
Imputation reveals gene-gene correlation patterns





Integrating multiple 
single-cell datasets



Canonical Correlation Analysis (CCA)

From: Butlet et al., 2018



Mutual nearest neighbors (MNN) correction

From: Haghverdi et al., 2018



Summary and 
Method comparison 



Tian, L., Dong, X., Freytag, S., Lê Cao, K.-A., Su, S., JalalAbadi, A., … Ritchie, M. E. (2019). Benchmarking single 
cell RNA-sequencing analysis pipelines using mixture control experiments. Nature Methods, 16(6), 479–487.
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Soneson, C., & Robinson, M. D. (2018). Bias, robustness and scalability in single-cell differential expression analysis. Nature Methods, 15(4), 255–
261.

Found Limma-trend, MAST, edgeR, also t-test and 
Wilcoxon to perform well

Comparison of differential 
expression methods



Vieth, B., Parekh, S., Ziegenhain, C., Enard, W., & Hellmann, I. (2019). A systematic evaluation of single cell RNA-seq analysis pipelines. Nature Communications, 10(1), 4667.



Summary

● Normalization
○ Scran and Linnorm

● Imputation
○ SAVER

● Batch-correction
○ [fast]MNN and Harmony

● Clustering
○ ACTIONet and Seurat

● Trajectory detection
○ Monocle3 and Slingshot

● Differential expression
○ Limma-trend



Deep Learning methods for scRNA-seq



MMD-ResNet: Autoencoder for batch correction

Autoencoder ResNet arch.

Shaham et al., Bioinf, 2017 t-SNE plots before (left) and after (right) calibration

Train ResNet with loss MMD score function 

Maximum Mean Discrepancy 
(MMD) loss function

MMD-ResNet outperforms PCA, Combat, and 

MMD-ResNet P-value distribution
shifted to high KS P-values 
(more similar distributions)

MMD-ResNet

Prkca-high cells Combat MMD-ResNet



DESC: Deep embedding for cell-type-specific batch correction

DESC (Deep Embedding for single-cell clustering): 
- Stacked auto-encoder learns cluster-specific gene 

expression representation and cluster assignments 
for scRNA-seq data clustering 

- Initialize clustering obtained from autoencoder
- Learn non-linear mapping from original space to a 

low-dimensional space
- iteratively optimize clustering objective function

- Move each cell to nearest cluster
- balance biological and technical differences 

between clusters
- reduce influence of batch effect

- Enables soft clustering by assigning cluster-specific 
probabilities to each cell

- Facilitates clustering of cells with high confidence

DESC avoids cluster-specific batch effects found in other methods

Iterative approach progressively removes cluster-specific batch effects

Rand Index (RI) = measure of the similarity between two data clusterings
ARI = Adjusted Rand Index, adjusted for the chance grouping of elements



AutoImpute: Overcomplete autoencoder for filling in zeros

AutoImpute
Filter raw gene expression data for bad genes
(normalize by library size, prune by gene-selection, log transform)
Feed processed matrix to AutoImpute model
- learn expression data representation
- reconstruct imputed matrix
Use overcomplete autoencoders to capture distribution of sparse 
gene expression data, and regenerate complete version of it
- Feeding sparse gene expression matrix as input to autoencoder
- train it to learn the encoder and decoder functions that best 

regenerate imputed expression with no dropouts
- back-propagating errors only for non-zero counts in sparse matrix

Autoimpute captures more non-zero values for highly-expressed genes

Iterative approach progressively removes cluster-specific batch effects

Fewer zeros



scVI: Use NN to estimate params in variational inference

scVI: Learn non-linear embedding of cells for multiple analysis tasks
NN=Neural networks used to compute embedding and expr. distribution
fw,fh: functional representations NN5,6 to capture parameters of Gaussians

