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A: model-based imputation

Decreasing logistic model (DO), non-linear least-squares regression (imp)

bayNorm [47] Binomial model, empirical Bayes prior
BISCUIT [48] Gaussian model of log counts, cell- and cluster-specific parameters
CIDR [49]
SAVER [50] NB model, Poisson LASSO regression prior
Scimpute [51] Mixture model (DO), non-negative least squares regression (imp)
scRecover [52] ZINB model (DO identification only)
VIPER [53] Sparse non-negative regression model
B: data smoothing
Drimpute [54] k-means clustering of PCs of correlation matrix
knn-smooth [55] k-nearest neighbor smoothing
LSImpute [56] Locality sensitive imlputation
I MAGIC [57] Diffusion across nearest neighborgraprl
netSmooth [58] Diffusion across PPI network

C: data reconstruction, matrix factorizatio
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Chen M, Zhou X. VIPER: variability-preserving imputation for accurate
gene expression recovery in single-cell RNA sequencing studies.
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imputing dropout events in single cell RNA sequencing data. BMC
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RNA-Seq data. J Comput Biol. 2019. https://doi.org/10.1089/cmb.2018.
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ALRA [59] SVD with adaptive thresholding
ENHANCE [60] Denoising PCA with aggregation step
SCRMD [61] Robust matrix decomposition
consensus NMF [62] Meta-analysis approach to NMF
f-scLVM [63] Sparse Bayesian latent variable model
GPLVM [64] Gaussian process latent variable model
pCMF [65] Probab. count matrix factorization with Poisson model
scCoGAPS [66] Extension of NMF
SDA [67] Sparse decomposition of arrays (Bayesian)
ZIFA [68] ZIfactor analysis
ZINB-WaVE [69] ZINB factor model
C: data reconstruction, machine learning
Autolmpute [70] AE, no error back-propagation for zero counts
BERMUDA [71] AE for cluster batch correction (MMD and MSE loss function)
Deeplmpute [72] AE, parallelized on gene subsets
DCA [73] Deep count AE (ZINB/ NB model)
DUSC/ DAWN [74] Denoising AE (PCA determines hidden layer size)
Enlmpute [75] Ensemble learning consensus of other tools
Expression Saliency [76] AE (Poisson negative log-likelihood loss function)
LATE [77] Non-zero value AE (MSE loss function)
Lin_DAE [78] Denoising AE (imputation across k-nearest neighbor genes)
SAUCIE [79] AE (MMD loss function)
scScope [80] lIterative AE
scVAE [81] Gaussian-mixture VAE (NB/ ZINB / ZIP model)
I scvi [82] VAE (ZINB modelj
scvis [83] VAE (objective function based on latent variable model and t-SNE)
VASC [84] VAE (denoising layer; ZI layer, double-exponential and Gumbel distribution
Zhang_VAE [85] VAE (MMD loss function)
T: using external information
ADImpute [86] Gene regulatory network information
netSmooth [58] PPI network information
SAVER-X [87] Transfer learning with atlas-type resources
SCRABBLE [88] Matched bulk RNA-seq data
TRANSLATE [77] Transfer learning with atlas-type resources
URSM [89] Matched bulk RNA-seq data
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Integrating multiple
single-cell datasets
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Mutual nearest neighbors (MNN) correction
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Summary and
Method comparison
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Summary

Normalization
o Scran and Linnorm

Imputation
o SAVER

Batch-correction
o [fast]MNN and Harmony

Clustering
o ACTIONet and Seurat

Trajectory detection
o Monocle3 and Slingshot

Differential expression
o Limma-trend



Deep Learning methods for scRNA-seq



MMD-ResNet: Autoencoder for batch correction
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MMD (Gretton et al., 2006, 2012) is a measure for distance
between two probability distributions p, g. It is defined with respect
to a function class F by

MMD(Fp. ) = Sup(Bepf () ~ Envaf ()

When F is a reproducing kernel Hilbert space with kernel &, the
MMD can be written as the distance between the mean embeddings
of pand g

MMD?(F,p,q) = |1, — |13 &)
where p, (1) = Eyk(x, t). Equation (1) can be written as

