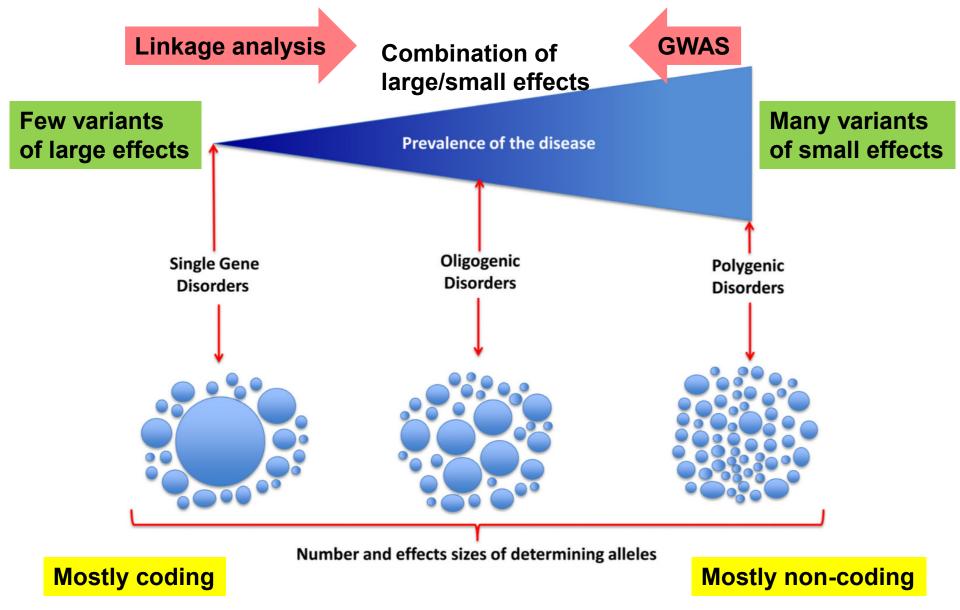
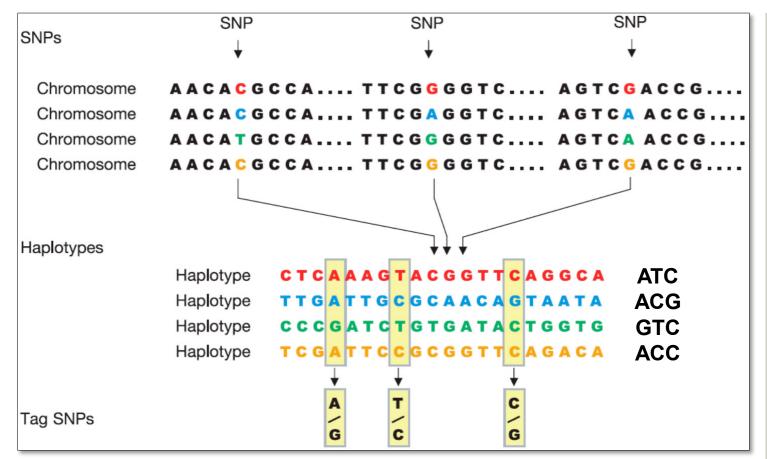
6.874, 6.802, 20.390, 20.490, HST.506 Computational Systems Biology Deep Learning in the Life Sciences

Lecture 13 – GWAS mechanism Epigenomic Enrichments, eQTLs, Mediation, Causality

Prof. Manolis Kellis Guest lecture: Yongjin Park

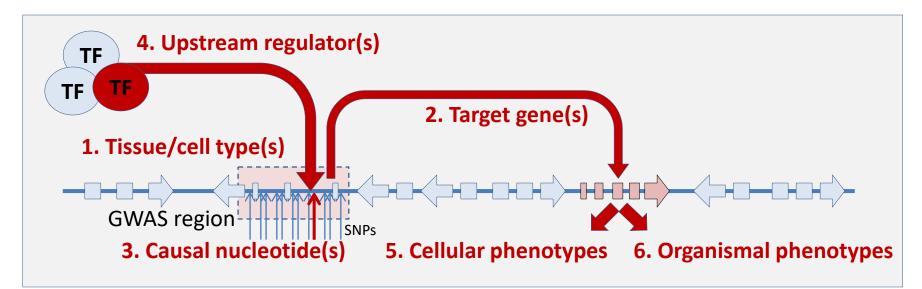

Slides credit: Yongjin Park, Abhishek Sarkar, Mark Daly, David Gifford, et al

GWAS mechanism: epigenomics, eQTLs, Causality


- 1. Review: GWAS, fine-mapping, locus mechanistic dissection
- 2. Global enrichment analyses: epigenomics, Tissues, Regulators, Cell types, target genes
- 3. eQTLs and mediation analysis: intermediate molecular phenotypes
- 4. Linear Mixed Models for GWAS and for eQTL calling
- 5. Polygenic Risk Scores (PRS): Summing over all variants (and more)
- 6. Heritability: Definition, Missing Heritability, Partitioning Heritability
- 7. LD Score Regression (LDSC): Computing and partitioning heritability
- 8. Polygenic and Omnigenic models of disease
- 9. Guest Lecture: Yongjin Park (UBC) on Causality

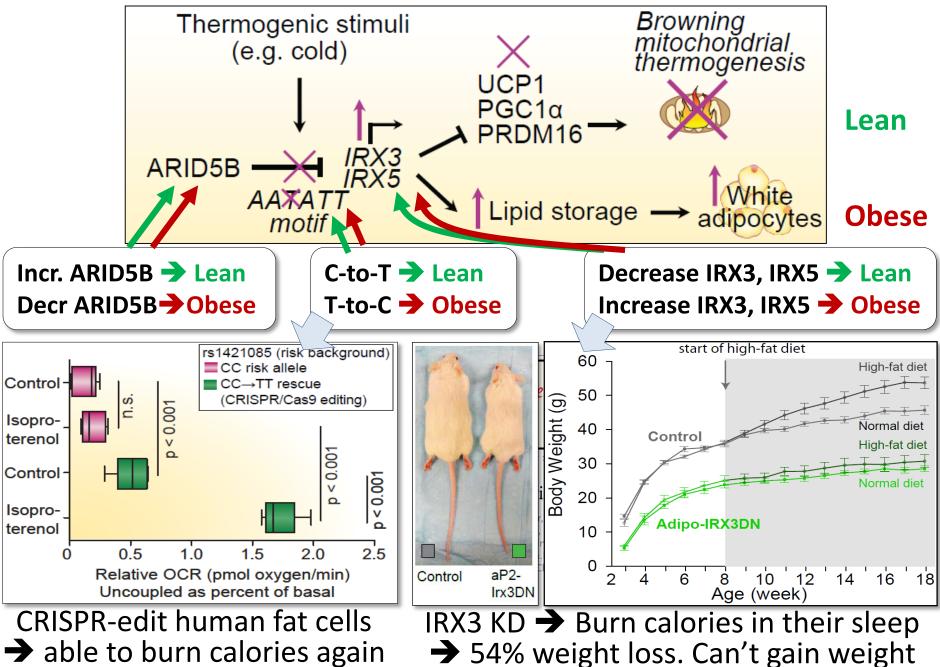
1. Review: GWAS, fine-mapping, Bayesian methods for variant prioritization

Monogenic vs. oligogenic vs. polygenic disorders


Common variants (SNPs) live in Haplotypes

- Common SNPs only once every 1000 nucleotides or so
- These are co-inherited, so only need to profile a subset
- Markers selected for haplotype profiling are "tag" SNPs

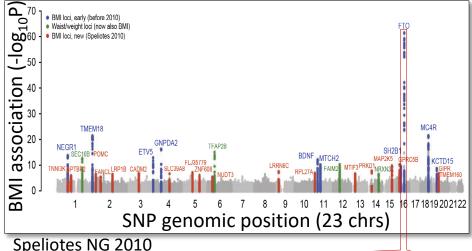
Dissecting non-coding genetic associations

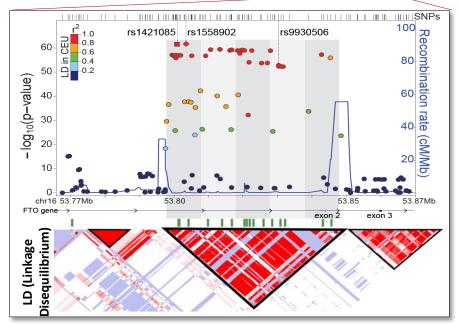


- 1. Establish relevant tissue/cell type
- 2. Establish downstream target gene(s)
- 3. Establishing causal nucleotide variant
- 4. Establish upstream regulator causality
- 5. Establish **cellular** phenotypic consequences
- 6. Establish organismal phenotypic consequences

Apply these to the FTO locus in obesity

Manipulate circuitry **→** reverse disease phenotypes

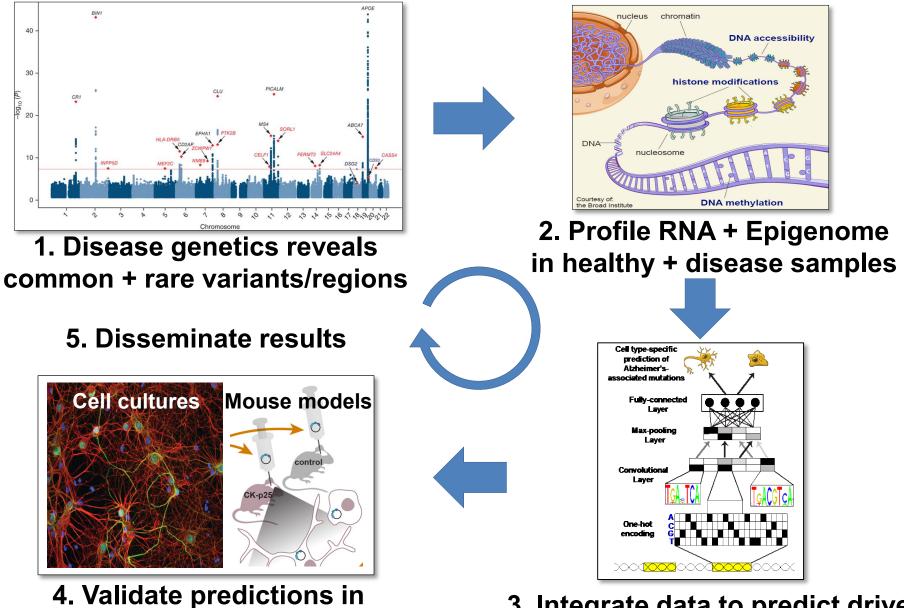

GWAS mechanism: epigenomics, eQTLs, Causality


- 1. Review: GWAS, fine-mapping, locus mechanistic dissection
- 2. Global enrichment analyses: epigenomics, Tissues, Regulators, Cell types, target genes
- 3. eQTLs and mediation analysis: intermediate molecular phenotypes
- 4. Linear Mixed Models for GWAS and for eQTL calling
- 5. Polygenic Risk Scores (PRS): Summing over all variants (and more)
- 6. Heritability: Definition, Missing Heritability, Partitioning Heritability
- 7. LD Score Regression (LDSC): Computing and partitioning heritability
- 8. Polygenic and Omnigenic models of disease
- 9. Guest Lecture: Yongjin Park (UBC) on Causality

2. Global enrichment analyses: Predicting disease-relevant Tissues, Regulators, Cell Types, Target Genes

Genomic medicine today: challenge and promises

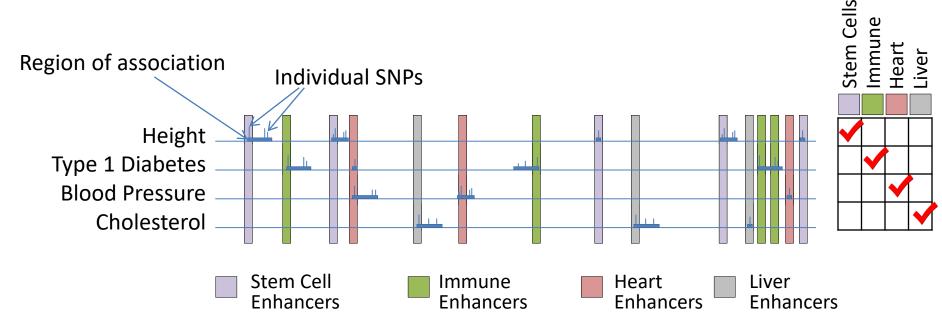
GWAS Manhattan Plot: simple χ^2 statistical test The promise of genetics


Dina NG 2007, Frayling Science 2007, Claussnitzer NEJM 2015

- Unbiased, Causal, Uncorrected
- New disease mechanisms
- New target genes
- New therapeutics
- Personalized medicine

The challenge of mechanism

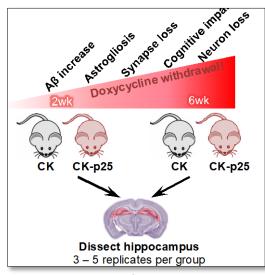
- -90+% disease hits non-coding
- Target gene not known
- Causal variant not known
- Cell type of action not known
- Relevant pathways not known
- Mechanism not known


Dissect mechanisms of disease-associated regions

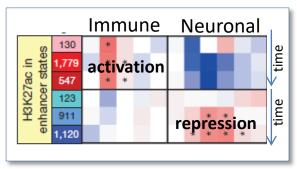
human cells + mouse models

3. Integrate data to predict driver genes, regions, cell types¹¹

Identifying disease-relevant cell types



- For every trait in the GWAS catalog:
 - Identify all associated regions at P-value threshold
 - Consider all SNPs in credible interval ($R^2 \ge .8$)
 - Evaluate overlap with tissue-specific enhancers
 - Keep tissues showing significant enrichment (P<0.001)
- Repeat for all traits (rows) and all cell types (columns)