Modeled observed expression xng (gene g, cell n) as sample
Drawn from zero-inflated negative binomial (ZINB) distribution
Conditioned on the batch annotation sn of each cell (if available)
And on two additional, unobserved random variables: 
- ρgn nuisance variation, 1-D Gaussian, model differences in capture 

efficiency & sequencing depth, cell-specific scaling factor
- zn, remaining variation, 10-D Gaussian, model biological differences 

between cells. 
Represent each cell as point in low-dimensional latent space (for 
visualization and clustering). 
Neural network maps the latent variables to ZINB distribution parameters 
(Fig. 1a, neural networks 5 and 6). 
This mapping goes through intermediate variables: 
- batch-corrected, normalized estimate of the percentage of transcripts 

in each cell n that originate from each gene g
Use these estimates for differential expression analysis 
Use scaled version (multiplying by estimated library size) for imputation. 
Derived approximation for posterior distribution of latent variables q by 
training another neural network using variational inference and a scalable 
stochastic optimization procedure (NN1-NN4).

scVI retains biological signal in diverse datasets

scVI enables differential expression analysis



Non-Linear Dimensionality Reduction



Dimensionality reduction: Some 
Assumptions

• High-dimensional data often lies on or near a 
much lower dimensional, curved manifold.

• A good way to represent data points is by their 
low-dimensional coordinates.

• The low-dimensional representation of the data 
should capture information about high-
dimensional pairwise distances.



The basic idea of non-parameteric 
dimensionality reduction

• Represent each data-point by a point in a lower 
dimensional space.

• Choose the low-dimensional points so that they optimally 
represent some property of the data-points (e.g. the 
pairwise distances).
– Many different properties have been tried.

• Do not insist on learning a parametric �encoding��
function that maps each individual data-point to its low-
dimensional representative.

• Do not insist on learning a parametric �decoding�
function that reconstructs a data-point from its low
dimensional representative.



Two types of dimensionality reduction

• Global methods assume that all pairwise 
distances are of equal importance.
– Choose the low-D pairwise distances to fit the 

high-D ones (using magnitude or rank order).

• Local methods assume that only the local 
distances are reliable in high-D.
– Put more weight on modeling the local 

distances correctly.



Linear methods of reducing dimensionality
• PCA finds the directions that have the most 

variance.
– By representing where each datapoint is along 

these axes, we minimize the squared 
reconstruction error.

– Linear autoencoders are equivalent to PCA

• Multi-Dimensional Scaling arranges the low-
dimensional points so as to minimize the 
discrepancy between the pairwise distances in the 
original space and the pairwise distances in the 
low-D space.



Metric Multi-Dimensional Scaling

• Find low dimensional 
representatives, y, for the high-
dimensional data-points, x, that 
preserve pairwise distances as well 
as possible.

• An obvious approach is to start with 
random vectors for the y�s and then 
perform steepest descent by 
following the gradient of the cost 
function.

• Since we are minimizing squared 
errors, maybe this has something to 
do with PCA?
– If so, we don�t need an iterative 

method to find the best 
embedding.

2ˆ

ijd̂ = || yi - y j ||2
dij = || xi - x j ||2

Cost =å (dij - dij )
i< j



Converting metric MDS to PCA
• If the data-points all lie on a hyperplane, their 

pairwise distances are perfectly preserved by 
projecting the high-dimensional coordinates onto 
the hyperplane.
– So in that particular case, PCA is the right 

solution.
• If we �double-center��the data, metric MDS is 

equivalent to PCA.
– Double centering means making the mean 

value of every row and column be zero.
– But double centering can introduce spurious 

structure.



• Non-linear MDS is also slow to optimize and also gets stuck 
in different local optima each time.

Other non-linear methods of reducing 
dimensionality

• Non-linear autoencoders with extra layers are much more 
powerful than PCA but they can be slow to optimize and 
they get different, locally optimal solutions each time.

• Multi-Dimensional Scaling can be made non-linear by 
putting more importance on the small distances. A popular 
version is the Sammon mapping:
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Problems with Sammon mapping

• It puts too much emphasis on getting very small 
distances exactly right.

• It produces embeddings that are circular with 
roughly uniform density of the map points.