MMD?(F,p,q) =Exxpk(x,x) = 2Erepy ~qk(x,¥) +Eyy~gk(y,y),
2)

where x and x’ are independent, and so are y and y'. Importantly, if
k is a universal kernel, then MMD(F,p,q) =0 iff p = g. In practice,
the distributions p, g are unknown, and instead we are given obser-
vations X ={x1,...x,},Y={y1,...¥m}, so that the (biased) sample
version of (2) becomes

MMD?(F, X,Y) = L >
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ing the distributions of the calibrated data with the target distribution of each
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Autoencoder ResNet arch.

Maximum Mean Discrepancy
(MMD) loss function
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Removal of batch effects using
distribution-matching residual networks
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Shaham et al., Bioinf, 2017

t-SNE plots before (left) and after (right) calibration




DESC: Deep embedding for cell-type-specific batch correction
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DESC (Deep Embedding for single-cell clustering):

- Stacked auto-encoder learns cluster-specific gene  DESC avoids cluster-specific batch effects found in other methods
expression representation and cluster assignments
for scRNA-seq data clustering

- Initialize clustering obtained from autoencoder

- Learn non-linear mapping from original space to a
low-dimensional space

- iteratively optimize clustering objective function

- Move each cell to nearest cluster , —_— —~ —
- balance biological and technical differences Iterative approach progressively removes cluster-specific batch effects

epoch:0 epoch:3 epoch:6 epoch:9

between clusters " g 8 09
- reduce influence of batch effect 310 1 g0s
- Enables soft clustering by assigning cluster-specific (2.5 , i 0.50 r _f;f’O-?
probabilities to each cell G . - % e = 8| |Sos 1
- Facilitates clustering of cells with high confidence ' # 05 T %
Deep learning enables accurate clustering and batch effect removal in single-cell o4 O © % = =~ & 0.00 O & ¥ o 2 S o '@ >
RNA-seq analysis Q“(’O \950 S \g&q’ ¥ Q‘Z) Ve’@\ S $ \Q@éb 3 é;?é\ Q§z°§ ®<z°§ ®Q°§

Xiangjie Li,Yafei Lyu, Jihwan Park, Jingxiao Zhang, Dwight Stambolian, Katalin Susztak, Gang Hu, Mingyao Li

Rand Index (Rl) = measure of the similarity between two data clusterings
doi: https://doi.org/10.1101/530378

ARI = Adjusted Rand Index, adjusted for the chance grouping of elements



Autolmpute: Overcomplete autoencoder for filling in zeros
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Autoimpute captures more non-zero values for highly-expressed genes

Imputed Matrix
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Feed processed matrix to Autolmpute model ependymal
- learn expression data representation ™ > W w0 = - : . wanl
- reconstruct imputed matrix PCA1 PCA1
Use overcomplete autoencoders to capture distribution of sparse _ MAGIC: -0.16 _ drimpute: 0.08
gene expression data, and regenerate complete version of it
- Feeding sparse gene expression matrix as input to autoencoder wo| VAT iy
- train it to learn the encoder and decoder functions that best Al ‘

regenerate imputed expression with no dropouts S @ < .
- back-propagating errors only for non-zero counts in sparse matrix s & &

] E

Training and Hyper-parambter Selection. The autoencoder network consists of a fully-connected o . . . i . "
multi-layer perceptron (MLP), with three layers: input, hidden and the output layer. It is trained using gradient T .000 1500 1000 600 O 500 10X 30
descent with gradients computed by back-propagation to reach the minimum of the cost function (equation 8). PCA 1 PCA 1
RMSProp Optimizer was used to adjust the learning rate, such that, we avoid getting stuck at local minima and

reach the minimum of the cost function faster. Both E - encoder matrix and D - decoder matrix were initialized . . .
from a random normal distribution. Iterative approach progressively removes cluster-specific batch effects

The hyper-parameter selection was done after doing an extensive grid search on the following
hyper-parameters:

« - the regularization coefficient, to control the contribution of the regularization term in the loss or cost

function.
«  Size of the hidden layer or latent space dimensionality. AUtOIm pUte . AUtoenCOder based
« Initial value of learning rate.

