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0011010110010ARMS2TACAATCAAGGTTTTTTTTTTTTTTCAAATCCCTGGGTCTCT
GCATTTTTTAAAAGCTTCACAGATGATTTCAATGGATACTAGGGACCTCTGTTGCCTCCT
CTGGCAGAGCAGGACTGAGGGGTGGACCCTCCCTGAGACCACCCAACAATTCAGGGTGGA
GTTATCAGGGCGCCCTGACTCCTGGGGGCATTTTTGTGTGACGGGAAAAGACAATGCTCC
TGGCTGAGTGAGATGGCAGCTGGCTTGGCAAGGGGACAGCACCTTTGTCACCACATTATG
TCCCTGTACCCTACATGCTGCGCCTATACCCAGGACCGATGGTAACTGAGGCGGAGGGGA
AAGGAGGGCCTGAGATGGCAAGTCTGTCCTCCTCGGTGGTTCCTGTGTCCTTCATTTCCA
CTCTGCGAGAGTCTGTGCTGGACCCTGGAGTTGGTGGAGAAGGAGCCAGTGACAAGCAGA
GGAGCAAACTGTCTTTATCACACTCCATGATCCCAGCTTCTAAAATCCACACTGAGCTCT
GCTTACCAGCCTTCTTCTCTCCTGCTGGAACCCAGAGGAGGTTCCAGCAGCCTCAGCACC
ACCTGACACTGGTAAGAAATGCAGATGATCAGGCCTTACCCCAGACCTATTGAATCAGAA
ATTCTGGAGTGGTGCCCTGCAGCTTGCATTTTAACCAGCCTTCAGGTGCTTCTGATGCAT
GCTCAGGTTTGAGCACCACTGGCCACAGGGAGGCCTAGGCAATTCAGCCTTCCTCTGGTT
GAATAGCTGGAGAATTGGGAATATCAGTAAATACTTCCAATGCACCTGCTACATGCCAGA
AAAAGGAAACAAGAAGACGCAGTAGGTCTGAGAAAGTGATGGGGTGAGCAGAAACCCAAA
GCTTATAGAAGGCCATCTGAGTGGCCCCTCAAGCCGGTGAATTGGCTTTAGGGTTTACTG
AAGGAGGTGGAAACCTCAGCCTGCTTCTCGTCCGGGTTGTTAGAGGAGTCATTTAGAAAN
NTIMP3AACATATATATTTTTCAGTGGCAGGAAGTCTTGCCCGAGGTGGGAATGTTACTG
GGTTAATATCTGGGGGAAAGAGAAATATTTTTCCCTTTGTTAGCTGGCTCTGGGCAGCCT
GAAAACTCTTGATCCTCTCTGTCTGCTGCTTGGGACCTAATGACCTGCTTTCAATCCCTT
TCAATTACAGGATTTCTGATAGGAATTTGGAAAACAACCTAAATCCCAAAGCTTGGATGG
TAGCCCATGCTTCATTCCACGTCTCTGTACCCAGTTTTTCAAAGAGATTTTTTTTTTTCA
CCTGCTCNNC2ACTGAAGGGGAGAGTCCTGGACCTTTGGCAGCAAAGGGTGGGACTTCTG
CAGTTTCTGTTTCCTTGACTGGCAGCTCAGCGGGGCCCTCCCGCTTGGATGTTCCGGGAA
AGTGATGTGGGTAGGACAGGCGGGGCGAGCCGCAGGTGCCAGAACACAGATTGTATAAAA
GGCTGGGGGCTGGTGGGGAGCAGGGGAAGGGAATGTGACCAGGTCTAGGTCTGGAGTTTC
AGCTTGGACACTGAGCCAAGCAGACAAGCAAAGCAAGCCAGGACACACCATCCTGCCCCA
GGCCCAGCTTCTCTCCTGCCTTCCAACGCCATGGGGAGCAATCTCAGCCCCCAACTCTGC
CTGATGCCCTTTATCTTGGGCCTCTTGTCTGGAGGTAAGCGAGGGTAACCTTCCCTTCCT
GCTGTCTCCAGCATCCCTCCTTGGCCTTTTGGGGCCAGGCTTCATCAGCCTTTCTCTTCA
GGTGTGACCACCACTCCATGGTCTTTGGCCCGGCCCCAGGGATCCTGCTCTCTGGAGGGG
GTAGAGATCAAAGGCGGCTCCTTCCGACTTCTCCAAGAGGGCCAGGCACTGGAGTACGTG
TGTCCTTCTGGCTTCTACCCGTACCCTGTGCAGACACGTACCTGCAGATCTACGGGGTCC
TGGAGCACCCTGAAGACTCAAGACCAAAAGACTGTCAGGAAGGCAGAGTGCAGAGGTTTG
AGGGCAATGAGTGTGGGCAGTGGCCTAAGGCAGAAACAGGGCAGGCGGCAGCAAGGTCAG
GACTAGGATGAGACTAGGCAGGGTGACAAGGTGGGCTGACCGGGAGTAGGAGCAGTTTTA
GGGTGGCAGGCGGAAAGGGGGCAAGAAAAAGCGGAGTTAACCCTTACTAAGCATTTACCC
TGGGCTTCCAGGCAGCCCTGGAAGTCAAGAGAACACTCAGAAATGGGGAGGGAGAAGCAG
TGGAAATCCATATGGGTTGAGGAGTAGGTAAGATGCTGCTTCTGCGGGACTG00110101