IsoMap: Local MDS without local optima

• Instead of only modeling local 
distances, we can try to 
measure the distances along 
the manifold and then model 
these intrinsic distances.

– The main problem is to find a 
robust way of measuring 
distances along the manifold.

– If we can measure manifold 
distances, the global 
optimisation is easy: It�s just 
global MDS (i.e. PCA)

2-D

1-D

If we measure distances 

along the manifold, 

d(1,6) > d(1,4)

1

4
6



How Isomap measures intrinsic distances

• Connect each datapoint to its 
K nearest neighbors in the 
high-dimensional space.

• Put the true Euclidean 
distance on each of these 
links.

• Then approximate the 
manifold distance between 
any pair of points as the 
shortest path in this 
�neighborhood graph�.

A

B



Using Isomap to discover the intrinsic 
manifold in a set of face images



Linear methods cannot 
interpolate properly between 
the leftmost and rightmost 
images in each row.

This is because the 
interpolated images are NOT 
averages of the images at 
the two ends.

Isomap does not interpolate 
properly either because it can 
only use examples from the 
training set. It cannot create 
new images.

But it is better than linear 
methods.



Maps that preserve local geometry

• The idea is to make the local configurations of 
points in the low-dimensional space resemble 
the local configurations in the high-dimensional 
space.

• We need a coordinate-free way of representing 
a local configuration.

• If we represent a point as a weighted average of 
nearby points, the weights describe the local 
configuration.

xi »åwijx j  
j



Finding the optimal weights
• This is easy.
• Minimize the squared �construction� errors subject to the 

sum of the weights being 1.

• If the construction is done using less neighbors than the 
dimensionality of x, there will generally be some 
construction error
– The error will be small if there are as many neighbors 

as the dimensionality of the underlying noisy manifold.

åwij =1
je N (i)

Cost =å|| xi - åwijx j ||2,
i je N (i)



A sensible but inefficient way to use the 
local weights

• Assume a low-dimensional latent space.
– Each datapoint xi has latent coordinates yi.

• Find a set of latent points that minimize the construction 
errors produced by a two-stage process:
– 1. First use the latent points to compute the local 

weights that construct yi from its neighbors.
– 2. Use those weights to construct the high-

dimensional coordinates of a datapoint xi from the 
high-dimensional coordinates of its neighbors.

• Unfortunately, this is a hard optimization problem.
– Iterative solutions are expensive because they must 

repeatedly measure the construction error in the high-
dimensional space.



Local Linear Embedding: A less sensible but 
more efficient way to use local weights

• Instead of using the the latent points plus the other 
datapoints to construct each held-out datapoint, do it the 
other way around.

• Use the datapoints to determine the local weights, then 
try to construct each latent point from its neighbors.
– Now the construction error is in the low-dimensional 

latent space.
• We only use the high-dimensional space once to get the 

local weights.
– The local weights stay fixed during the optimization of 

the latent coordinates.
– This is a much easier search.



The convex optimization
fixed weights

Cost =å|| yi - åwijy j ||2
i je N (i)

• Find the y�s that minimize the cost subject to the 
constraint that the y�s have unit variance on 
each dimension.
– Why do we need to impose a constraint on 

the variance?



The collapse problem

• If all of the latent points are identical, we can construct 
each of them perfectly as a weighted average of its 
neighbors.
– The root cause of this problem is that we are 

optimizing the wrong thing.
– But maybe we can fix things up by adding a constraint 

that prevents collapse.
• Insist that the latent points have unit variance on each 

latent dimension.
– This helps a lot, but sometimes LLE can satisfy this 

constraint without doing what we really intend.



Failure modes of LLE

• If the neighborhood graph has 
several disconnected pieces, 
we can satisfy the unit variance 
constraint and still have 
collapses.

• Even if the graph is fully 
connected, it may be possible 
to collapse all the densely 
connected regions and satisfy 
the variance constraint by 
paying a high cost for a few 
outliers.



A typical embedding found by LLE

• LLE embeddings 
often look like this.