« Threshold value - We stop the gradient descent after the change in loss function value in consecutive iter- m p Utat on Of Sin g I e-c el I R N A' Seq

ations is less than the threshold value, implying convergence.
data

Divyanshu Talwar', Aanchal Mongia’, Debarka pta'? & Angshul Maj

The best results were observed on the hyper-parameter choices shown in Table 2.
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scVI: Use NN to estimate params in variational inference

Variational posterior Generative model
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MNNs + PCA
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scVI retains biological signal in diverse datasets

scVI: Learn non-linear embedding of cells for multiple analysis tasks
NN=Neural networks used to compute embedding and expr. distribution
fw,fn: functional representations NN5,6 to capture parameters of Gaussians

Modeled observed expression xng (gene g, cell n) as sample

Drawn from zero-inflated negative binomial (ZINB) distribution

Conditioned on the batch annotation s, of each cell (if available)

And on two additional, unobserved random variables:

- pg" nuisance variation, 1-D Gaussian, model differences in capture
efficiency & sequencing depth, cell-specific scaling factor

- zn, remaining variation, 10-D Gaussian, model biological differences
between cells.

Represent each cell as point in low-dimensional latent space (for

visualization and clustering).

Neural network maps the latent variables to ZINB distribution parameters

(Fig. 1a, neural networks 5 and 6).

This mapping goes through intermediate variables:

- batch-corrected, normalized estimate of the percentage of transcripts
in each cell n that originate from each gene g

Use these estimates for differential expression analysis

Use scaled version (multiplying by estimated library size) for imputation.

Derived approximation for posterior distribution of latent variables g by

training another neural network using variational inference and a scalable

stochastic optimization procedure (NN1-NN4).

Mixture weight for reproducibility

Mixture weight for reproducibility
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Signed log corrected P value microarray

o

Signed log corrected Pvalue microarray

©

Signed log corrected P value microarray
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scVI enables differential expression analysis




Non-Linear Dimensionality Reduction



Dimensionality reduction: Some
Assumptions

* High-dimensional data often lies on or near a
much lower dimensional, curved manifold.

* A good way to represent data points is by their
low-dimensional coordinates.

* The low-dimensional representation of the data
should capture information about high-
dimensional pairwise distances.



The basic idea of non-parameteric
dimensionality reduction

Represent each data-point by a point in a lower
dimensional space.

Choose the low-dimensional points so that they optimally
represent some property of the data-points (e.g. the
pairwise distances).

— Many different properties have been tried.

Do not insist on learning a parametric “encoding”
function that maps each individual data-point to its low-
dimensional representative.

Do not insist on learning a parametric “decoding”
function that reconstructs a data-point from its low
dimensional representative.



Two types of dimensionality reduction

* Global methods assume that all pairwise
distances are of equal importance.

— Choose the low-D pairwise distances to fit the
high-D ones (using magnitude or rank order).

* Local methods assume that only the local
distances are reliable in high-D.

— Put more weight on modeling the local
distances correctly.



Linear methods of reducing dimensionality

« PCA finds the directions that have the most
variance.
— By representing where each datapoint is along
these axes, we minimize the squared
reconstruction error.

— Linear autoencoders are equivalent to PCA

« Multi-Dimensional Scaling arranges the low-
dimensional points so as to minimize the
discrepancy between the pairwise distances in the
original space and the pairwise distances in the

low-D space.



Metric Multi-Dimensional Scaling

* Find low dimensional Ao
representatives, y, for the high- Cost = Z (dij — dij)
dimensional data-points, x, that —_
preserve pairwise distances as well
as possible.

« An obvious approach is to start with dij = x; — Aj ||2
random vectors for the y’ s and then .
perform steepest descent by d.. = || Vi—Vi ||2
following the gradient of the cost Y l J
function.

« Since we are minimizing squared

errors, maybe this has something to
do with PCA?

