variations in distance.

Between-cluster distance is not always preserved

False clusters may appear

Relationships are not always preserved

Different runs produce surprisingly similar results...

(... but not at very low perplexity)

Original

Perplexity: 2 Step: 5,000

Perplexity: 2 Step: 5,000

Perplexity: 2 Step: 5,000 Perplexity: 2 Step: 5,000

Perplexity: 2 Step: 5,000 https://distill.pub/2016/misread-tsne/

Demo of t-SNE in action

Computational challenges in single-cell data analysis

Extracting biological insights from scRNA-seq data

- Cell-to-cell correlation
- Gene-to-gene correlation
- Imputation of missing values
- Cellular trajectories and differentiation

Clustering similar cells

Methods + applications of single-cell analysis

From Complex Tissues to individual cell types

Can we identify the different cell types/states in a complex tissue?

Brain Case Study: The Mouse Retina

~100 cell subtypes, only some with molecular markers

49,300 Retina Cells Grouped Into 39 Clusters

- Drop-Seq: 49,300 cells from dissociated mouse retina (P14) (~15k reads per cell)
- Computational pipeline: Select 25% best coverage cells, Dimensionality reduction (PCA+tSNE), Project remaining cells, Identify cell types (density clustering), Refine clusters (differential expression)

49,300 Retina Cells Grouped Into 39 Clusters

- Drop-Seq: 49,300 cells from dissociated mouse retina (P14) (~15k reads per cell)
- Computational pipeline: Select 25% best coverage cells, Dimensionality reduction (PCA+tSNE), Project remaining cells, Identify cell types (density clustering), Refine clusters (differential expression)

Annotating A Cell Atlas

39 Clusters: Known Cell Types & Relationships

39 Clusters: New Markers That Can Be Validated!

Clustering similar genes

Identifying 'variable' genes

Variation is interesting

Co-variation implies co-regulation

Sparsity-based gene network inference

CO-Dependency network of genes

Genes Co-Vary Across Single Cells

We can uncover cell states and circuits, as well as their markers and drivers, from structures in cell-to-cell variation

Shalek*, Satija* et al, Nature, 498, (2013)

Correlation is not well-suited for single-cell analysis

scRNA-Seq data has many many zeros

Transcriptome-wide, single cells are very different.

Shalek*, Satija* et al, Nature, 498, (2013)

Variability due to sampling vs. biology

Shalek*, Satija* et al., Nature, 2013

Dimensionality reduction

Dimensionality Reduction

- Curse of dimensionality
- Easier to visualize/process
- Reduce noise
- Linear methods: PCA
 - Identifying batch/cell cycle effects effects
- Nonlinear methods: t-distributed stochastic neighbor embedding (*t-SNE*)
 - Exploratory data analysis

PCA – 300 cell dataset

Important consideration for PCA

Input gene list

- Can dramatically alter output

Interpretation:

- 'Assigning 'biology' or function requires prior knowledge
- PCs often correlate with technical quality
- Not all PCs are significant (Chung, Storey, arXiv.org)

• Limitations/extensions:

– PCs represent **linear** combination of individual features

Interpreting dimensionality reduction

Zero-inflated negative binomial model (ZINB-WaVE)

A generalized linear factor analysis model

Dropping factor analysis in favor of deep autoencoders

- Single-cell Variational Inference (scVI)
- Deep count autoencoder (DCA)

tSNE of low dimensional representation

DCA - Rosenberg 2018

scVI - Rosenberg 2018

scVI - Zeisel 2018

DCA - Lukassen 2018

scVI - Lukassen 2018

From: V. SVENSSON, 2018

Dinstinguishing different cell types

Discrete cell type identification

- Based on traditional clustering approaches: <u>k-means, hierarchical, and graph-based clustering techniques</u>
- tSNE + k-means (traditional)
- SINCERA (Guo et al. 2015)
 - Based on hierarchical clustering
 - Data is converted to z-scores before clustering
- SNNCliq (C. Xu and Su 2015)

- Identifies the k-nearest-neighbours of each cell according to the distance measure.
- Clusters are defined as groups of cells with many edges between them using a "clique" method.
- PCAReduce (žurauskienė and Yau 2016)
 - Combines PCA, k-means and "iterative" hierarchical clustering.
 - Starting from a large number of clusters pcaReduce iteratively merges similar clusters
 - After each merging event it removes the principle component explaning the least variance in the data.
- SC3 (Kiselev et al. 2017)
 - Based on PCA and spectral dimensionality reductions
 - Utilises k-means
 - Additionally performs the consensus clustering

Single-Cell Consensus Clustering (SC3)

Continuous cell states: diffusion map

Archetypal-analysis for Cell type indentificaTION (ACTION)

Mohammadi et al., BioRxiv 2016, Nature Communications, under review

Combine discrete + continuous: archetype analysis

Hart *et al*, Nature Methods 2015

Matching cell types across datasets

Alignment of PBMC vs. Tumor scRNA

Multi-resolution analysis

Main issues with parametric methods

How many archetypes? How many factors? How many clusters?