• Most of the data is 
close to the center of 
the space.

• A few points are far 
from the center to 
satisfy the unit 
variance constraint.



A comment on LLE

• It has two very attractive features

– 1. The only free parameters are the dimensionality of 
the latent space and the number of neighbors that are 
used to determine the local weights.

– 2. The optimization is convex so we don�t need 
multiple tries and we don�t need to fiddle with 
optimization parameters.

• It has one bad feature:

– It is not optimizing the right thing!

– One consequence is that it does not have any 
incentive to keep widely separated datapoints far 
apart in the low-dimensional map.



Maximum Variance Unfolding

• This fixes one of the problems of LLE and still manages 
to be a convex optimization problem.

• Use a few neighbors for each datapoint and insist that 
the high-dimensional distances between neighbors are 
exactly preserved in the low-dimensional space.
– This is like connecting the points with rods of fixed 

lengths.
• Subject to the rigid rods connecting the low-dimensional 

points, maximize their squared separations.
– This encourages widely separated datapoints to 

remain separated in the low-dimensional space.



How to solve many problems in AI

• 1. Map from the data domain to a domain of 
feature vectors in which the important 
relationships can be modeled by linear 
operations.

• 2. Do some linear operations.

• 3. Map the answer back to the data domain.



Modeling relational data

• Suppose we have a set of facts of the form ARB
– i.e. The relation R maps A to B as in 

Allan has-mother Beatrice
• We could model the facts using matrix algebra.

– Learn a vector for each object
– Learn a matrix for each relation
– The aim is to make A*R=B

• This doesnt work because all the vectors learn to 
be zero.
– We need A*R to be closer to B than to C.



A discriminative cost function

C

= 2

åe||AR-C||

2

e||AR-B||
pB|AR



Applying the idea to dimensionality reduction

• 0. Compute a big probability table that contains the 
probability that each high-dimensional data-point , i, 
would pick another data-point , j, as its �neighbor�.

• 1. Use a learned look-up table to convert each high-
dimensional data-point to a 2-D feature vector.

• 2. Multiply by the identity matrix.
• 3. Compare the resulting 2-D feature vector with all the

other 2-D feature vectors to get a predicted distribution
over data-points in the original data-space.

• Learn the look-up tables so that the probabilities 
computed in the 2-D space match the probabilities 
computed in the original space.



A probabilistic version of local MDS

• It is more important to get local distances right 
than non-local ones, but getting infinitessimal 
distances right is not infinitely important.
– All the small distances are about equally 

important to model correctly.
– Stochastic neighbor embedding has a 

probabilistic way of deciding if a pairwise 
distance is �local�.



Stochastic Neighbor Embedding
• First convert each high-dimensional similarity 

into the probability that one data point will pick 
the other data point as its neighbor.

• To evaluate a map:
– Use the pairwise distances in the low-

dimensional map to define the probability that 
a map point will pick another map point as its 
neighbor.

– Compute the Kullback-Leibler divergence 
between the probabilities in the high-
dimensional and low-dimensional spaces.



• Each point in high-D has a 
conditional probability of 
picking each other point as its 
neighbor.

• The distribution over neighbors 
is based on the high-D 
pairwise distances.
– If we do not have 

coordinates for the 
datapoints we can use a 
matrix of dissimilarities 
instead of pairwise 
distances.

A probabilistic local method

High-D Space
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Throwing away the raw data

• The probabilities that each points picks other points as 
its neighbor contains all of the information we are going 
to use for finding the manifold.
– Once we have the probabilities

to do any more computations in the high-dimensional 
space.

– The input could be �dissimilarities� between pairs of 
datapoints instead of the locations of individual 
datapoints in a high-dimensional space.

p j|i we do not need



Evaluating an arrangement of the data in a low-dimensional 
space

• Give each datapoint a 
location in the low-
dimensional space.
– Evaluate this 

representation by 
seeing how well the 
low-D probabilities 
model the high-D 
ones.