— If so, we don’ t need an iterative
method to find the best
embedding.

i<J



Converting metric MDS to PCA

* If the data-points all lie on a hyperplane, their
pairwise distances are perfectly preserved by
projecting the high-dimensional coordinates onto

the hyperplane.

— So in that particular case, PCA is the right
solution.
« If we “double-center” the data, metric MDS is
equivalent to PCA.
— Double centering means making the mean
value of every row and column be zero.

— But double centering can introduce spurious
structure.



Other non-linear methods of reducing
dimensionality

* Non-linear autoencoders with extra layers are much more
powerful than PCA but they can be slow to optimize and
they get different, locally optimal solutions each time.

« Multi-Dimensional Scaling can be made non-linear by
putting more importance on the small distances. A popular
version is the Sammon mapping:

high-D low-D
distance distance

7o 4 i \\2
Cost =3 [ 11y =y, 1)
T =T )
* Non-linear MDS is also slow to optimize and also gets stuck
in different local optima each time.




Problems with Sammon mapping

* |t puts too much emphasis on getting very small
distances exactly right.

|t produces embeddings that are circular with
roughly uniform density of the map points.



IsoMap: Local MDS without local optima

* Instead of only modeling local
distances, we can try to
measure the distances along
the manifold and then model
these intrinsic distances.

— The main problem is to find a
robust way of measuring
distances along the manifold.

— If we can measure manifold
distances, the global
optimisation is easy: It' s just
global MDS (i.e. PCA)

If we measure distances
along the manifold,
d(1,6) > d(1,4)

2-D

1-D oo © o o o




How Isomap measures intrinsic distances

« Connect each datapoint to its
K nearest neighbors in the
high-dimensional space.

e Put the true Euclidean
distance on each of these A

links.

« Then approximate the 5
manifold distance between I
any pair of points as the
shortest path in this
“neighborhood graph”.



Using Isomap to discover the intrinsic
manifold in a set of face images




Linear methods cannot
Interpolate properly between
the leftmost and rightmost
Images in each row.

This is because the
interpolated images are NOT
averages of the images at
the two ends.

Isomap does not interpolate
properly either because it can
only use examples from the
training set. It cannot create
new images.

But it is better than linear
methods.



Maps that preserve local geometry

The idea is to make the local configurations of
points in the low-dimensional space resemble
the local configurations in the high-dimensional
space.

We need a coordinate-free way of representing
a local configuration.

If we represent a point as a weighted average of
nearby points, the weights describe the local
configuration.

X; % ) WjX;
J



Finding the optimal weights

* This is easy.

« Minimize the squared “construction” errors subject to the
sum of the weights being 1.

COSZLZZHXl‘— ZWUX] HZ, ZWU =1
l

je N(i) je N(i)

« If the construction is done using less neighbors than the
dimensionality of x, there will generally be some
construction error

— The error will be small if there are as many neighbors
as the dimensionality of the underlying noisy manifold.



A sensible but inefficient way to use the
local weights

Assume a low-dimensional latent space.
— Each datapoint x; has latent coordinates y;.

Find a set of latent points that minimize the construction
errors produced by a two-stage process:

— 1. First use the latent points to compute the local
weights that construct y;from its neighbors.

— 2. Use those weights to construct the high-
dimensional coordinates of a datapoint x;from the
high-dimensional coordinates of its neighbors.

Unfortunately, this is a hard optimization problem.

— lterative solutions are expensive because they must

repeatedly measure the construction error in the high-
dimensional space.



Local Linear Embedding: A less sensible but
more efficient way to use local weights

 Instead of using the the latent points plus the other
datapoints to construct each held-out datapoint, do it the

other way around.
» Use the datapoints to determine the local weights, then
try to construct each latent point from its neighbors.
— Now the construction error is in the low-dimensional
latent space.
« We only use the high-dimensional space once to get the
local weights.
— The local weights stay fixed during the optimization of
the latent coordinates.

— This is a much easier search.



The convex optimization

fixed weights

|
Cost = ZH Vi — ZWinj ||2

i je N(i)

« Find the y’ s that minimize the cost subject to the
constraint that the y’ s have unit variance on
each dimension.