Three bad and two good alleles

Age-Related Macular Degeneration

AMD Risk

ARMS2

TIMP3/SYN3

C2



Today: Deep Learning for Human Genetics and Disease
1. Human Genetics: Inheritance, Mendel, Fisher, SNPs, STRs, alleles
2. ‘Disease gene’ hunting: Common/rare alleles, Linkage vs. GWAS
3. LD, Haplotypes, Co-inheritance, and the challenge of fine-mapping
4. From locus to mechanism - Case study: FTO and Obesity
5. Epigenomics-GWAS integration: ENCODE, Roadmap, EpiMap
6. Machine learning tools for variant interpretation

• Deep variant
• Eigen, FunSeq2, LINSIGHT, CADD, FATHMM, ReMM, Orion, CDTS
• DeepSEA

7. Interpreting non-coding variation: DeepSEA (Jian Zhu guest lecture)



1. Intro to Human Genetics
Inheritance, Mendel, Fisher, SNPs, STRs, alleles



Inheritance and Genetics: Ancient foreshadowings

9000BC: Selective breeding of animals/plants
Inheritance: Eye/hair color long understood

550BC: Anaximander: first human was born from 
non-human relative, fish origin of land animals
300BC: Aristotle: species taxonomy classification
Seedlings:Theophrastus,Hippocrates,Aeschylus

450BC: Empedocles: Random mixing of traits, 
natural variation, successful ones survive, 
giving semblance of ‘purpose’

300BC: Epicurus: purely naturalistic generation 
of diversity, no supernatural intervention.
(Contrast: Plato, Stoics, Religion, Christianity)



19th Century: Lamarck, Darwin, Mendel, Biometrics

1809: Lamarck: Transmutation, adaptation
spontaneous generation of simple life-forms, 
innate life force drives increased complexity

1866: Mendel: Particulate inheritance, no blend. 
Discrete units=genes. Dominant/recessive alleles
Independent assortment. Digital inheritance.

Biometrics: continuous phenotype variation.
Others: Saltationism, orthogenesis, vitalism, 
neo-Lamarckism, theistic evolution…

1859: Darwin: Continuum of species, random 
mutationdiversity, natural selectionfitness. 
But: Blending inheritance, gemmules, Lamarckism

Pangenesis



20th Century: Synthesis, DNA, polygenic inheritance

1918: Fisher. Continuous phenotypic variation
explained simply by multiple Mendelian loci

1902: Chromosomes, DNA, genetic material
1953: Structure of DNA, basis for inheritance

1913: Linkage/mapping, Morgan, Sturtevant
1980s: Mendelian Trait genes mapped

2000s: Human genome. Variation maps. 
Haplotypes. GWAS. Common/rare variants. 



Types of genetic variation

Name Example Frequency in one 
genome

Single nucleotide 
polymorphisms (SNPs)

GAGGAGAACG[C/G]AACTCCGCCG 1 per 1,000 bp

Insertions/deletions (indels) CACTATTC[C/CTATGG]TGTCTAA 1 per 10,000 bp

Short tandem repeats 
(STRs)

ACGGCAGTCGTCGTCGTCACCGTAT 1 per 10,000 bp

Structural variants (SVs) / 
Copy Number Variants 
(CNVs)

Large (median 5,000 bp) deletions, 
duplications, inversions

1 per 1,000,000 bp

• 99% of DNA is shared between two individuals
• Variation in the remainder explains all our predisposition differences
• Remaining phenotypic variation: environmental/stochastic differences



Single-nucleotide polymorphisms (SNPs)