Low-D Space
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The cost function for a low-dimensional 
representation

i i j j|i
• For points where pij is large and qij is small we lose a lot.

– Nearby points in high-D really want to be nearby in 
low-D

• For points where qij is large and pij is small we lose a 
little because we waste some of the probability mass in 
the Qi distribution.
– Widely separated points in high-D have a mild 

preference for being widely separated in low-D.

p j|iCost = åKL(Pi ||Qi ) = å å p j|i log q



The forces acting on the low-dimensional points

• Points are pulled towards  
each other if the p�s are 
bigger than the q�s and 
repelled if the q�s are 
bigger than the p�s

ji

¶Cost
= 2å(y j - y i ) (p j|i - q j|i + pi| j - qi| j )¶y

j

i



Data from sne paper
Unsupervised 
SNE embedding 
of the digits 0-4. 
Not all the data 
is displayed



Picking the radius of the gaussian that 
is used to compute the p’s

• We need to use different radii in different parts of the 
space so that we keep the effective number of 
neighbors about constant.

• A big radius leads to a high entropy for the 
distribution over neighbors of i.

• A small radius leads to a low entropy.
• So decide what entropy you want and then find the 

radius that produces that entropy.
• Its easier to specify 2^entropy

– This is called the perplexity
– It is the effective number of neighbors.



Symmetric SNE

• There is a simpler version of SNE which seems 
to work about equally well.

• Symmetric SNE works best if we use different 
procedures for computing the p�s and the q�s
– This destroys the nice property that if we 

embed in a space of the same dimension as 
the data, the data itself is the optimal solution.



Computing the p�s for symmetric SNE

• Each high dimensional point, 
i, has a conditional 
probability of picking each 
other point, j, as its 
neighbor.

• The conditional distribution 
over neighbors is based on 
the high-dimensional 
pairwise distances.

High-D Space
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Turning conditional probabilities 
into pairwise probabilities

To get a symmetric probability between i and j we sum 
the two conditional probabilities and divide by the 
number of points (points are not allowed to choose 
themselves).

This ensures that all the pairwise probabilities sum to 1 so 
they can be treated as probabilities.

å pij =1
i, j

ij 2n

p j|i + pi| j
p =joint probability of 

picking the pair i,j



Evaluating an arrangement of the points in the low-
dimensional space

• Give each data-point a 
location in the low-
dimensional space.
– Define low-dimensional 

probabilities symmetrically.
– Evaluate the 

representation by seeing 
how well the low-D 
probabilities model the 
high-D affinities.

Low-D Space

i

j

k
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The cost function for a low-dimensional 
representation

• It�s a single KL instead of the sum of one KL for each 
datapoint.

i< j
ij qij

pij
Cost = KL(P ||Q) | = å p log



• Points are pulled towards 
each other if the p�s are 
bigger than the q�s and 
repelled if the q�s are bigger 
than the p�s
– Its equivalent to having 

springs whose stiffnesses 
are set dynamically.

ji
- qij )

¶KL(P ||Q)
= 2å(yi - y j ) (pij¶y

j

i

The forces acting on the low-dimensional points

extension stiffness





Optimization methods for SNE

• We get much better global organization if we use 
annealing.
– Add Gaussian noise to the y locations after each 

update.
– Reduce the amount of noise on each iteration.
– Spend a long time at the noise level at which the 

global structure starts to form from the hot plasma 
of map points.

• It also helps to use momentum (especially at the 
end).

• It helps to use an adaptive global step-size.



More optimization tricks for SNE

• Anneal the perplexity.
– This is expensive because it involves computing 

distances in the high-dimensional data-space.
• Dimension decay

– Use additional dimensions to avoid local optima, 
then penalize the squared magnitudes of the map 
points on the extra dimensions.

• Turn up the penalty coefficient until all of the map 
points have very small values on those extra 
dimensions.

• Neither of these tricks is a big win in general.



A more interesting variation that uses 
the probabilistic foundation of SNE

• All other dimensionality reduction methods 
assume that each data point is represented by 
ONE point in the map.