— Why do we need to impose a constraint on
the variance?



The collapse problem

« If all of the latent points are identical, we can construct
each of them perfectly as a weighted average of its
neighbors.

— The root cause of this problem is that we are
optimizing the wrong thing.

— But maybe we can fix things up by adding a constraint
that prevents collapse.

 Insist that the latent points have unit variance on each
latent dimension.

— This helps a lot, but sometimes LLE can satisfy this
constraint without doing what we really intend.



Failure modes of LLE

* If the neighborhood graph has
several disconnected pieces,
we can satisfy the unit variance
constraint and still have
collapses.

« Even if the graph is fully
connected, it may be possible
to collapse all the densely o
connected regions and satisfy

the variance constraint by
paying a high cost for a few
outliers.



A typical embedding found by LLE

 LLE embeddings
often look like this.

 Most of the data is
close to the center of
the space.

* Afew points are far
from the center to
satisfy the unit
variance constraint.




A comment on LLE

It has two very attractive features

— 1. The only free parameters are the dimensionality of
the latent space and the number of neighbors that are
used to determine the local weights.

— 2. The optimization is convex so we don’ t need
multiple tries and we don’ t need to fiddle with
optimization parameters.

It has one bad feature:
— It is not optimizing the right thing!
— One consequence is that it does not have any

incentive to keep widely separated datapoints far
apart in the low-dimensional map.



Maximum Variance Unfolding

« This fixes one of the problems of LLE and still manages
to be a convex optimization problem.

« Use a few neighbors for each datapoint and insist that
the high-dimensional distances between neighbors are
exactly preserved in the low-dimensional space.

— This is like connecting the points with rods of fixed
lengths.
« Subject to the rigid rods connecting the low-dimensional
points, maximize their squared separations.

— This encourages widely separated datapoints to
remain separated in the low-dimensional space.



How to solve many problems in Al

« 1. Map from the data domain to a domain of
feature vectors in which the important
relationships can be modeled by linear
operations.

e 2. Do some linear operations.

« 3. Map the answer back to the data domain.



Modeling relational data

« Suppose we have a set of facts of the form ARB

—I.e. The relation R maps Ato B as In
Allan has-mother Beatrice

* We could model the facts using matrix algebra.
— Learn a vector for each object
— Learn a matrix for each relation

— The aim is to make A*R=B

 This doesnt work because all the vectors learn to
be zero.

— We need A*R to be closer to B than to C.




A discriminative cost function

2
ol AR-B|

2

PB|AR
' 2 :enAR—cn

C




Applying the idea to dimensionality reduction

0. Compute a big probability table that contains the
probability that each high-dimensional data-point , i,
would pick another data-point , j, as its “neighbor”.

1. Use a learned look-up table to convert each high-
dimensional data-point to a 2-D feature vector.

2. Multiply by the identity matrix.

3. Compare the resulting 2-D feature vector with all the
other 2-D feature vectors to get a predicted distribution
over data-points in the original data-space.

Learn the look-up tables so that the probabilities
computed in the 2-D space match the probabilities
computed in the original space.



-

A probabilistic version of local MDS

* |t is more important to get local distances right
than non-local ones, but getting infinitessimal
distances right is not infinitely important.

— All the small distances are about equally
important to model correcitly.

— Stochastic neighbor embedding has a
probabilistic way of deciding if a pairwise
distance is “local”.



Stochastic Neighbor Embedding

 First convert each high-dimensional similarity
into the probability that one data point will pick
the other data point as its neighbor.

* To evaluate a map:

— Use the pairwise distances in the low-
dimensional map to define the probability that
a map point will pick another map point as its

neighbor.
— Compute the Kullback-Leibler divergence

between the probabilities in the high-
dimensional and low-dimensional spaces.



A probabilistic local method

Each point in high-D has a .
conditional probability of
picking each other point as its
neighbor.

The distribution over neighbors
Is based on the high-D .
pairwise distances.