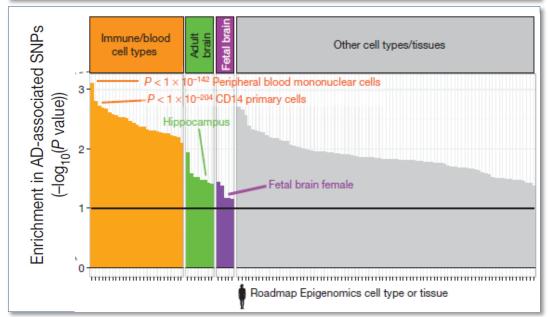

GWAS hits in enhancers of relevant cell types

	t enrich	ned	IM <u>B0 fe</u> tal lung fibro HUES48 HUES64	HIT OF T9.11 HIT derived MSCs Mononuclear cells pe	T cells elled utment T cells cord blood T regulatory cells peri T helper cells periph.	I helper riarve cells PMA-I T helper 17 cells PMA-I T helper 17 cells PMA	T helper memory cell: T CD8+ memory cell: T CD8+ memory cells	CD8+ naive cel lonocytes penp cells cord bloo	SOS SOS	B cells peripheral Natural killer cells per	eutropriiis peripri SC-derived chor dipose-derived N	MSC-derived adipocy Foreskin fibroblasts Foreskin fibroblasts	Foreskin keratinocyte Breast myoepithelials	a i a	Brain substantia riigt Brain anterior caudat Brain cingulate gyrus Brain inferior tempora		keletal mus etal muscle etal muscle	Lett ventrici Aorta Duodenum s	Rectal smo Stomach si Fetal intest Fetal intest	Sigmol	Rectal muc Stomach m		Pancreatic islets Placenta i ver	Splei	Sena:	E H H	Monocytes-CD14* R NH-A astrocyte Osteoblast
	ie/cell t bbrev -		E017 E014 E016	E022 E006 E062 E034	100000 400440 200440	E041 041 042	E0374 E0374 E03873	E047 E029 E031	E035 E051 E050	E032 E046	E049 E025	E055 E055 E056	E058 E027 E112	E098	E0684	E067 E067 E063	E1089	E065 E078	E103 E111 E085 E085			E094	E087 E091 E066	E098 E113	E115 E115 E116	2822	E124 E125 E129
Height Height	ESC	4.7	0			TTT	\square																				
Crohn's disease	Tper	4.0	U																								
Chronic lymphocytic leukaemia Type 1 diabetes autoantibodies	Tcor Treg	4.9 4.6			0										+++			++		$\left \right $					+++		╇┽┷╹
Type 1 diabetes	Treg	4.1			0																						
	Th.nai Th.stm	4.6										+++	+++	$\left \right $	+++	+++		+++			+++				+++	+++	++- !
Self-reported allergy	"h.stm	4.9				0																					
	"h.stm "h17st	4.3				0			+++	+++		+++	+++	$\left \right $	+++	+++		++		++++					+++	+++	╉╋╴╵
Rheumatoid arthritis	"h17st	4.2				0																					
	h.mm h.mm	11.6					0					+++	┼┼┣		+++	+++											- !
Type 1 diabetes	'h.mm	5.6					Ō																				
Systemic lupus erythematosus T Systemic lupus erythematosus	<u>h.mm</u> Bcor	4.8					0	0				+++	┼┼┠	+++	+++		$\left \right $			+++	+++				+++		╃ ┿╸╵
Primary biliary cirrhosis	Bcor	3.9						0																			
	HS Cmb HS Cmb	5.9 8.0							0																		
Mean platelet volume	HSCmb	5.0							0																		
	HS Cmb Broer	3.9							0	0					+++										┽╆╈	+++	++- !
Multiple sclerosis	Bper Bper	4.7								0																	
Rheumatoid arthritis Mean platelet volume	NKper Fat	<u>5.0</u> 4.2								0	0							++		++++	+++						++-
HDL cholesterol	Fat	4.9										0															
Height Multiple myeloma	Fblast Thym	4.8 4.2			++++	+++	+++		+++	+++			+ + + + -	0	+++					++++	+++				+++	+++	┽╀╸╿
Adiponectin levels	Bràin	4.3													0												
	Brain Heart	4.5			++++	+++				+++		+++	+++					0		++++	+++	+			+++	+++	++- !
Blood pressure	Heart	4.5																0									
Aortic root size Pulmonary function	Vasci SmMu	4.1				+++				+++				+++	+++			0	0	++++	+++				+++	+++	++- !
Liver enzyme levels (g-glut tx)	GI.Int	4.9																	0								
	GI.Int GI.Mud	4.5			+++	+++								+++	+++	+++		++							+++		++- !
Breast cancer	Stome	4.5												\square	+++						0				\mp		
Type 2 diabetes Insulin-like growth factors	<u>Stomic</u> Placht	4.3			++++	+++							+++	$\left \right $	+++			++		++++		0			+++	+++	++-
	Plislets Liver	4.1												\square									0		\square		<u>∓</u>
	Liver	9.0												+++									0		+++		++- !
	Liver Liver	7.1												\square									0		\mp		TT
Lipid metabolism phenotypes	Liver	5.8																					0		+++		
HDL cholesterol	Liver Liver	5.7 4.8																					0		+++		
HDL cholesterol	Liver	3.9																					0				
Metabolite levels Platelet counts	Liver F.Leuk	<u>3.9</u> 4.5																					0				
Primary biliary cirrhosis	_ymph	6.7																									
Mean corpuscular volume	Leuk	4.7																									
Ulcerative colitis	Vincyt Vincyt	6.3																									
Alzheimer's disease (late onset)	Vincyt Bone	4.9 4.5		++++	++++	+++	+++					+++	+++		+++	+++	+ + +	++	+ + +	$\left \right \left \right $	+++	+	+++	+++	+++		
1.10 Columpoin	Boule.	1.0																							يلطعكم		

Immune activation + neural repression in human + mouse

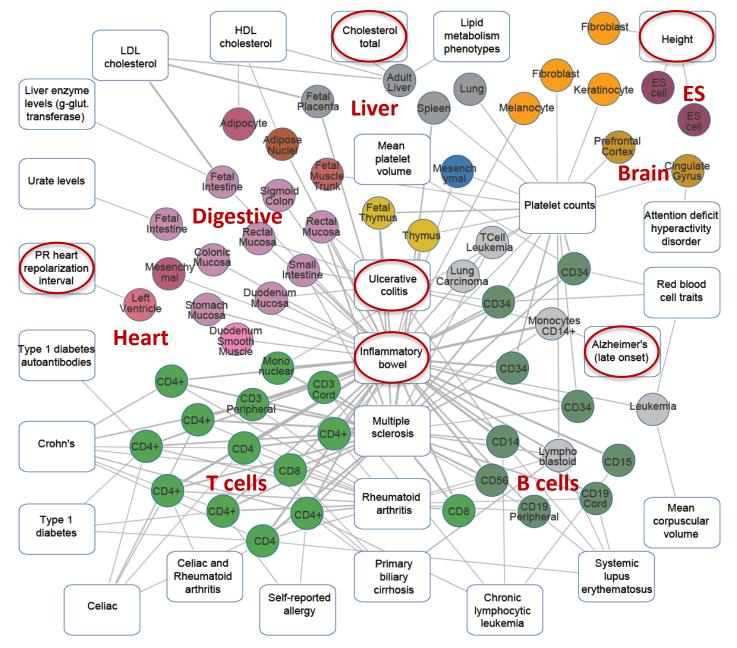
Epigenomics of AD progression

Immune activation precedes neuronal repression

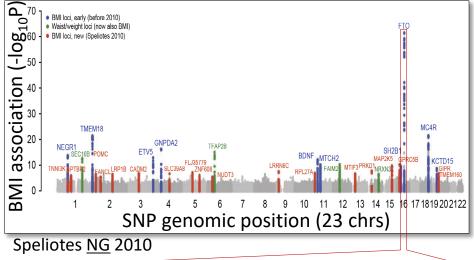

LETTER

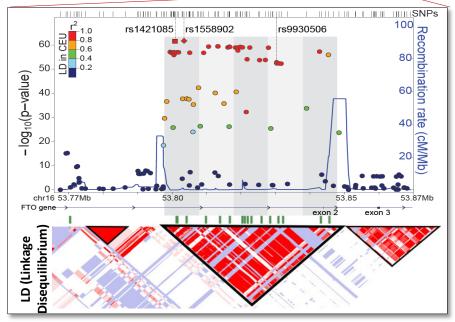
Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer's disease

Elizabeta Gjoneska^{1,2}*, Andreas R. Pfenning^{2,3}*, Hansruedi Mathys¹, Gerald Quon^{2,3}, Anshul Kundaje^{2,3,4}, Li–Huei Tsai^{1,2}§ & Manolis Kellis^{2,3}§



AD variants localize in immune cells, not neuronal

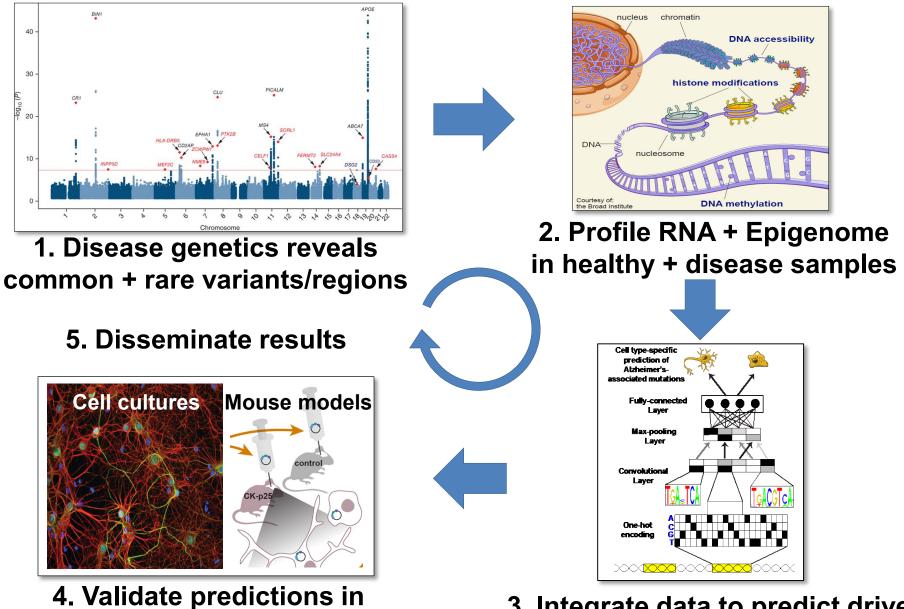

Inflammation as the causal component of Alzheimer's disease


Linking traits to their relevant cell/tissue types

Genomic medicine: challenge and promises

GWAS Manhattan Plot: simple χ^2 statistical test

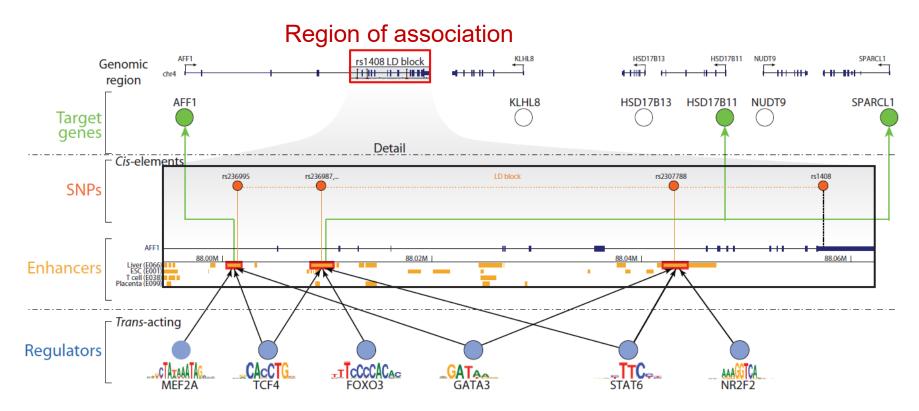
Dina NG 2007, Frayling Science 2007, Claussnitzer NEJM 2015


The promise of genetics

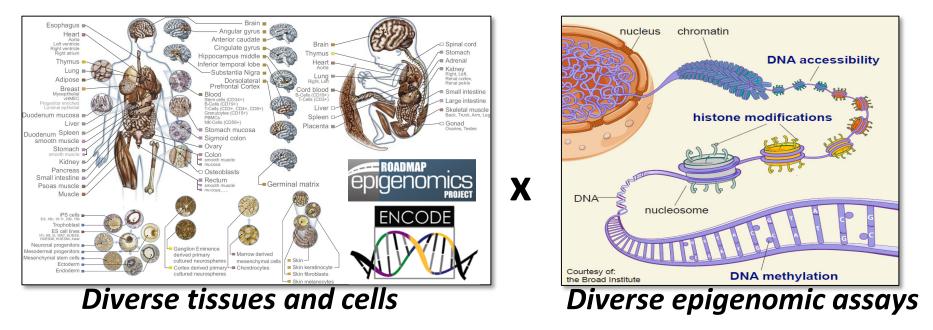
- Disease mechanism
- New target genes
- New therapeutics
- Personalized medicine