• But suppose we had several different maps.
– Each map has a representative of each 

datapoint and the representative has a mixing 
proportion.

– The overall qij is a sum over all maps

Zijqmij qm =qij =å
m

p mp m exp(-dm )
i j ij



A nice dataset for testing “Aspect maps”

• Give someone a word and ask them to say the 
first other word they associate with it.
– Different senses of a word will have different 

associations and so they should show up in 
different aspect maps.



Two of the 50 aspect maps for 
the Florida word association data



The relationship between aspect maps 
and clustering

• If we force all of the locations in each map to be 
the same, it’s a form of spectral clustering!

• Putting a point into a map is not just based on 
the affinities it has to the other points in the map.
– It depends on whether it can find a location in 

the map that allows it to mathc the pattern of 
affinities.

– It has a very abstract resemblance to mixtures 
of experts vs ordinary mixtures.



A weird behaviour of aspect maps

• If we use just 2 aspect maps, one of them 
collapses all of the map points to the same 
location.
– Its trying to tell us something!

• It wants to use a uniform background probability 
for all pairs

N 2
q11 ijij

1-p1+q =p



Why SNE does not have gaps between 
classes

• In the high-dimensional space there are many pairs 
of points that are moderately close to each other.
– The low-D space cannot model this. It doesn�t 

have enough room around the edges.
• So there are many pij�s that are modeled by smaller 

qij�s.
– This has the effect of lots of weak springs pulling 

everything together and crushing different classes 
together in the middle of the space.

• A uniform background model eliminates this effect 
and allows gaps between classes to appear.
– It is quite like Maximum Variance Unfolding















From UNI-SNE to t-SNE

• Laurens van der Maaten started experimenting 

on UNI-SNE and we soon realised that it was 

easier to replace the mixture of a Gaussian and 

a uniform by an infinite mixture of Gaussians:

1

ij

qij 1+ d 2
µ

• By using a Gaussian to compute pij and a 

heavy-tailed student’s t to compute qij we

partially compensate for the different rates of 

growth of volume as you move away from a

point in 2-D and in N-D.



t-SNE

• Instead of using a gaussian plus a uniform, why 
not use gaussians at many different spatial 
scales?
– This sounds expensive, but if we use an 

infinite number of gaussians, its actually 
cheaper because we avoid exponentiating.

1

ij
ij

1+ d 2
q µ



Optimization hacks

• Reputable hack: Introduce a penalty term that 
keeps all the map-points close together.
– Then gradually relax the penalty to break 

symmetry slowly.
• Disreputable hack: Allow the probabilities to add 

up to 4.
– This causes the map-points to curdle into 

small clusters leaving lots of space for 
clusters to move past each other.

– Then make the probabilities add up to 1.



Two other state-of-the-art dimensionality 
reduction methods on the 6000 MNIST digits

Isomap Locally Linear Embedding



t-SNE on the 6000 MNIST digits



The COIL20 dataset

Each object is 
rotated about 
a vertical axis 
to produce a 
closed one-
dimensional 
manifold of 
images.



Isomap & LLE for COIL20 dataset

Isomap Locally Linear
Embedding



t-SNE for COIL20 dataset



Show the map of 2000 English words 
produced by Joseph Turian using

t-SNE on the feature vectors learned by 
Colobert and Weston (ICML 2008)



Using t-SNE to see what you are thinking



Using t-SNE to see how a DBN that recognizes 
phonemes deals with speaker variation

• Current speech recognizers try to preprocess the 
input to eliminate differences between speakers.

• We get very good performance from a DBN 
without doing this.
– Its very difficult to improve the DBN by adding 

speaker information.
• Maybe the DBN is using its hidden layers to get 

rid of speaker variation .
– This would explain why speaker information is 

not much help.



t-SNE applied to windows of 15 input frames 
for 6 speakers saying two sentences



t-SNE applied to the first hidden layer



t-SNE applied to the 8th hidden layer



Some recent developments

• Miguel Carreira-Perpinan (ICML 2010) showed 
that the original SNE cost function can be 
rewritten so that it is equivalent to Laplacian 
Eigenmaps with an extra repulsion term that 
spreads out the map points (like in MVU).