— If we do not have

High-D Space

[ ]

coordinates for the
datapoints we can use a
matrix of dissimilarities
instead of pairwise

distances. / Pili =

probability of picking j
given that you start at |




Throwing away the raw data

« The probabillities that each points picks other points as
its neighbor contains all of the information we are going
to use for finding the manifold.

— Once we have the probabilities P i we do not need
to do any more computations in the high-dimensional

space.

— The input could be “dissimilarities” between pairs of
datapoints instead of the locations of individual
datapoints in a high-dimensional space.



Evaluating an arrangement of the data in a low-dimensional
space

 Give each datapoint a Low-D Space
location in the low-

dimensional space. . ./'

— Evaluate this
representation by 7
seeing how well the
low-D probabilities

model the high-D —d?z

ones. .

l
probability of picking | Z €
given that you start at | k




The cost function for a low-dimensional

representation
P jli
Cost = ) KL(P; | 0;) = ). ij|l log qf|
i i Jjli

» For points where pij is large and qgijis small we lose a lot.

— l\leagay points in high-D really want to be nearby in
OW-

« For points where qijis large and pijis small we lose a
little because we waste some of the probability mass in
the Qi distribution.

— Widely separated points in high-D have a mild
preference for being widely separated in low-D.



The forces acting on the low-dimensional points

0Cost

oy = 22()’]- =Y (Pji =4 i + Pyj — i)

J

« Points are pulled towards
each other if the p’ s are
bigger than the q' s and
repelled if the q’ s are

I
bigger than the p’ s /
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Picking the radius of the gaussian that
Is used to compute the p’s

We need to use different radii in different parts of the
space so that we keep the effective number of
neighbors about constant.

A big radius leads to a high entropy for the
distribution over neighbors of i.

A small radius leads to a low entropy.

So decide what entropy you want and then find the
radius that produces that entropy.

Its easier to specify 2*entropy
— This is called the perplexity
— It is the effective number of neighbors.



Symmetric SNE

* There is a simpler version of SNE which seems
to work about equally well.

« Symmetric SNE works best if we use different
procedures for computing the p’s and the q' s

— This destroys the nice property that if we
embed in a space of the same dimension as
the data, the data itself is the optimal solution.



Computing the p’ s for symmetric SNE

« Each high dimensional point, High-D Space
I, has a conditional . *
probability of picking each .k ‘/
other point, j, as its
neighbor.

 The conditional distribution

over neighbors is based on .

the high-dimensional : 5 5

pairwise distances. ~d: /25
e

P Pji = —d? /202
ik
probability of picking j Z €
given that you start at |



Turning conditional probabilities
Into pairwise probabillities

To get a symmetric probability between i and j we sum
the two conditional probabilities and divide by the
number of points (points are not allowed to choose

themselves).
Pji * Pij

2n

joint probability of B
picking the pair i, m—)> pl] —

This ensures that all the pairwise probabilities sum to 1 so
they can be treated as probabillities.

2. pij =1
N,



Evaluating an arrangement of the points in the low-
dimensional space

 Give each data-point a Low-D Space
location in the low-

dimensional space.

— Define low-dimensional
probabilities symmetrically. .

— Evaluate the koo
representation by seeing .
how well the low-D _Jg2
probabilities model the e Y
high-D affinities. qij —



The cost function for a low-dimensional

representation
Pij
Cost =KL(P| Q)| = D p;j log—
i<j qij

 It’' s a single KL instead of the sum of one KL for each
datapoint.



The forces acting on the low-dimensional points

extension stiffness

aKLé;H Q) 2Z(Yil_Yj) (P l_ql'f')
| j

« Points are pulled towards
each other if the p’ s are
bigger than the q’ s and J
repelled if the q’ s are bigger
thanthe p’s

I
— Its equivalent to having /
springs whose stiffnesses

are set dynamically.




SNE applied to 30—-dimensional PCA codes of 5000 MNIST digits
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Optimization methods for SNE

We get much better global organization if we use
annealing.

— Add Gaussian noise to the y locations after each
update.

— Reduce the amount of noise on each iteration.

— Spend a long time at the noise level at which the
global structure starts to form from the hot plasma
of map points.

It also helps to use momentum (especially at the
end).