• Many modern analyses (GWAS, eQTL) focus on SNPs/indels
• Often have only two alleles (states)
• Identified as reference SNP clusters (rsid)
• Submitted sequences containing a variant are clustered to build 

a database (dbSNP)
• To date, >100 M known variants in dbSNP

rs189107123
GAGGAGAACG[C/G]AACTCCGCCG

CATGGTGCATCTGACTCCTGAGGAGAAGTCTGCCGTTACTG

CATGGTGCATCTGACTCCTGTGGAGAAGTCTGCCGTTACTG

glutamic acid > valine

Sickle Cell Anemia



Short tandem repeats (STRs) + Insertions/deletions (indels)
• Variable number tandem repeats

TCACAGCAGCAGCAGCAGCAGCAGCAGCAGTTGCATTT9
TCACAGCAGCAGCAGCAGCAGCAGCAGCAGCAGTTGCATTT10
TCACAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGTTGCATTT12

> 30 Huntington’s Disease

• Insertion/Deletions
CATTAAAGAAAATATCATCTTTGGTGTTTCCTATGATGAATA
CATTAAAGAAAATATCATTGGTGTTTCCTATGATGAATA

Cystic fibrosis transmembrane conductance regulator (CFTR) -> Lung infections, cysts, fibrosis

Abnormal protein, damages neurons, brain cell death, mood,
coordination, speaking, dementia, etc



SNP alleles: ref/alt; maj/min; risk/prot; anc/der
Referring to the two alleles:

• Reference/alternate: Matching the human reference sequence (arbitrary, some 
random person was sequenced, has rare alleles too)

• Major/minor: Being more frequent in the population (population-specific)
• Ancestral/derived: Matching the most recent common ancestor between 

human and chimpanzee (but sometimes chimp doesn’t match)
• Risk/non-risk: Based on their disease association (but environment specific, 

e.g. Sickle-cell vs. Malaria)

Classifying variants by minor allele frequency:

commonLow frequencyRarePrivate/de novoSomatic

5%0.5%1 personSubset of 1 person

Example: rs189107123
GAGGAGAACG[C/G]AACTCCGCCG
Reference allele: C
Minor allele: G (frequency 0.03 in Europeans)
Ancestral allele: unknown (why?)



The scope 
of the 

challenge:

23 chromosomes

~20,000 genes

3.2B letters of DNA

Millions of polymorphic
sites 

Within each cell:

2 copies of the genome
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2. ‘Disease gene’ hunting (locus, really): 
Common/rare alleles, Linkage vs. GWAS



Monogenic vs. oligogenic vs. polygenic disorders

Many variants
of small effects

Few variants
of large effects

Combination of 
large/small effects

Molecular genetic studies of complex phenotypes. Marian - Translational Research, 2012

Linkage analysis GWAS

Mostly coding Mostly non-coding



Linkage analysis allows mapping of genetic traits

• Frequency of co-inheritance tells you about genetic distance on the 
chromosome

• Allows making of genetic map of genetic elements (eventually 
recognized to be genes)

• Used in human to lay out chromosomal maps based on inheritance 
of STR markers, well before mapping of first genetic trait in human



Linkage analysis allows mapping of disease loci

• Exploit human STR marker maps, to search for co-inheritance 
between STR markers and disease inheritance patterns

• Search for such co-segregation in many independent families 
(each carries a diff. mutation, but all map to the same region)

• Led to mapping of many Mendelian disease loci in human



Monogenic vs. oligogenic vs. polygenic disorders

Many variants
of small effects

Few variants
of large effects

Combination of 
large/small effects

Molecular genetic studies of complex phenotypes. Marian - Translational Research, 2012

Linkage analysis GWAS

Mostly coding Mostly non-coding



GWAS: basic study overview



Testing for association

• Most straightforward: compare proportion of 
each SNP allele in cases and controls

rs11209026 Allele A Allele G

Cases 22 976

Controls 68 932

Chi-sq = 24.5,  p=7.3 x 10-7

Simplest tests (single marker regression, χ2) rule the day. 
Association results requiring arcane statistics. 
Complex multi-marker models are often less reliable

Expected Allele A Allele G

Cases 47 951

Controls 47 953

(O-E)^2/E Allele A Allele G

Cases 13.4 0.7

Controls 9.2 0.5



Multiple Testing
• In linkage, p = .001 (.05 / ~50 chromosomal 

arms) considered potentially significant

• In GWAS, we’re performing O(106) tests that are 
largely independent
– Each study has hundreds of p<.001 purely by 

statistical chance (no real relationship to 
disease)

– “Genome-wide significance” often set at 
p=5x10-8 (= .05 / 1 million tests)



Genome-wide Association

‘Manhattan’ plot

Q-Q plot Search for gene / mechanism



NOD2/CARD15

IBD5

ATG16L1

IL23R – rs11209026

10q

Found by Linkage

NOT Found by 
linkage



Linkage vs. GWAS capture 
different variants

NOD2:  low-frequency, strong risk variants
IL23R: low-frequency, strong protective variant
ATG16L1: common associated variant

Locus Frequency Odds-ratio ASSOCIATION
cases to 
achieve GWS

LINKAGE
Pedigrees to 
achieve signif.