• This led to a much faster optimization method. 
The fast code is now on the t-SNE webpage.



Combining non-parametric dimensionality 
reduction with neural networks

• If we have a smooth objective function that 
assigns a value to a set of codes, we can 
backpropagate its derivatives through a 
feedforward neural net.
– The neural net is like the “encoder” part of an 

autoencoder.
• We could combine this objective function with 

the objective of getting good reconstructions 
from the codes.



Evaluating the codes found by an
autoencoder

• Use 3000 images of 
handwritten digits from 
the USPS training set.
– Each image is 16x16 

and fairly binary.

• Use a highly non-linear 
autoencoder
– Use logistic output units 

and linear code units.
200 units

100 units

20 linear 
code units

data

reconstruction



Does code space capture the structure
of the data?

• We would like the code space to model the 
underlying structure of the data.
– Digits in the same class should get closer together in 

code space.
– Digits of different classes should get further apart.

• We can use k nearest neighbors to see if this 
happens.
– Hold out each image in turn and try to label it by using 

the labels of its k nearest neighbors.
• In pixel space we get 5.9% errors. In code space 

we get about 12% errors. Why doesn�t it work?



How it goes wrong

• PCA is not powerful 
enough to really mangle 
the data.

• Non-linear auto-encoders 
can fracture a manifold 
into many different 
domains.
– This can lead to very 

different codes for nearby 
data-points.

C
B

A A B  
C

C
B

A
A  
C
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How to fix it

• We need a regularizer that will make it costly to 
fracture the manifold.
– There are many possible regularizers.

• Stochastic neighbor embedding can be used as 
a regularizer.
– Its like putting springs between the codes to 

prevent the codes for similar datapoints from 
being too far apart.



How the gradients are combined

200 logistic units

100 logistic units

20 linear 
code units

data

reconstructionForces generated by 
springs attaching 
this code to the 
codes for all the 
other data-points.
The stiffness of 
each spring is 
dynamically set to
be: pij - qij

Back-propagated  
derivatives of 
reconstruction 
error



How well does it work?

• Instead of rising from 5.9% to 12%, the hold-
one-out KNN error falls to about 2%
– The strength of the regularizer must be 

chosen sensibly.
– The SNE regularizer alone gives about 4.5% 

hold-one-out KNN errors.
• Can we visualize the codes that are produced 

using the regularizer?



Learning codes with some pairwise 
information about labels

• If we pair each digit with another of the same 
class, there are very nice category boundaries 
between digits.





A more efficient version

• The derivatives that come from the autoencoder 
will stop the codes from all collapsing to a point.
– So we don�t need the quadratically expensive 

normalization term that is used in computing 
the qij�s

• We should be able to just add attractive forces 
between codes that correspond to similar inputs.
– The similarity could be measured in the input 

space or it could be based on extra 
information (e.g. identity of class labels).



Non-linear Neighborhood Components 
Analysis (Salakhutdinov and Hinton, 2007)

• Use a feed forward neural net to learn codes that make 
nearest neighbor classification work well.

• In code space, we can predict the class of a point by 
summing the probabilities assigned to other points of 
that class when we use the stochastic neighbor 
probabilities.

jÎc

• So we do gradient ascent in the log probabilities of 
getting the correct class for each point when it is held-out

p(class(i) = c) =å p j|i



What NNCA achieves

• Linear Discriminant Analysis tries to find a projection of 
the data that makes each point be close to other points 
of the same class and far from other points of different 
classes.
– This is a bad objective function if the classes form 

long curved manifolds

Two manifold

Three manifold



NCA

• NCA is the linear version of NNCA. It aims to 
find projections in which each datapoint is close 
to some other datapoints of the same class and 
not too close to datapoints of other classes.
– This does not force all points of the same 

class to be similar.
– But it can allow manifolds to become 

disconnected.
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