The challenge of mechanism

- 90+% disease hits non-coding
- Target gene not known
- Causal variant not known
- Cell type of action not known
- Relevant pathways not known
- Mechanism not known

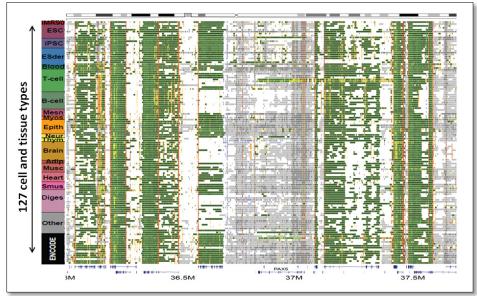

Summary: Dissect circuitry of disease-associated regions

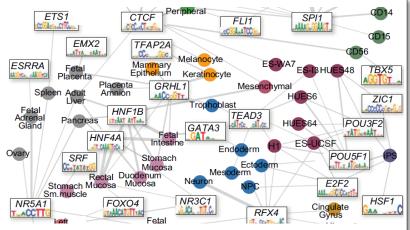
human cells + mouse models


3. Integrate data to predict driver genes, regions, cell types¹⁷

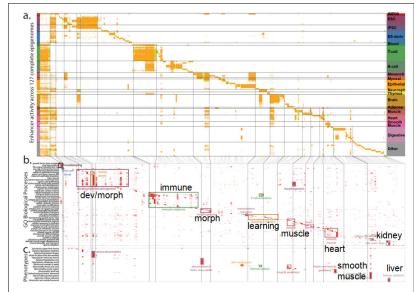

Regulatory circuitry of GWAS loci

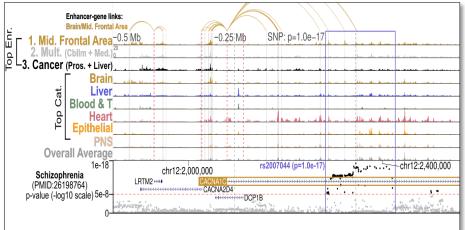
- Expand each GWAS locus using SNP linkage disequilibrium (LD)
 - Recognize **relevant cell types**: tissue-specific enhancer enrichment
 - Recognize driver TFs: enriched motifs in multiple GWAS loci
 - Recognize target genes: linked to causal enhancers


Epigenomic mapping across 800+ tissues/cell types



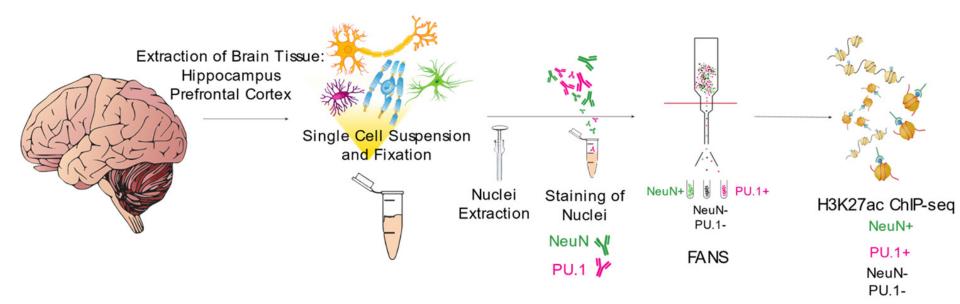
Their combinations define diverse classes of elements

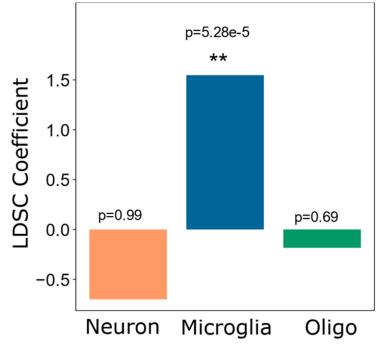

Enhancer modules, regulators, and target genes


1. Map chromatin states across 127 tissue/cells

3. Predict module regulators using motif enrichment

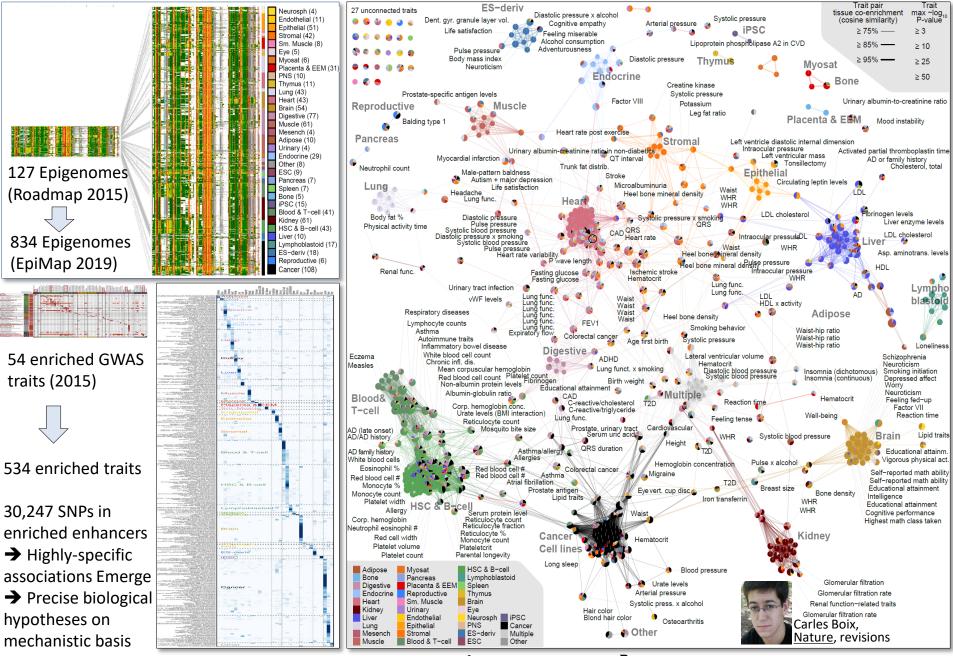
2. Group enhancers into modules of common function



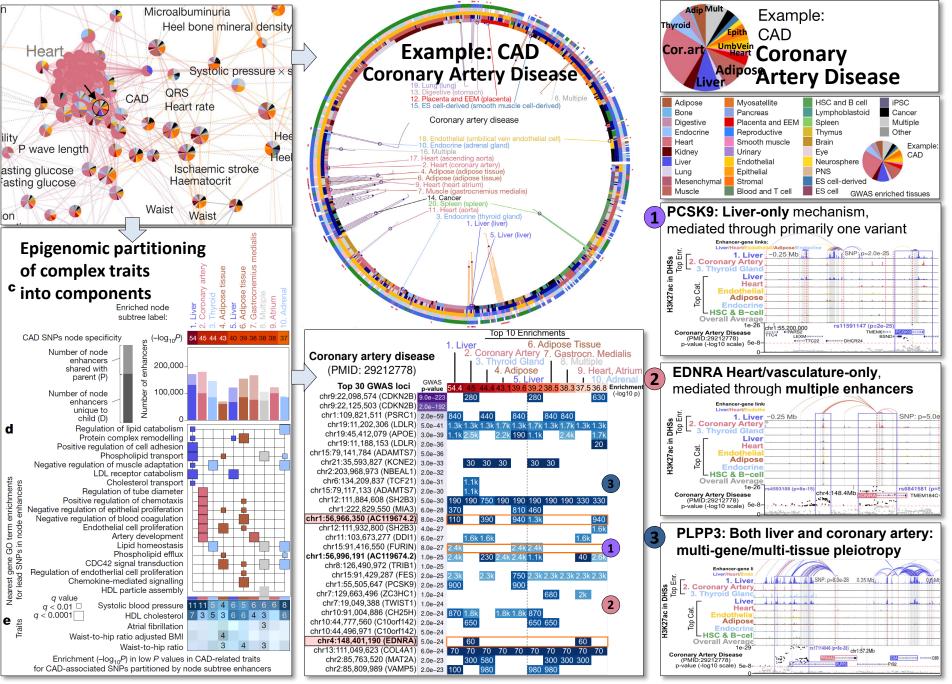

4. Predict target genes using activity correlation, Hi-C, eQTLs

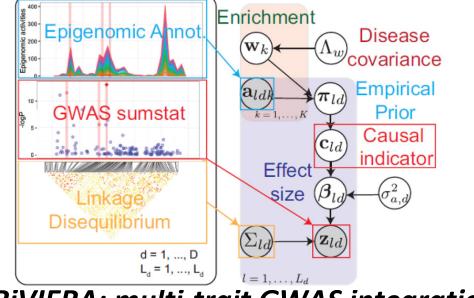
Enhancer enrichment reveals trait-relevant tissues/cells