It helps to use an adaptive global step-size.



More optimization tricks for SNE

* Anneal the perplexity.

— This is expensive because it involves computing
distances in the high-dimensional data-space.

* Dimension decay

— Use additional dimensions to avoid local optima,
then penalize the squared magnitudes of the map
points on the extra dimensions.

« Turn up the penalty coefficient until all of the map
points have very small values on those extra
dimensions.

* Neither of these tricks is a big win in general.



A more interesting variation that uses
the probabilistic foundation of SNE

 All other dimensionality reduction methods

assume that each data point is represented by
ONE point in the map.

« But suppose we had several different maps.

— Each map has a representative of each

datapoint and the representative has a mixing
proportion.

— The overall qij is a sum over all maps

"™ exp(—d™

_Z m mo_ i p( z‘j)
qij = L 4 qij = 7
m




A nice dataset for testing “Aspect maps”

« Give someone a word and ask them to say the
first other word they associate with it.

— Different senses of a word will have different
associations and so they should show up In
different aspect maps.



Two of the 50 aspect maps for
the Florida word association data
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The relationship between aspect maps
and clustering

If we force all of the locations in each map to be
the same, it's a form of spectral clustering!

Putting a point into a map is not just based on
the affinities it has to the other points in the map.

— It depends on whether it can find a location in
the map that allows it to mathc the pattern of
affinities.

— It has a very abstract resemblance to mixtures
of experts vs ordinary mixtures.



A weird behaviour of aspect maps

 |If we use just 2 aspect maps, one of them
collapses all of the map points to the same
location.

— Its trying to tell us something!

* |t wants to use a uniform background probability
for all pairs

l-x
95 =7 qi1j+ 21
N




Why SNE does not have gaps between
classes

 In the high-dimensional space there are many pairs
of points that are moderately close to each other.
— The low-D space cannot model this. It doesn’ t
have enough room around the edges.
* So there are many pij’ s that are modeled by smaller
qij s.
— This has the effect of lots of weak springs pulling

everything together and crushing different classes
together in the middle of the space.

* A uniform background model eliminates this effect
and allows gaps between classes to appear.

— It is quite like Maximum Variance Unfolding
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From UNI-SNE to t-SNE

* Laurens van der Maaten started experimenting
on UNI-SNE and we soon realised that it was
easier to replace the mixture of a Gaussian and
a uniform by an infinite mixture of Gaussians:

1
oC
1+d§

9ij

* By using a Gaussian to compute Djj and a
heavy-tailed student’s t to compute qij we
partially compensate for the different rates of
growth of volume as you move away from a
point in 2-D and in N-D.



t-SNE

 |Instead of using a gaussian plus a uniform, why
not use gaussians at many different spatial
scales?

— This sounds expensive, but if we use an
infinite number of gaussians, its actually
cheaper because we avoid exponentiating.

1
2
1+dU

qdij %~



Optimization hacks

* Reputable hack: Introduce a penalty term that
keeps all the map-points close together.

— Then gradually relax the penalty to break
symmetry slowly.

» Disreputable hack: Allow the probabilities to add
up to 4.

— This causes the map-points to curdle into
small clusters leaving lots of space for
clusters to move past each other.

— Then make the probabillities add up to 1.



Two other state-of-the-art dimensionality
reduction methods on the 6000 MNIST digits




t-SNE on the 6000 MNIST digits
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The COIL20 dataset

Each object is
rotated about
a vertical axis
to produce a
closed one-
dimensional
manifold of
images.




Isomap & LLE for COIL20 dataset

Isomap Locally Linear
Embedding



t-SNE for COIL20 dataset



Show the map of 2000 English words
produced by Joseph Turian using
t-SNE on the feature vectors learned by
Colobert and Weston (ICML 2008)



Using t-SNE to see what you are thinking
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Using t-SNE to see how a DBN that recognizes
phonemes deals with speaker variation

« Current speech recognizers try to preprocess the
input to eliminate differences between speakers.
* We get very good performance from a DBN
without doing this.
— Its very difficult to improve the DBN by adding
speaker information.