NOD2
(3 coding SNPs)

5% 3.0 435 1400

IL23R
(Arg381Gln)

7% 0.33 817 ~30,000

ATG16L1
(Thr300Ala)

50% 1.4 1360 ~40,000



Combining studies yields greater power

Opportunity: by combining 
three published studies, we 
reap the power of an 8000 
sample GWAS

(Example – associated SNP with MAF = 0.20)

Nearly all progress in 
GWAS has been the 
result of multiple 
study meta-analysis



Common alleles typically have small effects

Discovery method tuned to
variant effect size/frequency

Discovery method tuned to
variant effect size/frequency



GWAS-vs-Linkage best in different freq/effect regimes
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3. LD, haplotypes, and fine-mapping
Linkage disequilibrium, Co-inheritance, 
Recombination, meiosis, and PRDM9







From GWAS hits  to genes  to therapeutics

https://www.cell.com/ajhg/fulltext/S0002-9297(17)30240-9



Common variants (SNPs) live in Haplotypes

• Common SNPs only once every 1000 nucleotides or so

• These are co-inherited, so only need to profile a subset

• Markers selected for haplotype profiling are “tag” SNPs

ATC
ACG
GTC
ACC



Quantifying Linkage Disequilibrium: D and D’
• Genetic variants do not segregate independently
• D = coeff. of linkage disequilibrium between alleles A and B at loci L1 and L2

• DAB=P11P00-P10P01=0.07 
• Property of the specific alleles. Different alleles at these loci will have diff DAB

• If independent, then DAB=0 
(P11P00=P10P01)

• Linkage disequilibrium measures the 
degree of departure from Mendel’s laws
of independent assortment

How to interpret actual values? 
• Relative to DABmax, which depends on 

frequencies of individual alleles at A, B
• DABmax=P0*P*1-P1*P*0=0.138
• D’=D/Dmax=0.51
 51% of max possible disequilibrium

Haplotype 
AB

Marginal allele 
frequency

0* 0.54

1* 0.46

*0 0.30

*1 0.60

Haplotype Expected Observed

00 0.162 0.24**

01 0.324 0.31

10 0.138 0.07**

11 0.276 0.39**



Quantifying Linkage Disequilibrium: r2

Haplotype 
AB

Marginal allele 
frequency

0* 0.54

1* 0.46

*0 0.30

*1 0.60

Haplotype Expected Observed

00 0.162 0.24

01 0.324 0.31

10 0.138 0.07

11 0.276 0.39

Key property: r2 correlation for individual SNPs
is exactly the r2 of the GWAS association summary statistics of these SNPs



Fine-mapping disease associations: 
Epigenomics / functional data

• LD is a blessing for mapping loci to 
disease, as it enables genotyping of just a 
handful of tag variants
 enabled the GWAS revolution

• LD is a curse for fine-mapping loci into their 
causal variants 
 many variants are strongly correlated to 
the true causal variant(s)
 often indistinguishable scores by genetics 
alone associations
 strongest-association SNP might actually 
be an artifact of LD, and true causal variant 
may be another one

• Orthogonal data (e.g. epigenomics) often 
used for fine-mapping

Li and Kellis BiorXiv 2016



Long-range threading of haplotype blocks

• Relatively few haplotypes exist in the human population 
(consider 10M SNPs: we don’t see 210𝑀𝑀 haplotypes!)

• Implies high level of genotype sharing even for unrelated 
individuals

Daly et al Nat Genet 2001



Haplotypes differ across regions/populations
• Recurrent recombination 

events occur at hotspots

• r2 correlations between 
SNPs depend on historical 
order in which they arose

(not in their physical order on 
the chromosome)

Africa

Europe

Asia



Multi-ethnic analysis can be used 
for fine-mapping

• Allele frequencies and LD patterns can differ between populations
• Currently, disease associations are biased for discovery in 

European cohorts
• As we begin conducting association studies in Asia/Africa, there is 

a pressing need to develop statistical methods which can account 
for population genetic differences

Kichaev et al. Am J Hum Genet 2015 

Case 1: LD boundaries differ Case 2: allele frequencies differ



Haplotypes evolve, accumulate mutations

• Example region: 36 
SNPs spanning 9kb

• In principle: 2^36 
possible allele 
combinations 
(haplotypes)

• Sample 120 parental 
European 
chromosomes. 