Tissu enhan ait:	icer:	D fetal lung fibrol	348 364 F 19.11	erived MSCs onuclear cells pe s peripheral	I cells effector/memo T cells cord blood T regulatory cells perij T heper cells periph.	<u>per naive cells p</u> per 1 / cells PMA-I	oer memory cell oer memory cell 8+ memory cells	ber naive cells p 8* naive cells pe ocytes periph.	atopoletic stem G-CSF-mobiliz	s G-CSF-mobiliz s short term cult e narinharal	Natural killer cells peri Neutrophils peripheral MSC-derived chondre	se-derived MSC derived adipocy	kin fibroblasts skin fibroblasts kin melanocytes	skin keratinocyte st myoepithelials us	hippocampus n substantia nigra	Brain anterior caudate Brain inferior tempora Brain angular ovrus	prefrontal corte	ital muscle fema muscle trunk m <u>uscle leg</u>	/entricle	uodenum smootn m ectal smooth muscle comach smooth mus	Fetal intestine small Fetal intestine large Small intestine	oid colon nic mucosa	3 g E	enum mucosa ic inta amnion	reatic islets	reas	5	-S3 cervical carc	K562 leukaemia Monocytes-CD14 ⁺ R
	st enriche ue/cell ty		HUES HUES IPS D	H1 de Mono					HSOS	HSCS HSCS B Cell	Natur	MSC-	Fores Fores	Breas Thym	Brain Brain Brain Brain	Brain Brain	Brain Adipo	8 Skele 9 Fetal Fetal	Aorta	B Recta	Fetal Fetal Small	Sigmoid Colonic r	Place Recta	Duod Gastr	Place				K562 Monc
Trait A	Abbrev –		E01.	E00 E00	E04	E04 E04	E040	E047	E03	E03	E046	E025	E05 E05	E11		E060	E07	E108 E080	E095		E08 E100	E075		E077	E091	E096	E118 E114 E115 E115		E12
leight leight	ESC ESC	4.7	0	\square						\mp	\square	\square					\square	Æ	\square	Ŧ	Æ			++	\square	\square	\blacksquare		Æ
rohn's disease	Tper	7.7												111					HT -	##				#	†††	+++			
Chronic lymphocytic leukaemia	Tcor Treg	4.9 4.6	╂┼╂┦		0				+++		+++-	┼┼┦		┼╂┼	+++	+++	$\left \right $	++-	┞┼╂	++	\vdash		+++	++	+	+++	+++	+++	+++
ype 1 diabetes	Treg	4.1			0																								d†
	Th.nai	4.6	Į++₽'	\square		0					┹	Į., Į	$\Box \downarrow \downarrow \downarrow$	\downarrow		\downarrow	111		F++	7.1.1	ĒΗ		\rightarrow		$\downarrow \downarrow \downarrow$	74	+++	111	+++
	Th.stm Th.stm	5.7 4.9	╂┼╂┦	+++		0			++	++	╄┿╋	┼┼┦	++	+	+++	+++	+++	i++'	┞┼╂	++	H	+ +	+++	++	+++	+++	+++		+++
raves' disease	Th.stm	4.3				0																							(TT
	Th17st	6.9	$\Box \downarrow \downarrow'$	\square		0				\square		\square	$\Box \sqcup$			\square	\square	μ <u>μ</u>	\square	\mp	ΠH			\mp	\square	\mp			44
	Th17st Th.mm	4.2	╂┼┲┙	┼┶┷┙		0	0					┼┼┦	$\left + + \right $	┼╊╈			+++		┞┼╊	╅┼┦	┟┼┶╈			++	+	+++		+++	1
liac disease + rheum. arthritis	Th.mm	5.6					0																			+			
pe 1 diabetes	Th.mm	5.5	$\Box \downarrow \downarrow$	$\Box \downarrow \downarrow$			0			\mp		\Box	$\Box \downarrow \downarrow$	\downarrow		\Box	Ξ11	ЩΨ	□	ŦΨ	\Box	\square	\top	\mp	\square	Ŧ	\mp	ΤH	μ
stemic lupus erythematosus	Th.mm Bcor	4.8	╂┼╂┦	╉╋┿			0			-+ -		┼┼┦	H	+	╉┼┼	+++	+++	++	┞┼╊	++	┢┼┼┼	\vdash	+++	++	+++	+++	+++		+
mary biliary cirrhosis	Bcor	3.9						0									$+ \Box$			+					+	+			
d blood cell traits	HSCmb	5.9							0										TT.										
telet counts an platelet volume	HSCmb HSCmb	8.0 5.0	╂┼╊									 ┼┼┦							I	4.	H + f				1			-	P
an platelet volume	HSCmb	3.9	╂┼┲							0	$+\pm$	ΗU		± 1			$+ \pm$		H	$+\pm$	$H \sqcup$			$+\mathbf{L}$	$+\pm$	$+\Box$	$+\pm$	$+\pm$	\square
eumatoid arthritis	Bper	8.5								9								Ŧ											\square
Itiple sclerosis eumatoid arthritis	Bper NKper	4.7	╂┼╂┘	╀╂┾┿	┵┼┢┢					H		┼┼┦	\vdash	┼╂╄		+++		H	₽₽₽	4++1	\vdash		+++	++	+++	┼┼╀	4++		\vdash
ean platelet volume	Fat	4.2	╊┼┲┙	╏╴╴								0	H	+1			H		\vdash	++	H		++	+t	+++	++	╉┼╧	╇┼╛	
L cholesterol	Fat	4.9	\Box							1		0									dЦ								4
ight Iltiple myeloma	Fblast	4.8	┞┼┼┙	┡╋┿┥		\rightarrow			\downarrow	++	╤┽╋	╇┿┩	0			T++		╇┿	╇┿	4+1	\square	\square	$\overline{++}$	-++-	ŦĦ	 	+++	-++	÷
liponectin levels	Thym Brain	4.2	╂┼╂┦	╉╉┼┼	++++	++	+++	+++	++	++	┼┼╂╴	┼┼┦	H	┼╂┦				-++-	┝┼┲	╇┽┩	\vdash	$\left \right $	+++	++	+++	+++	++	+++	+
ention deficit hyperact. disord.	Brain	4.5								1						0		d III						1					L_
R interval	Heart	4.7	\square	\Box		\square		\mp	TH	\mp	\square	\square	$\Box \downarrow \downarrow$	\mp	T⊣⊢	TH		ЩΨ	0	Ψ	\square	\square	\mp	\square	\square	\mp	\mp	\mp	4
ood pressure ortic root size	Heart Vascl	4.5	╂┼╂┦	╂╂┼┼	++++	+++	+++	+	++	++	┼┼╂╴	++	\vdash	+	++	+++	+++	-++-	0	++1	\vdash	\vdash	+++	++	+++	+++	+++	+++	+
Imonary function	SmMu	4.2																		0								\Box	\square
er enzyme levels (g-glut tx)	GLInt	4.9	ΠĽ					\mp		$\overline{1}$	\square							T	I∏ I		0								4
ate levels v. resp. to chemth. (neutr/leuc)	GI.Int GI.Muc	4.5 4.0	╂┼┲	┍┓┼┤	++++	+++	+++	+++		++	┼┼╂	┼┼┦		+	++	+++	+++		┟┼╂	┼┼┦					+++	+++	+++		+
east cancer	Stome	4.5	╂┼┲								┼┼╋									± 1	rt 🖽		0			$+\pm$			¢
pe 2 diabetes	Stome	4.3		$\Box \downarrow \downarrow$							┿			$\downarrow \downarrow \downarrow$			ЦЦ	ДĽ	III I	#	Щ		0						4
ulin-like growth factors sting glucose-related traits	Placnt P.islets	4.2	╂┼╂┦	H	++++	++	+++	+++	++	++	┼┼╂╴		\vdash	+	┨┼┼	+++	+++		┞┼╂	++	H	\vdash	+++			+++	+++	+++	+
L cholesterol	Liver	10.1	╋╋	╉╋					+	+t	┼┼┲		H_{\pm}	+1					┝┼╁	++			++	+t	╇		$+\pm$	+	¢
olesterol, total	Liver	9.0		İΠ		\pm				1						$\downarrow \downarrow \downarrow$	Π		LП			LП	tП						4
olesterol, total L cholesterol	Liver Liver	7.1	╂┼╂┚	++++	++++	+++		+++	+++	-++-	┼┼╂╴	++	\vdash	+	┨┼┼┼	+++	+++	i++'	┞┼╂	++	\vdash	+ +	+++	++	┼┼╋	₽+++	+++	+++	++
L cholesterol id metabolism phenotypes	Liver	5.8	╂┼╂┦	H	++++	++	+++	+++	++	++	+++	++	H	+	++	+++	+++		┠┼╂	++	H	$\left \right $	+++	+	++ •		++	+++	+
)L cholesterol	Liver	5.7	ΗĽ	ЦЦ						1									ЦŢ										
olesterol, total	Liver Liver	4.8	$\downarrow \downarrow \downarrow'$	$\Box \downarrow \downarrow$	\mp	$\rightarrow ++$	\rightarrow	\downarrow	T ++	<u>-</u> ++-	∓ ++	ŦΗ	$\Box \downarrow \downarrow$	╤╋┼	T ++	∓++	11	<u>д</u> +-'	FH	↓ ↓	\square	$\Box \downarrow \downarrow$	T++		Ŧ	₹ ++	$\downarrow \downarrow \downarrow$	1	Ē.
DL cholesterol etabolite levels	Liver	3.9 3.9	╂┼╂┦	H	+++	++	+++	+	++	++	+++	++	H	+	++	+++	+	-++-	\vdash	++	H	\vdash	+++	++	++		+++	+	+
atelet counts	T.Leuk	4.5		╘┼┼┼┤																+					+++		0		¢
mary biliary cirrhosis	Lymph	6.7	$\Box \mu$									\square	$\Box \downarrow \downarrow$			\square	\square	ЩΨ	ET I	τµ	Щ		\square	7	\square	11			
ean corpuscular volume lammatory bowel disease	Leuk Mncyt	4.7	┟┼╁╵	╘╘╘╧								┢╍╁┦					┝┝┢		┟┼╊	┥┼┦	╘┥┶┙				┥┶╈	╈╋╋			8
	Mncyt	6.3	1+++																									-	
	Mncyt	4.9	+++,																	± 1									1
zheimer's disease (late onset)	wincyt	4.5	+++	++++																									
	Bone	4.5																											\mathbf{U}

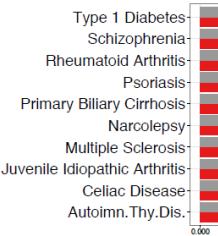

Cell-sorted H3K27ac -> AD variants in microglia, not neurons

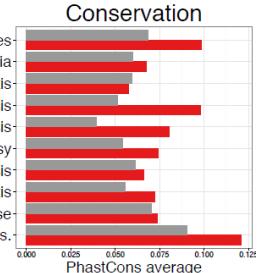
- No enrichment found in whole-brain samples
- Cell-sorted H3K27ac shows strong enrichment for AD variants in microglia
- No enrichment found in neurons or oligodendrocyte H3K27ac for AD variants


EpiMap: 834 tissue/cell types → 30k GWAS SNPs in 534 traits

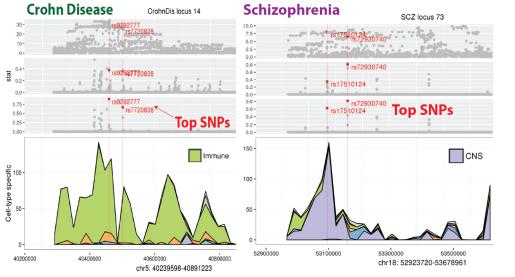

http://compbio.mit.edu/epimap

Tissue enrich/co-enrichments 🗲 trait clustering, trait-tissue network

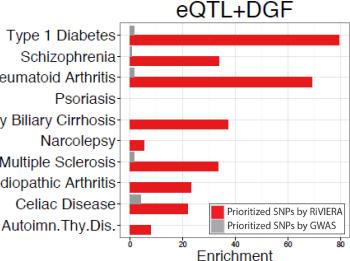

Dissect circuitry of 30,000 GWAS loci: TF→Enh→SNP→gene→pathways



Bayesian fine-mapping: Predict causal variant and cell type

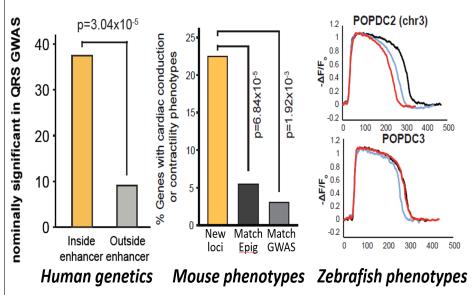


RiVIERA: multi-trait GWAS integration

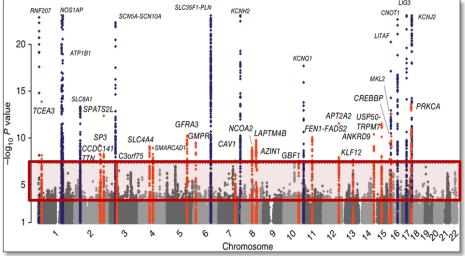


Capture conserved elements

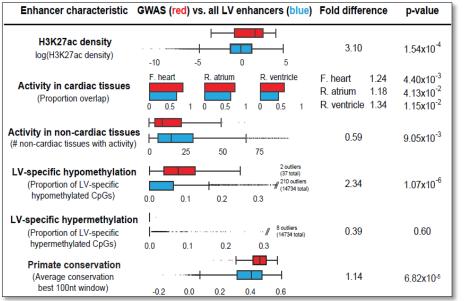
Type 1 Diabetes-Schizophrenia-Rheumatoid Arthritis Psoriasis Primary Biliary Cirrhosis Narcolepsy-Multiple Sclerosis Juvenile Idiopathic Arthritis Celiac Disease


Predict causal variants and cell types

Capture eQTLs from GTEx

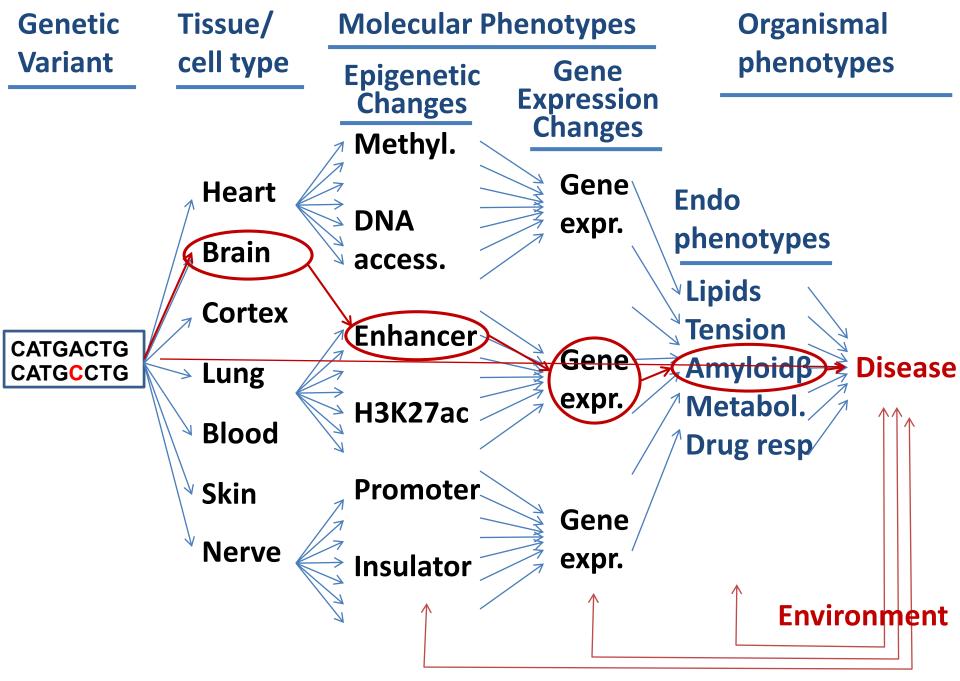

Combine GWAS+Epig to find new target genes/SNPs

Lead SNP	p-value	Enhancer	1. Luciferase reporter	2. 4C-seq interactions			
rs1886512	4.30x10 ⁻⁸	chr13:74,520,000-74,520,400	0.015	No interactions			
rs1044503	5.13x10 ⁻⁷	chr14:102,965,400-102,972,000	4.70x10 ⁻⁹	CINP, RCOR1			
rs10030238	6.21x10 ⁻⁷	chr4:141,807,800-141,809,600	1.35x10 ⁻¹⁴	RNF150			
1510030230	0.21110	chr4:141,900,800-141,908,000	-	RNF150			
rs6565060	1.52x10 ⁻⁵	chr16:82,746,400-82,750,800	5.00x10 ⁻³	No interactions			
rs3772570	1.73x10 ⁻⁵	chr3:148,733,200-148,738,600	0.67	-			
rs3734637	2.23x10 ⁻⁵	chr6:126,081,200-126,081,800	1.06x10 ⁻⁴	HDDC2			
rs1743292	6.48x10 ⁻⁵	chr6:105,706,600-105,710,200	3.20x10 ⁻⁴	BVES, POPDC3			
131743232	0.40x10-	chr6:105,720,200-105,723,000	-	BVES, POPDC3			
rs11263841	6.87x10 ⁻⁵	chr1:35,307,600-35,312,200	0.22	GJA4, DLGAP3			
rs11119843	7.14x10 ⁻⁵	chr1:212,247,600-212,248,600	0.031	-			
rs6750499	7.37x10 ⁻⁵	chr2:11,559,600-11,563,000	0.54	ROCK2			
150730433	7.37810*	(split into two 2kb fragments)	3.26x10 ⁻⁷	RUCKZ			
rs17779853	7.73x10 ⁻⁵	chr17:30,063,800-30,066,800	4.33x10 ⁻³	No interactions			