Optimal number of factors differs by celltype/age

(Ex.: Mouse retina development -- similar results with other species/tissues)

Choosing one "optimal" k is dominated by the major cell type (defeating the whole purpose of single-cell analysis)

Recently developed method: ACTIONet

ACTION multiresolution decompositions

Complementary approaches

- Reconstruct the topography of cell space
- Rich set of graph-based algorithms
 - Visualization (UMAP)
 - Clustering (Louvain/Leiden)
 - Imputation (PageRank)

ACTIONet

Step 1: Define a metric cell space

 $\delta(h_i, h_j) = \sqrt{\mathbf{JS}(\hat{h}_i, \hat{h}_j)}$

Square-root of JSD is a metric (we love metric space ... Triangle inequality rocks! => Efficient proximity search)

Step 2: Construct a network representation of the cell space

cell

Density-dependent adaptive nearest neighbor graph

- Uses k*-nearest neighbor algorithm
- Automatically identifies an optimal number of nearest neighbors for each cell
 - Depends on the heterogeneity of the neighbors

Step 2: Construct a network representation of the cell space

Step 3: Visualize cell-cell network (layout)

- Adopted from UMAP and reimplemented to work with the ACTIONet graph
- Force-directed layout
 - Stochastic-gradient descent (SGD)-based

Step 4: Color-coding cells

- Idea: Use de novo coloring to fill the gap between 2D and 3D embeddings
- **Projecting 3D coordinates** onto a **Perceptually** uniform color space CIE L*a*b* \cap

individual cells (n=30k)
Interpreting cell-to-cell variabilities using known genesets/pathways

Pathway and gene set overdispersion analysis (PAGODA)

From: Fan et al., 2016

VISION method

From: DeTomaso et al., 2018

Trajectories through cell space

Cell-cycle phase prediction

Trajectory inference

- Identify key branching points in development/disease
- Regulatory circuits that drive these transitions

Trajectory inference methods

- Start with dimension reduction
- Build a graph among cells/inferred cell types
 - Typically underlying structure is based on minimum spanning tree (MST) or knearest neighborhood (kNN) graph.
- Either infer a linear (pseudo-time) ordering, or identify branching points

TSCAN pseudotime reconstruction with monocle

Ji et al, NAR 2016

Overview of trajectory identification methods

Method	SCUBA pseudotime	Wanderlust	Wishbone	SLICER	SCOUP	Waterfall	Mpath	TSCAN	Monocle	SCUBA
Visual abstract	AN ANA	desse.	-	Electron		Y	*****	K		1 10 11 12 13
Structure	Linear	Linear	Single bifurcation	Branching	Branching	Linear	Branching	Linear	Branching	Branching
Robustness strategy	Principal curves	Ensemble, starting cell	Ensemble, starting cell	Starting cell	Starting population	Clustering of cells	Clustering of cells using external labelling	Clustering of cells	Differential expression	Simple model
Extra input requirements	None	Starting cell	Starting cell	Starting cell	Starting population	None	Time points	None	Time points	Time points
Unbiased	+	±	±	±	±	+	-	+	-	-
Scalability w.r.t. cells	-	-	±	±	-	±	+	+	-	±
Scalability w.r.t. genes	+	+	+	+	-	+	±	±	±	+
Code and documentation	-	±	+	±	+	±	+	+	+	±
Parameter ease-of-use	+	+	+	+	-	±	-	+	+	+

First Author	Marco	Bendall	Setty	Welch	Matsumoto	Shin	Chen	Ji	Trapnell	Marco
Last Author	GC Yuan	Dana Pe'er	Dana Pe'er	Hartemink, Prins	Kiryu	Hongjun Song	Poidinger	Ji	Rinn	GC Yuan
Journal	PNAS	Cell	Nature Biotechnol ogy	Genome Biology	BMC Bioinformat ics	Cell Stem Cell	Nature Communic ations	NAR	Nature Biotechnol ogy	PNAS
Year	2014	2014	2016	2016	2016	2015	2016	2016	2014	2014

hemberg-lab.github.io/scRNA.seq.course

Trajectory identification: meta-method view

hemberg-lab.github.io/scRNA.seq.course

Dataset completion & missing data imputation

Spatial reconstruction of single-cell gene expression

Missing value imputation with MAGIC (Markov Affinity-based Graph Imputation of Cells)

Random walk on cell-cell similarity graph

- uses neighborhood-based Markov-affinity matrix
- shares weight information across cells
- generate an imputed count matrix