• In practice: only 5 
recurrent haplotypes
seen (and 2 singleton 
haplotypes)

63 SNPs over 9kb



Haplotypes result from non-uniform recombination
• Recombination is crucial for lining up 

chromosomes during meiosis for gamete 
formation. 

• Recombination starts with a double-
stranded break (DSB), which is then 
repaired by strand invasion of the 
homologous chromosome. 

• Repair can lead to either: 
• Gene conversion, via strand displacement 

annealing (SDSA), which transfers a 
segment of one homologous chromosome 
into the other, or

• Recombination via cross-over repair of a 
double-stranded break, leading to new 
allele combination

• Recombination provides selective 
advantage for sexual reproduction 
(mix and match beneficial alleles)

• Recombination does not happen 
uniformly over each chromosome

• Recombination hotspots occur once 
every 100kb, and recombination occurs 
hundreds of times more often in hotspots

• Mouse studies revealed the role of 
PRDM9 in demarcating hotspots

Sung et al. Nat Rev Mol Cell Biol 2006

Metaphase I Anaphase I



PRDM9, recombination, and selection
(aka. The tragic love story of PRDM9)

• PRDM9 is a zinc finger protein which binds to specific DNA motifs, methylates H3K4 
surrounding the binding site, and recruits double-strand break enzymes

• PRDM9 is under strong constraint, but the DNA-binding zinc finger array has high 
mutation rate and is under positive selection

• More than 40 known PRDM9 alleles, each with different DNA-binding specificity
• The repaired double strand break no longer contains the PRDM9 motif, leading to 

evolutionary competition between the protein and its motif

Baudat et al. Nat Rev Genet 2013
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4. From locus to mechanism
Case study: FTO and Obesity



Mechanistic dissection of a non-coding disease locus
•Identify cell type, causal SNP, regulator,  targets, process
•Genome editing demonstrates variant causality
•Adipocyte browning drivers of obesity

Melina Claussnitzer



Dissecting non-coding genetic associations

1. Establish relevant tissue/cell type
2. Establish downstream target gene(s)
3. Establishing causal nucleotide variant 
4. Establish upstream regulator causality
5. Establish cellular phenotypic consequences
6. Establish organismal phenotypic consequences

3. Causal nucleotide(s)

2. Target gene(s)
1. Tissue/cell type(s)

4. Upstream regulator(s)TF
TF TF

5. Cellular phenotypes 6. Organismal phenotypes

Goal: 
Apply these to 
the FTO locus

in obesity

GWAS region SNPs



FTO region: strongest association with obesity

• First and strongest association with obesity (not just ‘your fault’)
• Associated with obesity, Type 2 Diabetes, Cardiovascular traits
• 89 variants in LD, spanning 47kb, intron 1 of FTO gene
• No protein-altering variants: regulatory role? Target gene, tissue?



1. Tissue: Chromatin states predict adipocyte function

Progenitors of white/beige adipocytes

12 kb super-enhancer



2. Targets: 3D folding and expr. genetics indicate IRX3+IRX5

Cohort of 20 homozygous risk and
18 homozygous non-risk individuals:
Genotype-dependent expression?

Dixon, Nature 2012 eQTL targets: IRX3 and IRX5

Risk allele: increased expression 
(gain-of-function)

Topological domains span 2.5Mb
Implicate 8 candidate genes



3. Causal SNP: motif enrichment + conservation: rs1421085

Regulatory motifs enriched 
in BMI GWAS hits

Causal nucleotide rs1421085: risk alters T to C, abolishes AT-rich motif
rs1421085 T -> C obesity risk allele chr16: 53800954 

Regulatory motif combinations 
conserved across mammals
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Regulatory model: risk allele disrupts a repressor

4. Regulator: Causality and epistasis of ARID5B repressor

Cis/trans conditional analysis
IRX3/5 expressionEnhancer activity

• Repression of enhancer, IRX3 and IRX5 all require both TF and motif
• Disrupting motif (CC), or repressing ARID5B (siRNA)  de-repression



Steps 5-6. Does this circuitry actually lead to obesity?