Validate new enhancers: allelic activity, enh-prom looping

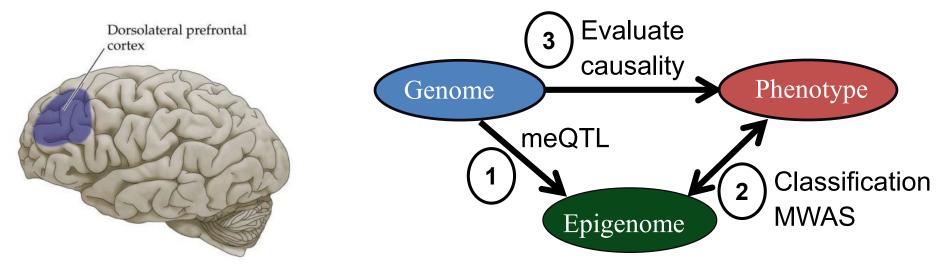
Validate new genes in hum/mou/zb

Prioritize sub-threshold loci (<10⁻⁴)



Machine learning predictive features

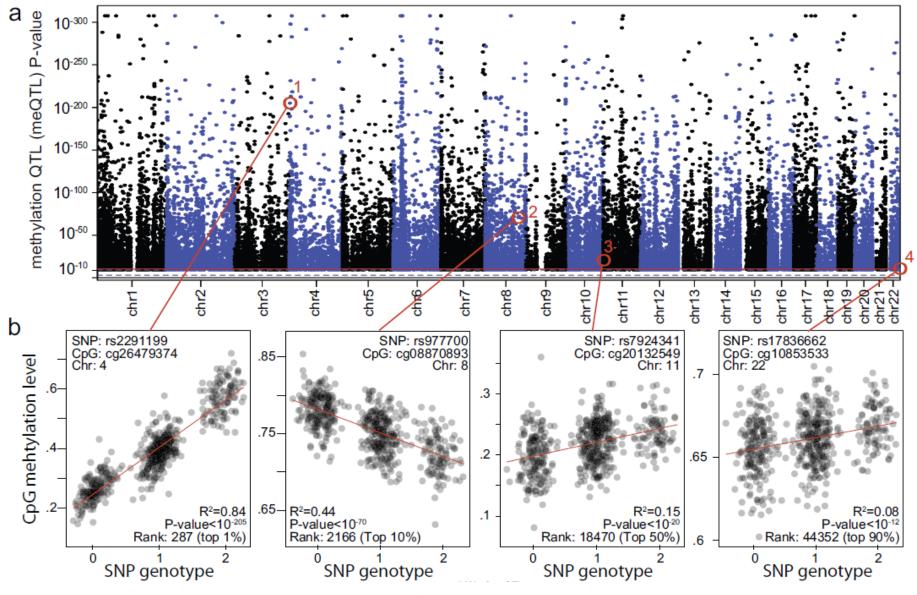
GWAS mechanism: epigenomics, eQTLs, Causality


- 1. Review: GWAS, fine-mapping, locus mechanistic dissection
- 2. Global enrichment analyses: epigenomics, Tissues, Regulators, Cell types, target genes
- 3. eQTLs and mediation analysis: intermediate molecular phenotypes
- 4. Linear Mixed Models for GWAS and for eQTL calling
- 5. Polygenic Risk Scores (PRS): Summing over all variants (and more)
- 6. Heritability: Definition, Missing Heritability, Partitioning Heritability
- 7. LD Score Regression (LDSC): Computing and partitioning heritability
- 8. Polygenic and Omnigenic models of disease
- 9. Guest Lecture: Yongjin Park (UBC) on Causality

3. eQTLs and Mediation Analysis Intermediate molecular phenotypes to disease

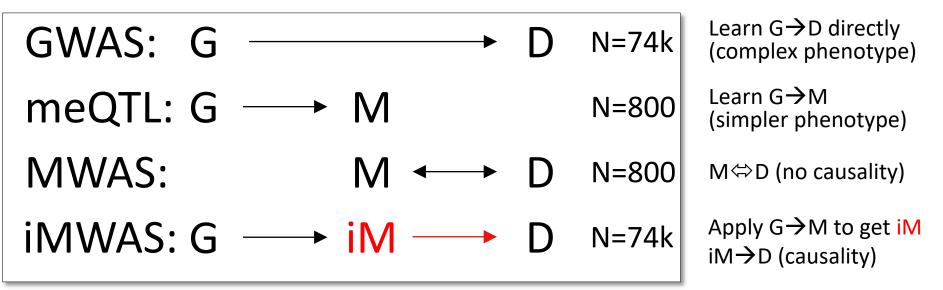
Feedback from environment / disease state

Methylation in 750 Alzheimer patients/controls



Methylation variation in 723 individuals

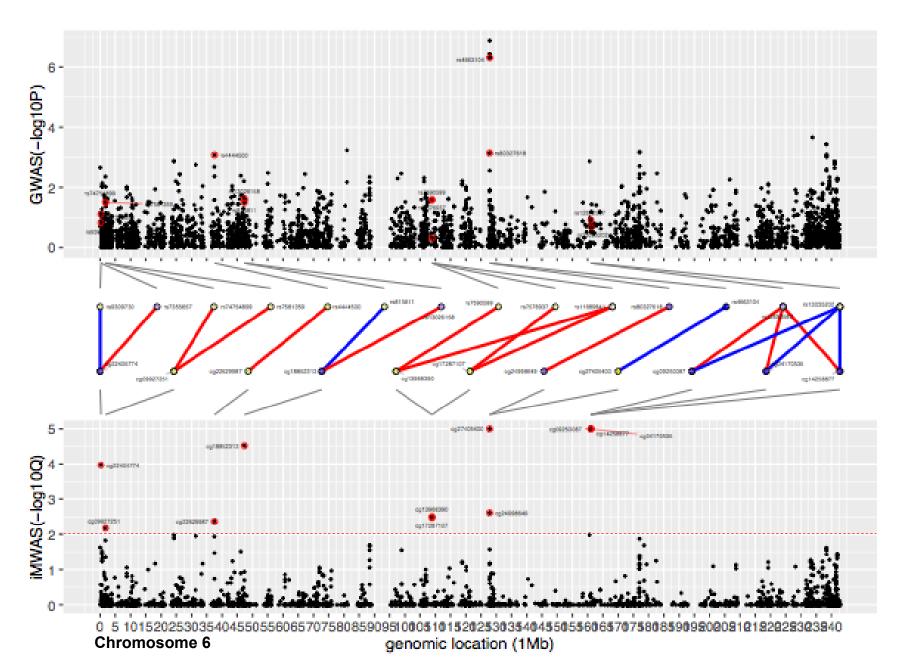
Relate to genotype and AD variation


- ROS-MAP cohort (RUSH: David Bennett, HMS: Phil De Jager)
 - Patients followed for 10+ years with cognitive evaluations
 - Brain samples donated post-mortem methylation/genotype
- Seek predictive features: SNPs, QTLs, mQTLs, regulation

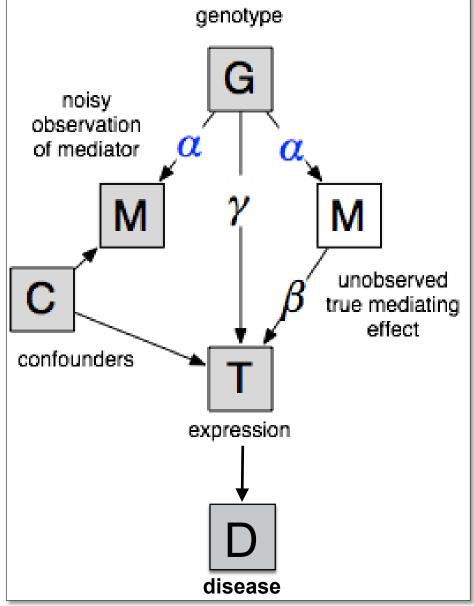
50,000 significant meQTLs after Bonferroni

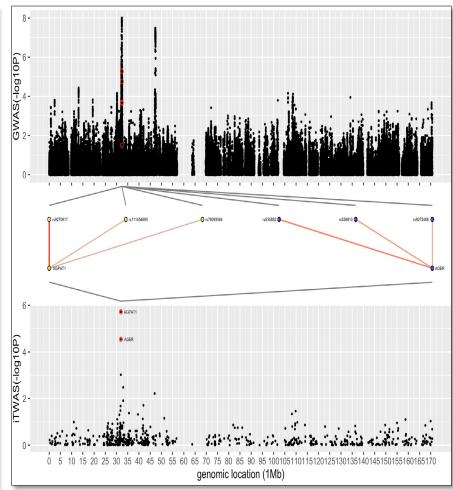
Strong effects across entire range of discovery values

Imputed MWAS: increased power, genetic component

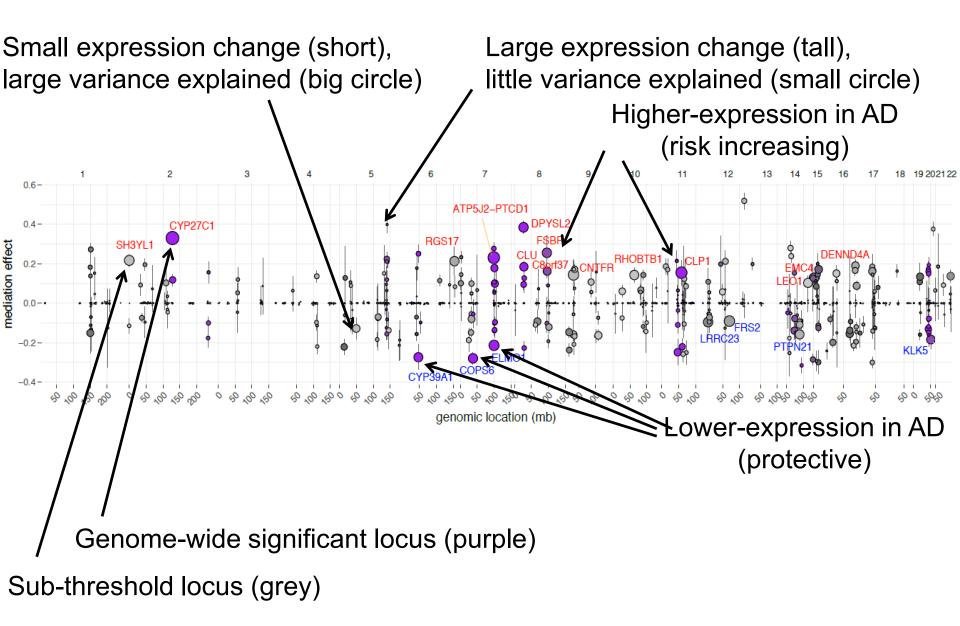

Key Idea:

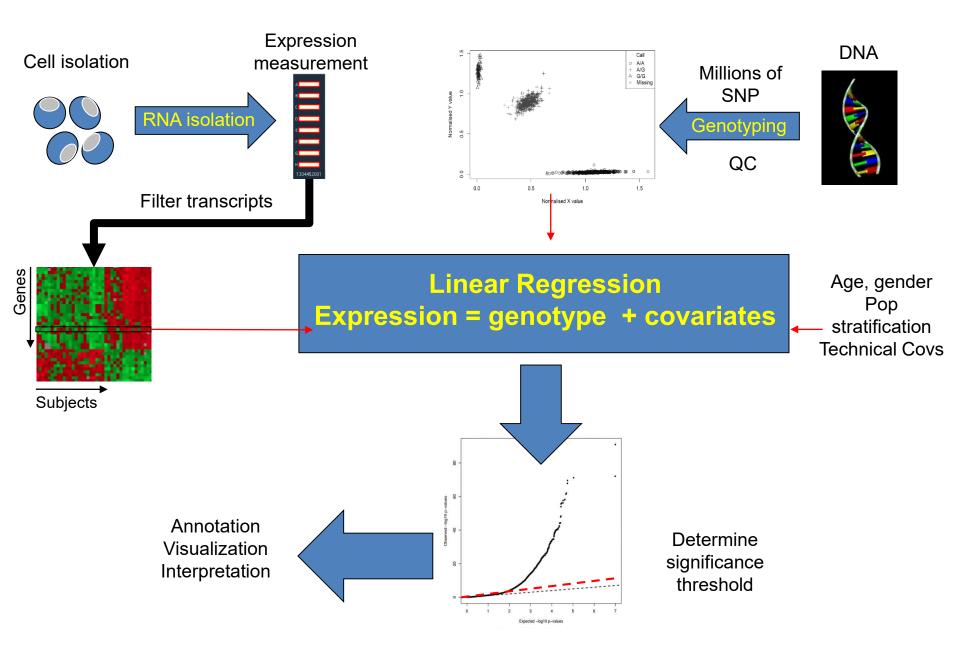
- Learn $G \rightarrow M$ model (ROSMAP n=800) Fewer indiv. Simpler phenotype
- Impute methylation iM for GWAS cohort (n=74k)
- iMWAS between <u>genotype-driven</u> M and AD phenotype (n=47k)
 <u>Advantage:</u>
- Much larger GWAS cohorts (>>MWAS): increased power
- Genetic component of methyl. variation


Logistical challenge:


Summary stats, not full genotypes → Linear model, impute stats direct

iMWAS results: new loci, multiple contributing SNPs

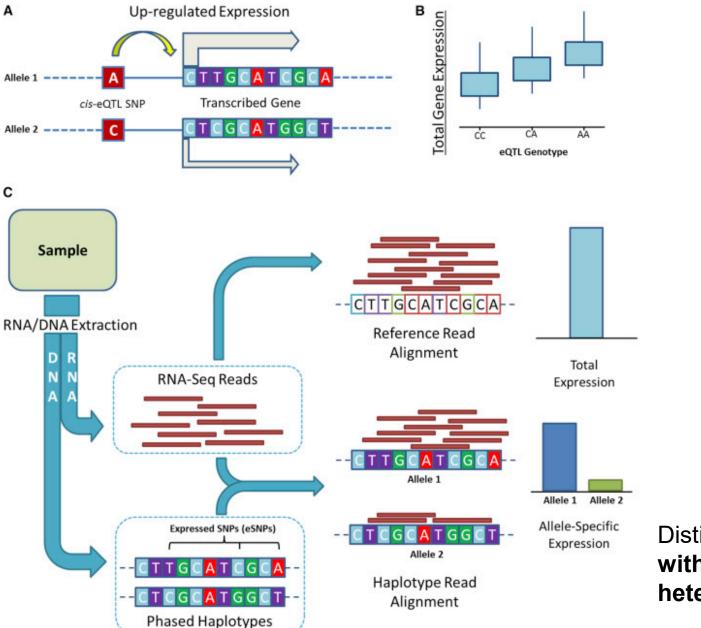

iMTWAS: Imputation across multiple intermediate variables



Model multiple mediator variables SNP → Methylation → Expression → Disease Predict new loci, increased power Predict regulatory regions & target genes

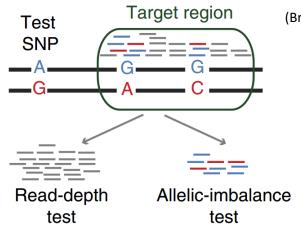
CaMMEL: 206 significant mediating genes in AD

The nuts and bolts of an eQTL study



Expanded eQTL models

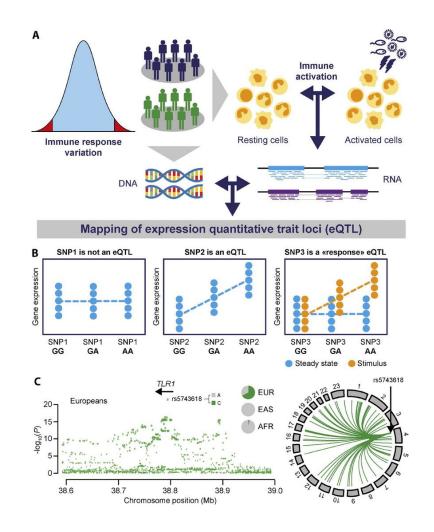
 $Y_{ij} = \alpha + \beta_{ijs}$ genotype + ϵ


$$Y_{ij} = \alpha + \beta 1_{ijs} \text{genotype} + \beta 2_i \text{gender} + \beta 3_i \text{age} + \beta 4_i \text{gPC1} + \beta 5_i \text{gPC2} + \beta 6_i \text{gPC3} + \beta 7_i \text{gPC4} + Genotype PCs$$
$$\beta 8_i \text{ePC1} + \beta 9_i \text{ePC2} + \beta 10_i \text{ePC3} + \beta 11_i \text{ePC4} + \beta 12_i \text{ePC5} + \beta 13_i \text{ePC6} + \beta 14_i \text{ePC7} + \text{Expression PCs}$$

Allelic analysis complements eQTLs

Distinguish reads within the same heterozygous individual

Combined Haplotype Test

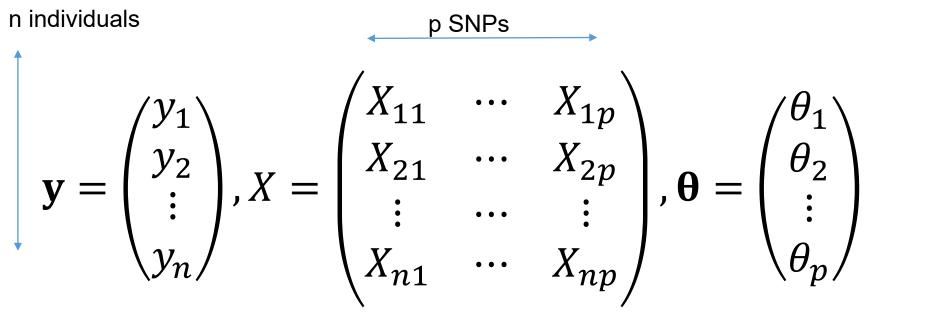


(Bryce van de Geijn, et.al Nature Method 2015)

Maximize likelihood of two observed components:

$$\begin{aligned} & \text{Total Read-depth} & \text{Allelic imbalance} \\ & \text{L}\left(\alpha_{h},\beta_{h},\phi_{j}\left|D\right.\right) = \prod_{i} \left[\Pr_{\text{BNB}}\left(X = x_{ij}\left|\lambda_{hi},\Omega_{i},\phi_{j}\right.\right) \prod_{k} \Pr_{\text{BB-mix}}\left(Y = y_{ik}\left|p_{h},n_{ik},\Upsilon_{i}\right.\right) \right] \\ & \text{Beta-Negative-Binomial} & \text{Beta-Binomial} \end{aligned}$$

"Response eQTLs": Trait-conditional eQTLs



GWAS mechanism: epigenomics, eQTLs, Causality

- 1. Review: GWAS, fine-mapping, locus mechanistic dissection
- 2. Global enrichment analyses: epigenomics, Tissues, Regulators, Cell types, target genes
- 3. eQTLs and mediation analysis: intermediate molecular phenotypes
- 4. Linear Mixed Models for GWAS and for eQTL calling
- 5. Polygenic Risk Scores (PRS): Summing over all variants (and more)
- 6. Heritability: Definition, Missing Heritability, Partitioning Heritability
- 7. LD Score Regression (LDSC): Computing and partitioning heritability
- 8. Polygenic and Omnigenic models of disease
- 9. Guest Lecture: Yongjin Park (UBC) on Causality

4. Linear Mixed Models (LMMs) for GWAS and for eQTL calling

Formal definition of a linear model

In matrix notation, phenotype y as a factor of genetic information x

$$\mathbf{y} = X\mathbf{\theta} + \epsilon, \ \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 I).$$

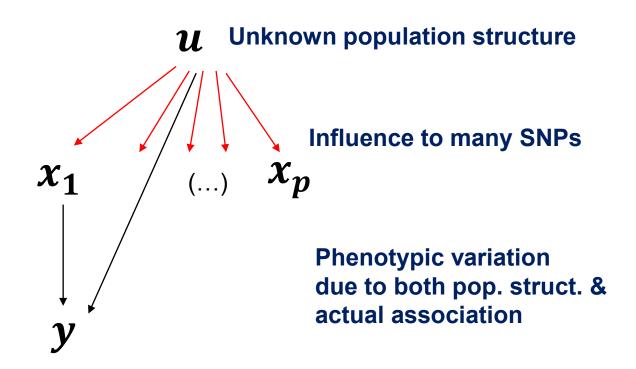
 θ = effect size (can be itself sampled from a normal prior)

What are we missing in the previous multivariate model?

$$\mathbf{y} = X\mathbf{\theta} + \epsilon, \ \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 I).$$

Assume IID individuals. This may not be true.

$$\mathbf{y} = X\mathbf{\Theta} + \mathbf{u} + \epsilon$$


Add random effects to account for the unknown

 $\boldsymbol{u} \sim \mathcal{N}(\boldsymbol{0}, \mathbf{K})$

We assume this random effect can be captured by Kinship covariance.

In GWAS problems, the most influential/spurious random effect stems from population structure.

Why do we need a random effect?

A Bayesian approach to account for the random effect <u>u</u>

Likelihood model:

$$\mathbf{y} = X\mathbf{\Theta} + \mathbf{u} + \epsilon.$$

(Empirical) prior knowledge:

$$\boldsymbol{u} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{K})$$

<u>A Bayesian method</u> ≈ Address/remove uncertainty by averaging out

$$p(\mathbf{y}|X\theta) = \int p(\mathbf{y}|X\theta, \mathbf{u})p(\mathbf{u})d\mathbf{u}$$

A Linear mixed effect model:

two components in covariance matrix

$$= X \mathbf{\theta} + \tilde{\epsilon} \quad \text{with} \quad \tilde{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 I + \tau^2 \mathbf{K})$$

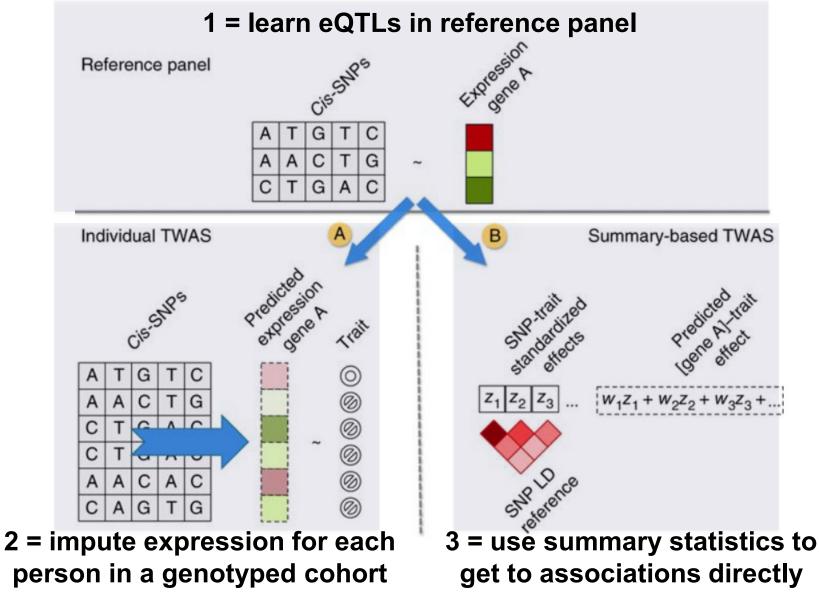
IID error Kinship

components

Linear mixed models

$$p \sim N(0, h^2 G + (1 - h^2) I)$$

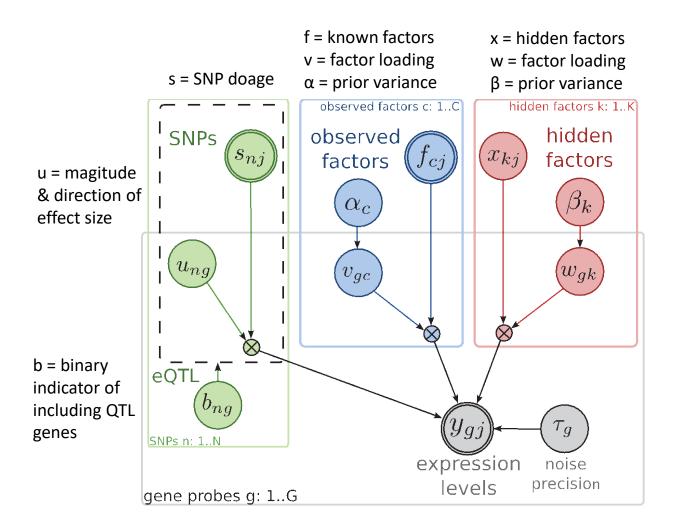
G = XX' / p


- Joint model of all SNPs explains more heritability (Yang 2010)
- Idea: under suitable assumptions, V[a] = $\Sigma \beta_i^2$
- Under the infinitesimal assumption $\beta_j \sim N(0, h^2/p)$, we can estimate V[a] without estimating individual β_j using residual maximum likelihood (REML)
- REML avoids using ML fit of parameters, instead uses transformed data so that nuisance parameters have no effect.
- In variance components analysis (random effects model), transformation focuses on differences, sum of variances
- This works despite not knowing the causal variants
- Example (height): ; $h_{GWAS}^2 = 0.16$, $h^2 = 0.73$, $h_g^2 = 0.5$

Linear mixed models

$$p \sim N(0, h^2 G - (1 - h^2) I)$$

 $G = XX' / p$
 $E[p_i p_j] = h^2 G_{ij}$


- We can generalize Haseman-Elston regression to estimate heritability for unrelated individuals using LMM
- Intuition: genetic relationship matrix G captures identity by state in unrelated individuals
- This is again the probability of sharing the same allele at the causal variants
- This is called PCGC regression (Golan 2015) (phenotype correlation – genotype correlation regression)