 Maybe the DBN is using its hidden layers to get
rid of speaker variation .
— This would explain why speaker information is

not much help.



t-SNE applied to windows of 15 input frames
for 6 speakers saying two sentences
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t-SNE applied to the first hidden layer
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t-SNE applied to the 8t hidden layer
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Some recent developments

* Miguel Carreira-Perpinan (ICML 2010) showed
that the original SNE cost function can be
rewritten so that it is equivalent to Laplacian
Eigenmaps with an extra repulsion term that
spreads out the map points (like in MVU).

* This led to a much faster optimization method.
The fast code is now on the t-SNE webpage.



Combining non-parametric dimensionality
reduction with neural networks

* |If we have a smooth objective function that
assigns a value to a set of codes, we can
backpropagate its derivatives through a
feedforward neural net.

— The neural net is like the “encoder” part of an
autoencoder.
« We could combine this objective function with
the objective of getting good reconstructions
from the codes.



Evaluating the codes found by an

autoencoder
e Use 3000 images of g reconstruction
handwritten digits from f
the USPS training set. 100 units

— Each image is 16x16

and fairly binary. 20 linear
« Use a highly non-linear code units
autoencoder
— Use logistic output units 200 units

and linear code units.

;2 data




Does code space capture the structure
of the data?

 We would like the code space to model the
underlying structure of the data.

— Digits in the same class should get closer together in
code space.

— Digits of different classes should get further apart.

 We can use k nearest neighbors to see if this
happens.

— Hold out each image in turn and try to label it by using
the labels of its k nearest neighbors.

 |n pixel space we get 5.9% errors. In code space
we get about 12% errors. Why doesn’ t it work?



How It goes wrong

 PCA s not powerful .
enough to really mangle . C
the data. . B

A v

* Non-linear auto-encoders

A B

can fracture a manifold
into many different C

domains. B

— This can lead to very A v

different codes for nearby
data-points.




How to fix it

* We need a regularizer that will make it costly to
fracture the manifold.

— There are many possible regularizers.

« Stochastic neighbor embedding can be used as
a regularizer.

— Its like putting springs between the codes to
orevent the codes for similar datapoints from
peing too far apart.




How the gradients are combined

Forces generated by
springs attaching
this code to the
codes for all the
other data-points.
The stiffness of
each spring is
dynamically set to
be: Pij —{Yij
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How well does it work?

* Instead of rising from 5.9% to 12%, the hold-
one-out KNN error falls to about 2%

— The strength of the regularizer must be
chosen sensibly.

— The SNE regularizer alone gives about 4.5%
hold-one-out KNN errors.

« Can we visualize the codes that are produced
using the regularizer?



Learning codes with some pairwise
information about labels

* |If we pair each digit with another of the same
class, there are very nice category boundaries
between digits.



10

-10




A more efficient version

* The derivatives that come from the autoencoder
will stop the codes from all collapsing to a point.

— So we don’ t need the quadratically expensive
normalization term that is used in computing
the qij’ s
« We should be able to just add attractive forces
between codes that correspond to similar inputs.

— The similarity could be measured in the input
space or it could be based on extra
information (e.g. identity of class labels).



Non-linear Neighborhood Components
Analysis (Salakhutdinov and Hinton, 2007)

« Use a feed forward neural net to learn codes that make
nearest neighbor classification work well.

* In code space, we can predict the class of a point by
summing the probabilities assigned to other points of
that class when we use the stochastic neighbor
probabilities.

p(class(i)=c) = ij|,-
jec

« So we do gradient ascent in the log probabilities of
getting the correct class for each point when it is held-out



What NNCA achieves

« Linear Discriminant Analysis tries to find a projection of
the data that makes each point be close to other points
of the same class and far from other points of different

classes.

— This is a bad objective function if the classes form
long curved manifolds

2 Two manifold

Three manifold



NCA

 NCA is the linear version of NNCA. It aims to
find projections in which each datapoint is close
to some other datapoints of the same class and

not too close to datapoints of other classes.

— This does not force all points of the same
class to be similar.

- But it can allow manifolds to become
disconnected.
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