1. Establish relevant tissue/cell type: pre-adipocytes
2. Establish downstream target gene(s): IRX3 and IRX5
3. Establishing causal nucleotide variant: rs1421085
4. Establish upstream regulator causality: ARID5B
5. Establish cellular phenotypic consequences
6. Establish organismal phenotypic consequences

3. Causal nucleotide: rs1421085

2. Targets: IRX3/IRX5
1. Tissue: pre-adipocytes

4. Upstream: ARID5BTF
TF TF

5. Cellular phenotypes 6. Organismal phenotypes
GWAS region



Expression analysis to recognize target processes

Negative correlation: mitochondria
Positive correlation: lipid storage

Search for genes co-expressed 
with IRX3 and IRX5 (n=20 indiv.)

Risk allele: shift from dissipation to storage

Risk carriers: increased mito
Non-risk: increased adipocytes

Reflected in cellular phenotypes



Test model by systematic perturbations

Obese

C-to-T motif rescue
(anti-obesity phenotypes)

T-to-C motif disruption
(pro-obesity phenotypes)

Lean

IRX3, IRX5 knock-down
(anti-obesity phenotypes)

IRX3, IRX5 overexpression
(pro-obesity phenotypes)

ARID5B KD
(obesity)

ARID5B OE
(anti-obesity)



IRX3+IRX5 expression impacts energy utilization

Risk individuals: IRX3/5 repression
restores respiration,thermogenesis

Non-risk: IRX3/5 overexpression
disrupts respiration,thermogenesis



Irx3 adipose repression: anti-obesity phenotypes in mice

54% reduced body weight Resistance to high-fat diet

Increased energy dissipation
• No reduction in appetite
• No increase in exercise
• In thermoneutral conditions
• Day and night (not exercise)



Single-nucleotide editing reverses thermogenesis in humans

rs1421085 editing 
restores thermogenesisrs1421085 editing alters IRX3+IRX5 expression

(500,000 and 1 million nucleotides away!)

rs1421085 causality: C-to-T editing rescues IRX3/IRX5 expression, 
ARID5B repression, thermogenesis, developmental expression



Model: beige  white adipocyte development

Shift therapeutic focus from brain to adipocytes



FTO obesity locus mechanistic dissection

1. Establish relevant tissue/cell type: pre-adipocytes
2. Establish downstream target gene(s): IRX3 and IRX5
3. Establishing causal nucleotide variant: rs1421085
4. Establish upstream regulator causality: ARID5B
5. Establish cellular phenotypic consequences: thermogenesis
6. Establish organismal phenotypic consequences: body weight

3. Causal nucleotide: rs1421085

2. Targets: IRX3/IRX5
1. Tissue: pre-adipocytes

4. Upstream: ARID5BTF
TF TF

5. Cellular: thermogenesis 6. Organism: body weight
GWAS region



Today: Deep Learning for Human Genetics and Disease
1. Human Genetics: Inheritance, Mendel, Fisher, SNPs, STRs, alleles
2. ‘Disease gene’ hunting: Common/rare alleles, Linkage vs. GWAS
3. LD, Haplotypes, Co-inheritance, and the challenge of fine-mapping
4. From locus to mechanism - Case study: FTO and Obesity
5. Epigenomics-GWAS integration: ENCODE, Roadmap, EpiMap
6. Machine learning tools for variant interpretation

• Deep variant
• Eigen, FunSeq2, LINSIGHT, CADD, FATHMM, ReMM, Orion, CDTS
• DeepSEA

7. Interpreting non-coding variation: DeepSEA (Jian Zhu guest lecture)



5. Predicting disease-relevant Tissues,
Regulators, Cell Types, Target Genes



Genomic medicine today: challenge and promises
The promise of genetics

– Unbiased, Causal, Uncorrected
– New disease mechanisms
– New target genes
– New therapeutics
– Personalized medicine

The challenge of mechanism
– 90+% disease hits non-coding
– Target gene not known
– Causal variant not known
– Cell type of action not known
– Relevant pathways not known
– Mechanism not known

GWAS Manhattan Plot: simple χ2 statistical test

SNP genomic position (23 chrs)
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Immune
Enhancers
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Identifying disease-relevant cell types

• For every trait in the GWAS catalog:
– Identify all associated regions at P-value threshold
– Consider all SNPs in credible interval (R2≥.8)
– Evaluate overlap with tissue-specific enhancers
– Keep tissues showing significant enrichment (P<0.001)

• Repeat for all traits (rows) and all cell types (columns)