Imputation-based association

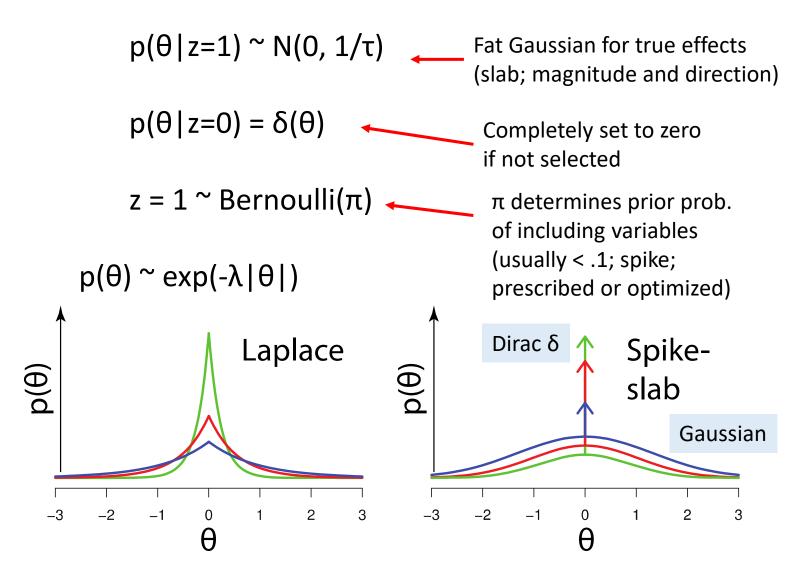
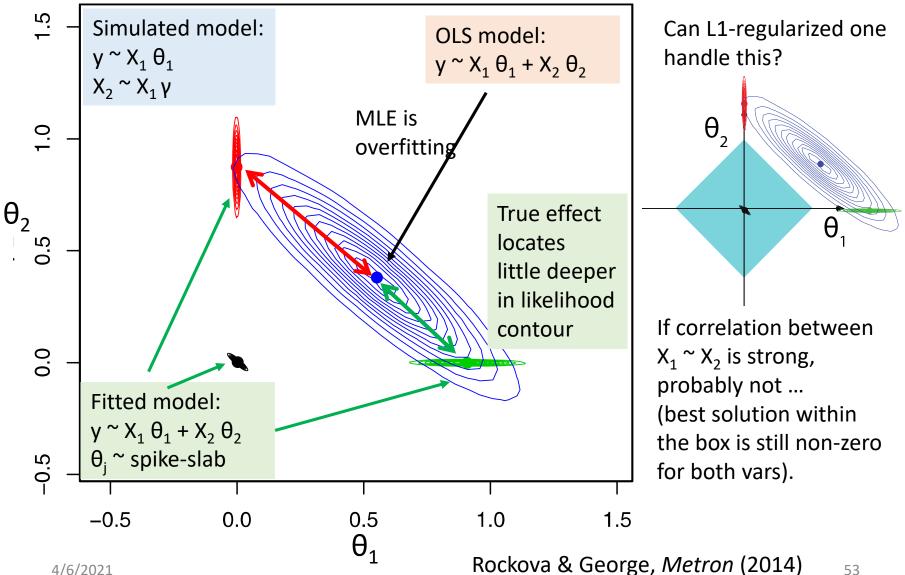
Gusev et al. "Integrative approaches for large-scale transcriptome-wide association studies" 2016 Nature Genetics

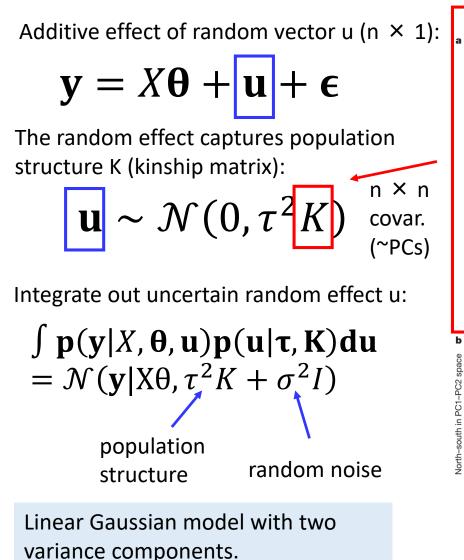
Bayesian linear regression for eQTL modeling

Bayesian extension to ordinary regression models

- 1. Spike-slab prior to select relevant variables
- 2. Random effect models
- 3. Bayesian sparse linear mixed effect model
- 4. Fine mapping causal variants in LD correlation

Extension 1: spike-slab prior on θ

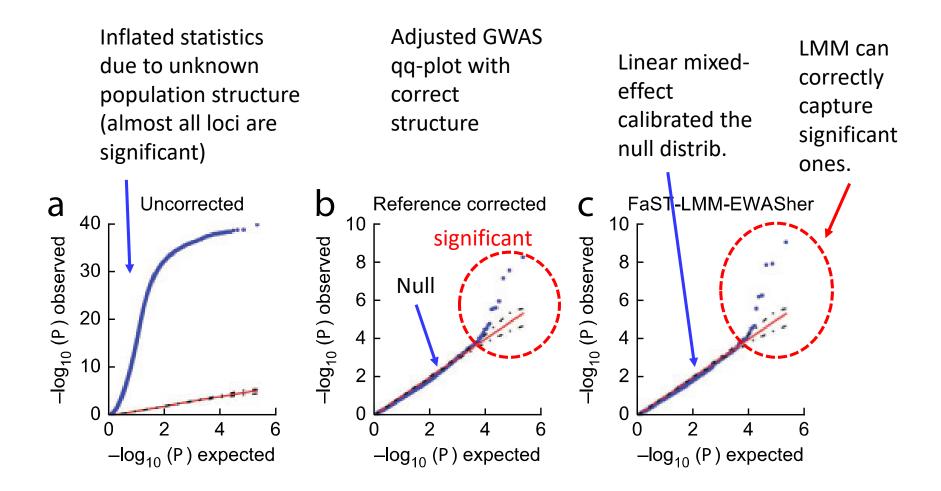




Figure: Hernandez-Lobato (2014)

Spike-slab prior model effectively avoid colinearity

Rockova & George, *Metron* (2014) 53

Ext 2: random-effect for pop. stratification



С 0.020 0.03 Germany Median genetic correlatior 0.02 0.010 0.01 -0.01 -0.02 -0.03 Portuga -0.010 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 East-west in PC1-PC2 space 1.000 2,000 3.000 French-speaking Swiss French Geographic distance between German-speaking Swiss German populations (km) △ Italian-speaking Swiss Italian

J Novembre et al. Nature 000, 1-4 (2008)

4/6/2021

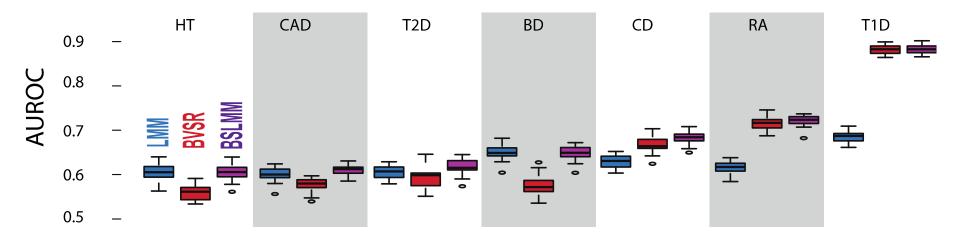
Extension 2: random effect model

Zou .. Listergarten, Nat. Methods (2014)

Extension 3: Bayesian sparse linear mixed effect model

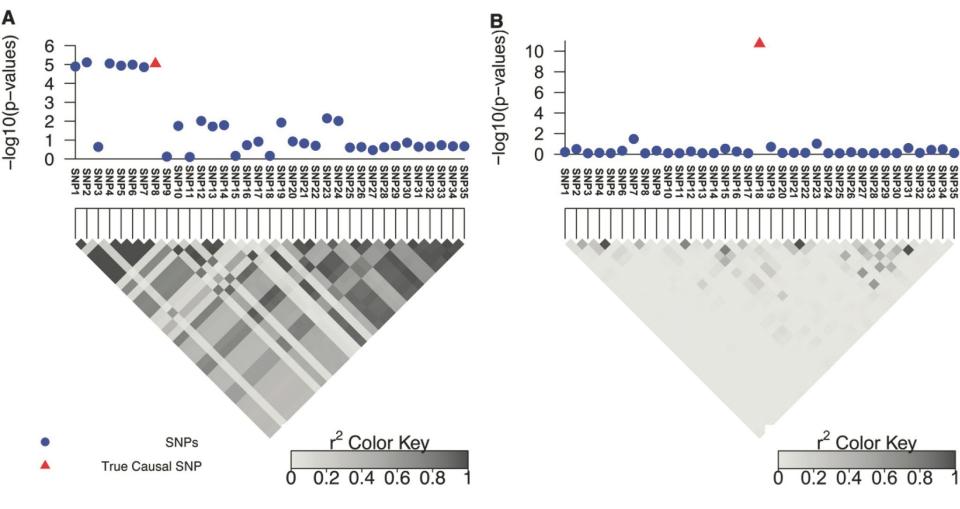
Random effect

 $\mathbf{y} = X\mathbf{\theta} + \mathbf{u} + \boldsymbol{\epsilon},$


 $\mathbf{u} \sim \mathcal{N}(0, K),$

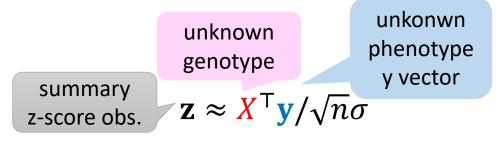
A sort of spike-slab (two mixture model)

$$\theta_j \sim \pi \mathcal{N}(0, \tau_1^2) + (1 - \pi) \mathcal{N}(0, \tau_2^2)$$


causal effect

infinitesimal background effect

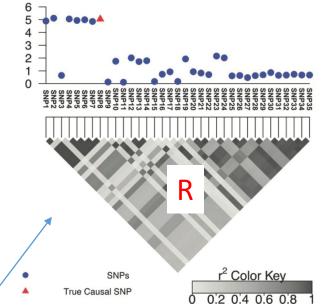
Zhou, Carbonetto, Stephens, PLoS Gen. (2013)


Extension 4: Fine-mapping causal variants

Hormozdiari et al. (2014)

4/6/2021

Extension 4: Fine-mapping under the hood


We assume phenotype vector were generated by

$$\mathbf{y} \sim \mathcal{N}(\mathbf{X}\mathbf{\theta}, \sigma^2 I).$$

Therefore $p \times 1$ vector follows

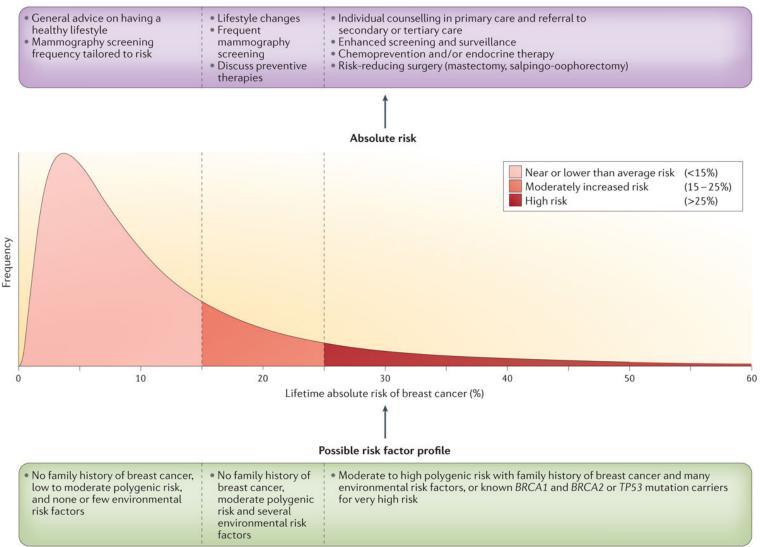
$$\mathbf{z} \sim \mathcal{N}\left(\frac{\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}\boldsymbol{\Theta}}{\sqrt{n}\sigma}, \frac{\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}}{n}\right) \approx \mathcal{N}(\lambda \boldsymbol{R}\boldsymbol{\Theta}, \boldsymbol{R})$$

where LD matrix $R = n^{-1}X^{T}X$ and $\lambda = (n\sigma^{2})^{-1/2}$ absorbs all scaling factors.

- (a) Considering potential colinearity embedded in the R matrix, θ desperately needs spike-slab prior.
- (b) For computational efficiency, previously developed algorithms restrict number of causal variants (e.g., at most 3).

Bayesian inference algorithms

	Exact inference	Markov Chain Monte Carlo	Variational Bayes
Accuracy	correct	approximate, stochastic	approximate, deterministic
Convergence	sure	Global optima at equilibrium	Local optima in finite time
Flexibility	very limited	high	high
Examples	HMM's forward- backward, Dynamic programming	Importance sampling, Metropolis- Hastings, Gibbs, Hamiltonian MC, Elliptical slice sampling	Laplace, Mean-field approx., Belief propagation, Expectation propagation


GWAS mechanism: epigenomics, eQTLs, Causality

- 1. Review: GWAS, fine-mapping, locus mechanistic dissection
- 2. Global enrichment analyses: epigenomics, Tissues, Regulators, Cell types, target genes
- 3. eQTLs and mediation analysis: intermediate molecular phenotypes
- 4. Linear Mixed Models for GWAS and for eQTL calling
- 5. Polygenic Risk Scores (PRS): Summing over all variants (and more)
- 6. Heritability: Definition, Missing Heritability, Partitioning Heritability
- 7. LD Score Regression (LDSC): Computing and partitioning heritability
- 8. Polygenic and Omnigenic models of disease
- 9. Guest Lecture: Yongjin Park (UBC) on Causality

5. Polygenic Risk Scores (PRS): Summing over all variants (and more)

Estimate absolute risk combining genetic and environmental risk factors

Possible clinical decisions

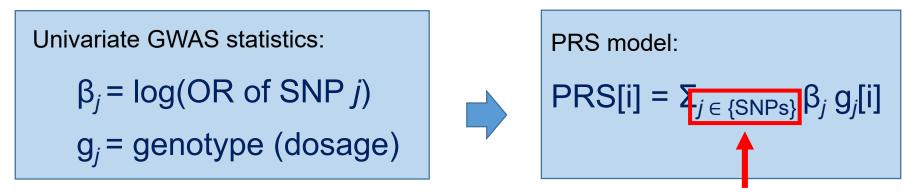
Chatterjee et al. Nature Reviews Genetics (2016)

Nature Reviews | Genetics

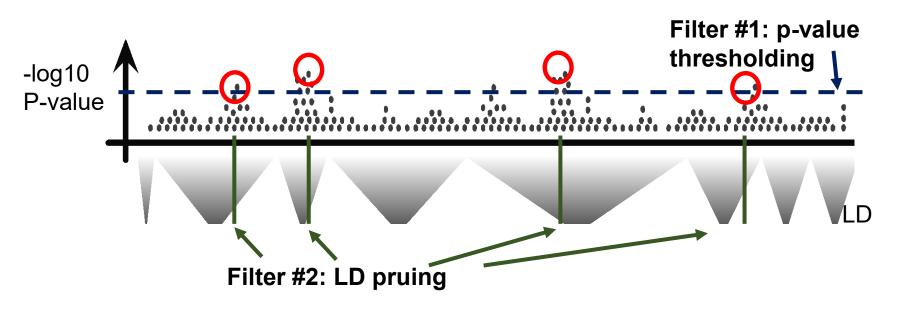
How do we estimate polygenic risk score?