Height
Type 1 Diabetes
Blood Pressure

Cholesterol

Region of association Individual SNPs



GWAS hits in enhancers of relevant cell types



Immune activation + neural repression in human + mouse

Epigenomics of AD progression

Inflammation as the causal component of Alzheimer’s disease

Immune Neuronal

tim
e

tim
e

activation

repression

Immune activation precedes
neuronal repression AD variants localize in immune cells, not neuronal



T cells B cells

Digestive

Brain

ESLiver

Heart

Linking traits to their relevant cell/tissue types



Genomic medicine: challenge and promises

The promise of genetics
– Disease mechanism
– New target genes
– New therapeutics
– Personalized medicine

The challenge of mechanism
– 90+% disease hits non-coding
– Target gene not known
– Causal variant not known
– Cell type of action not known
– Relevant pathways not known
– Mechanism not known

GWAS Manhattan Plot: simple χ2 statistical test

SNP genomic position (23 chrs)
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Summary: Dissect circuitry of disease-associated regions

1. Disease genetics reveals
common + rare variants/regions

68

2. Profile RNA + Epigenome
in healthy + disease samples

3. Integrate data to predict driver 
genes, regions, cell types

4. Validate predictions in 
human cells + mouse models

Cell cultures Mouse models

5. Disseminate results



Regulatory circuitry of GWAS loci

• Expand each GWAS locus using SNP linkage disequilibrium (LD)
– Recognize relevant cell types: tissue-specific enhancer enrichment
– Recognize driver TFs: enriched motifs in multiple GWAS loci
– Recognize target genes: linked to causal enhancers

Region of association



Epigenomic mapping across 800+ tissues/cell types

Diverse tissues and cells Diverse epigenomic assays

x

• H3K4me3
• H3K9ac
• DNase

• H3K36me3
• H3K79me2
• H4K20me1

• H3K4me1
• H3K27ac
• DNase

• H3K9me3
• H3K27me3
• DNAme

Enhancers Promoters Transcribed Repressed

Their combinations define diverse classes of elements



Enhancer modules, regulators, and target genes

2. Group enhancers into 
modules of common function

3. Predict module regulators 
using motif enrichment

1. Map chromatin states 
across 127 tissue/cells

4. Predict target genes using
activity correlation, Hi-C, eQTLs



Enhancer enrichment reveals trait-relevant tissues/cells
Trait: 
GWAS SNPs

Tissue:
enhancers

immune blood brain digestivedigestiveheart liver prim. cellsskinfatES/iPSC



Cell-sorted H3K27ac  AD variants in microglia, not neurons

• No enrichment found in 
whole-brain samples

• Cell-sorted H3K27ac shows 
strong enrichment for AD variants
in microglia

• No enrichment found in neurons or 
oligodendrocyte H3K27ac for AD 
variants



EpiMap: 834 tissue/cell types  30k GWAS SNPs in 534 traits

127 Epigenomes 
(Roadmap 2015)

834 Epigenomes 
(EpiMap 2019)

54 enriched GWAS
traits (2015)

534 enriched traits

30,247 SNPs in 
enriched enhancers
 Highly-specific
associations Emerge
 Precise biological
hypotheses on
mechanistic basis

Tissue enrich/co-enrichments  trait clustering, trait-tissue network

Carles Boix, 
Nature, revisions

 http://compbio.mit.edu/epimap 



Dissect circuitry of 30,000 GWAS loci: TFEnhSNPgenepathways

Epigenomic partitioning
of complex traits 
into components

PLPP3: Both liver and coronary artery: 
multi-gene/multi-tissue pleiotropy

3

3

PCSK9: Liver-only mechanism, 
mediated through primarily one variant

1

1

EDNRA Heart/vasculature-only, 
mediated through multiple enhancers2

2

Example: CAD
Coronary Artery Disease

Coronary 
Artery Disease

Cor.art

Liver
Adipose

Thyroid

MultAdip

UmbVein
Heart

Epith



Bayesian fine-mapping: Predict causal variant and cell type

RiVIERA: multi-trait GWAS integration Capture conserved elements

Capture eQTLs from GTExPredict causal variants and cell types



Combine GWAS+Epig to find new target genes/SNPs

Prioritize sub-threshold loci (<10-4)

Machine learning predictive features

Validate new enhancers: 
allelic activity, enh-prom looping

Validate new genes in hum/mou/zb



Today: Deep Learning for Human Genetics and Disease
1. Human Genetics: Inheritance, Mendel, Fisher, SNPs, STRs, alleles
2. ‘Disease gene’ hunting: Common/rare alleles, Linkage vs. GWAS
3. LD, Haplotypes, Co-inheritance, and the challenge of fine-mapping
4. From locus to mechanism - Case study: FTO and Obesity
5. Epigenomics-GWAS integration: ENCODE, Roadmap, EpiMap
6. Machine learning tools for variant interpretation

• Deep variant
• Eigen, FunSeq2, LINSIGHT, CADD, FATHMM, ReMM, Orion, CDTS
• DeepSEA

7. Interpreting non-coding variation: DeepSEA (Jian Zhu guest lecture)



6. Machine Learning methods in genetics



CADD: combine evidence to predict variant function 



Large number of methods for variant prioritization

DePristo, Human Molecular Genetics, 2018, 10.1093/hmg/ddy115



Whole genome variant calling:
GATK HaplotypeCaller

http://gatkforums.broadinstitute.org/gatk/discussion/4148/hc-overview-how-the-haplotypecaller-works

1. Use heuristic to find mismatches not 
explained by noise

2. Use assembly graph to identify possible 
haplotypes

3. For each haplotype, estimate:
P(read | haplotype) 

using probabilistic sequence alignment
• Hidden Markov Model
• States: insertion, deletion, substitution
• Emissions: pairs of aligned nucleotides/gaps
• Transitions: equivalent to insertion/deletion/gap 

penalties from Smith-Waterman algorithm (DP 
alignment)

• Get P(read | haplotype)
using forward-backward algorithm

4. Use Bayes rule to get P(haplotype | read)
5. Assign genotypes to each sample based on 

the max a posteriori haplotypes

Tour de Force, combining many methods: 
• Logistic regression to model base errors
• Hidden Markov models to compute read 

likelihoods
• Naive Bayes classification to identify variants
• Gaussian mixture model with hand-crafted 

features to filter likely false positive variants, 
capturing common error modes



Exome variant calling: atlas2

• Motivation: the exome has different sequence properties than the rest of the genome
(e.g., substitution rates, GC content).

• Train logistic regression classifier to predict which mismatches are errors and which are 
variants

• Training data: 1KG Exome project sequencing reads where >2 reads align with a mismatch
• True positives: Reads where mismatch is also discovered in 1KG Exon pilot project
• True negatives: Remaining reads
• Features: mismatch quality score, flanking quality score, whether neighboring nucleotides 

were swapped, normalized distance to 3’ end of the read
• Much faster than full Bayesian model (e.g. HaplotypeCaller), lower false positive rate in 

validation data Bamshad et al. Nat Rev Genet 2011



DeepVariant: Combine evidence to call variants



DeepBind

[Alipanahi et al., 2015]



Predicting disease mutations

[Alipanahi et al., 2015]



DeepBind summary

The key deep learning techniques:
•Convolutional learning
•Representational learning
•Back-propagation and stochastic gradient
•Regularization and dropout
•Parallel GPU computing especially useful for hyperparameter 

search
Limitations in DeepBind:

•Require defining negative training examples, which is often 
arbitrary

•Using observed mutation data only as post-hoc evaluation
•Modeling each regulatory dataset separately



DeepSea

DeepSea:
• Similar as DeepBind but 

trained a separate CNN on 
each of the 
ENCODE/Roadmap 
Epigenomic chromatin 
profiles 919 chromatin
features (125 DNase 
features, 690 TF features, 
104 histone features).

• It uses the ∆s  mutation 
score as input to train a 
linear logistic regression to 
predict GWAS and eQTL 
SNPs defined from the 
GRASP database with a P-
value cutoff of 1E-10 and 
GWAS SNPs from the 
NHGRI GWAS Catalog

[Zhou and Troyanskaya, 2015]





Today: Deep Learning for Human Genetics and Disease
1. Human Genetics: Inheritance, Mendel, Fisher, SNPs, STRs, alleles
2. ‘Disease gene’ hunting: Common/rare alleles, Linkage vs. GWAS
3. LD, Haplotypes, Co-inheritance, and the challenge of fine-mapping
4. From locus to mechanism - Case study: FTO and Obesity
5. Epigenomics-GWAS integration: ENCODE, Roadmap, EpiMap
6. Machine learning tools for variant interpretation

• Deep variant
• Eigen, FunSeq2, LINSIGHT, CADD, FATHMM, ReMM, Orion, CDTS
• DeepSEA

7. Interpreting non-coding variation: DeepSEA (Jian Zhu guest lecture)



7. Guest Lecture: Jian Zhu on DeepSEA
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