Univariate GWAS statistics teach us:

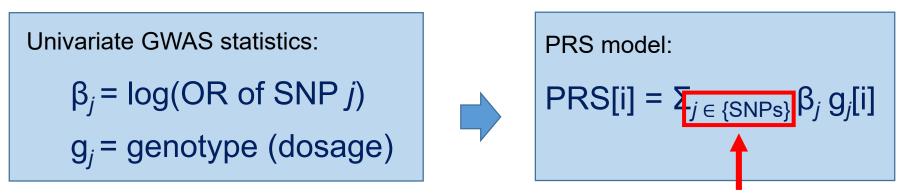
 $\beta_j = \log(\text{odds ratio of SNP } j)$ $g_j = \text{genotype (dosage)}$


Predict overall risk by combining many, many variants!

 $\mathsf{PRS} = \Sigma_{j \in \{\mathsf{SNPs}\}} \beta_j g_j$


Can we just combine all the SNPs? Why not?

- Is correlation between g₁ and g₂ zero?
- Can we trust the estimate β of all the SNPs?
- Can we just select GWAS significant SNPs?


A common practice of PRS estimation

Goal: Tuning this parameter

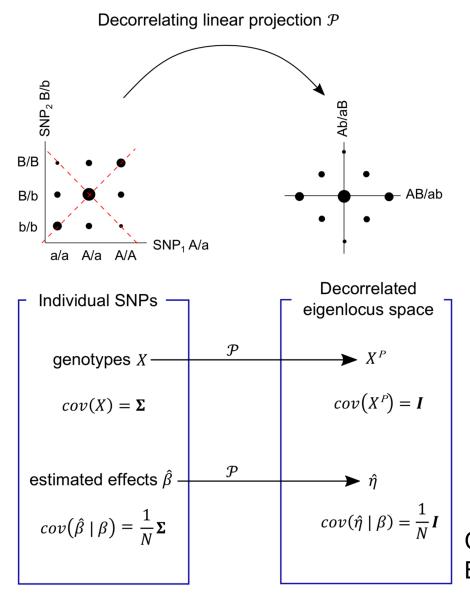
A common practice of PRS estimation: Cross-validation with observed phenotype

Goal: Tuning this parameter

An alternative method for estimating PRS (and a simpler and more powerful way)

Univariate GWAS statistics:

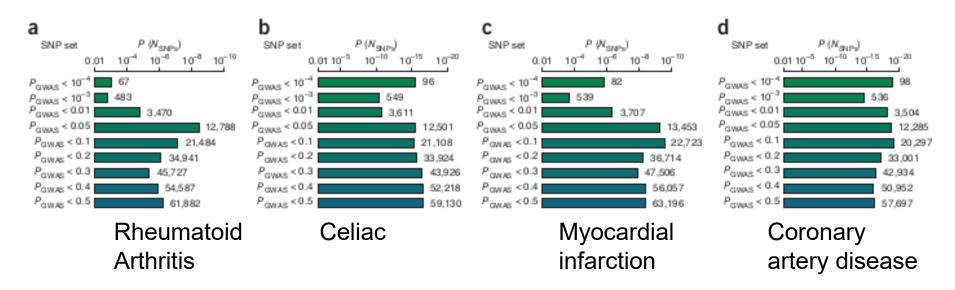
 $\beta_j = \log(OR \text{ of } SNP j)$ $g_j = \text{genotype (dosage)}$


PRS model:

$$PRS[i] = \sum_{j \in \{SNPs\}} \beta_j g_j[i]$$

What's wrong with using all the SNPs? LD between them. Adjust spurious weak effects.

Chun .. Sunyeav, BioRxiv (2019) Baker *et al.,* Genetic Epidemiology (2017)

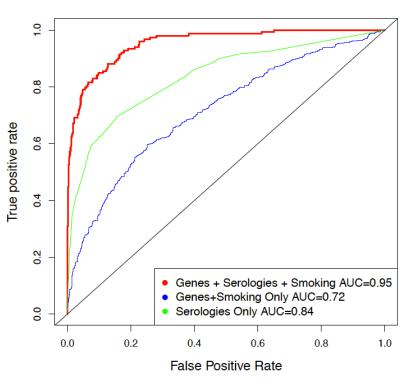

Idea: Decorrelate LD structure

- Transform SNP space to multi-SNP space (SVD)
- Select independent & orthogonal factors.
- Or regularize eigenvalues to smooth out spurious associations.
- We don't need much tuning with regularization.

Chun .. Sunyeav, BioRxiv (2019) Baker *et al.,* Genetic Epidemiology (2017)

Polygenic risk scores

- Aggregate burden of sub-threshold SNPs to improve prediction performance (Stahl 2012)
- As we include more SNPs in the risk score, the association with RA, celiac disease, MI, CAD gets stronger
- In practice, requires tuning of p-value threshold, LD pruning threshold


Phasing diploid genomes is hard

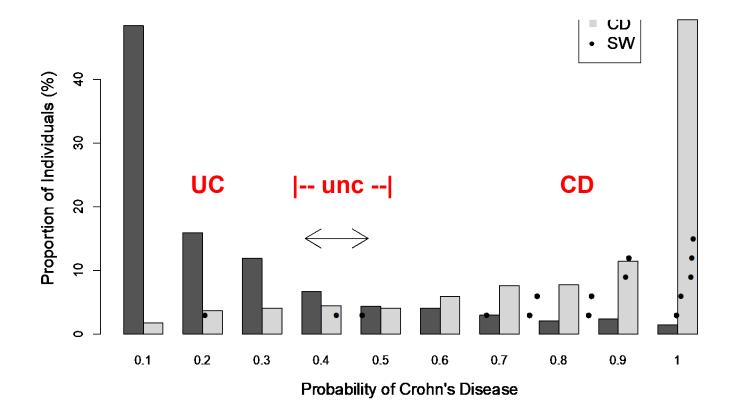
- Humans are **diploid** organisms
- Each individual carries two homologous copies of each chromosome
- Therefore, they carry two copies of each variant (called the maternal/paternal allele)
- Variants co-occur in haplotypes which are inherited as a unit
- Experimentally possible, but currently infeasible, to directly measure haplotypes over the whole genome
- Cheaper and more efficient to measure genotypes (counts of minor allele)
- Genotyping loses information, which we need algorithms and statistical models to recover (phasing, imputation)

Haplotypes 0 0 1 0 1 1 0 (maternal) 0 1 1 0 0 1 0 (paternal) Genotypes 0 1 2 0 1 2 0

Molecular diagnostics in IBD

ROC Curves For A Model That Discriminates CD from UC Patients

'Molecular' diagnosis (based on GWAS SNPs & serologic biomarkers) concordant with GI dx: CD & UC patients can be distinguished accurately


Jonah Essers (MGH/CHB), Dermot McGovern (CSMC)

350 UC CD 80 250 **Number of Individuals** 200 150 10 50 (0.00103.0.101] (0.101.0.201] (0.201.0.301) (0.301.0.401) (0.8.0.9 (0.401.0.501) Model probability of Crohn's Disease

Model Calibration

>90% of patients correctly classified with >90% reliability

Molecular diagnostics flag patients with worst outcome

Black dots represent patients diagnosed with UC who later underwent colectomy and then developed full-blown Crohn's disease

GWAS mechanism: epigenomics, eQTLs, Causality

- 1. Review: GWAS, fine-mapping, locus mechanistic dissection
- 2. Global enrichment analyses: epigenomics, Tissues, Regulators, Cell types, target genes
- 3. eQTLs and mediation analysis: intermediate molecular phenotypes
- 4. Linear Mixed Models for GWAS and for eQTL calling
- 5. Polygenic Risk Scores (PRS): Summing over all variants (and more)
- 6. Heritability: Definition, Missing Heritability, Partitioning Heritability
- 7. LD Score Regression (LDSC): Computing and partitioning heritability
- 8. Polygenic and Omnigenic models of disease
- 9. Guest Lecture: Yongjin Park (UBC) on Causality

6. Heritability:

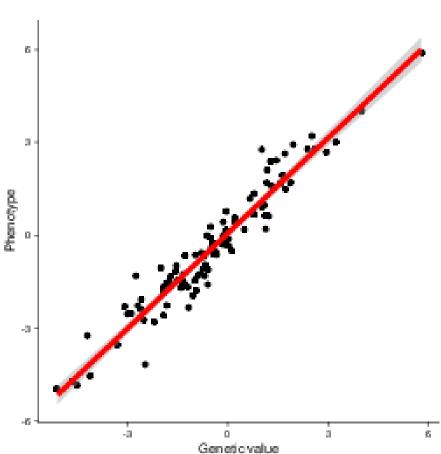
Definition, Missing Heritability, Partitioning

Lessons of GWAS

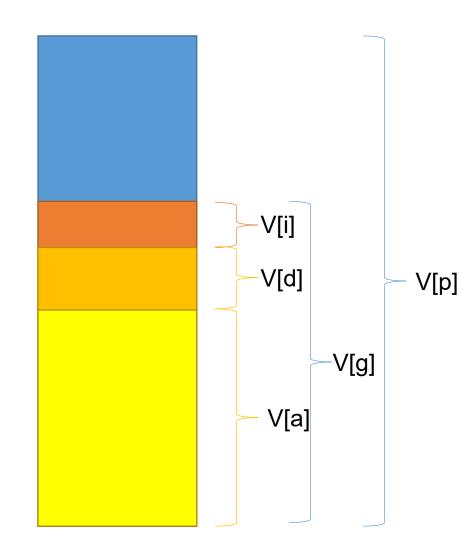
- 1. We haven't found all causal loci: known loci explain little phenotypic variance
- 2. Most loci affect transcriptional regulation: they don't tag coding variation

Components of phenotypic variance

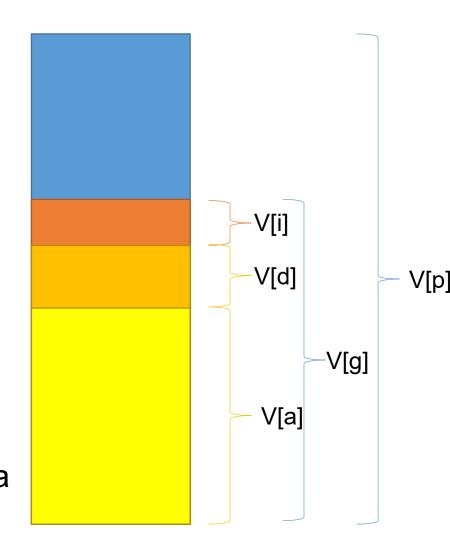
- Assume p (phenotype) = g (genetic) + e (environment)
- Then, V[p] = V[g] + V[e] + 2Cov(G,E) (assume no gene-environment interactions)


V[phenotype]			
V[genetics]	V[environment]		

- Example: one causal variant
- Three possible **genetic values** in the population
- Intuition: V[g] is the variance of mean phenotype across different genetic values
- V[e] is the variance of phenotype for the same genetic value


Components of genetic variance

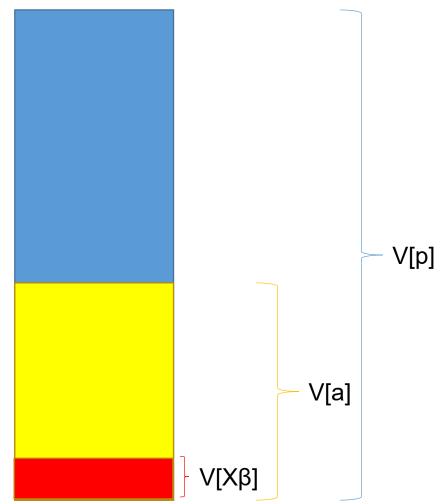
- Assume V[g] = V[a] (additive)
 + V[d] (dominance) + V[i]
 (interactions)
- The additive component corresponds to a linear model
- As we add more causal variants, phenotypes become closer to Gaussian
- We could further decompose interactions
- We could include variance due to *de novo* mutations


Heritability is a ratio of variances

- V[p] = V[g] + V[e]
- V[g] = V[a] + V[d] + V[i]
- Broad sense heritability H² = V[g] / V[p]
- Broad sense captures all genetic factors
- Narrow sense heritability h² = V[a] / V[p]
- Narrow sense captures only additive effects
- Ongoing debate about the relative importance of additive vs. other effects in disease, selection, etc.

Why study heritability?

- Quantify the importance of genetics vs. environment in traits of interest
- Learn about genetic architecture: how many causal variants, effect sizes, allele frequencies
- Narrow sense heritability is the fundamental parameter needed for phenotype prediction (and is the theoretical best possible prediction performance with a linear model)

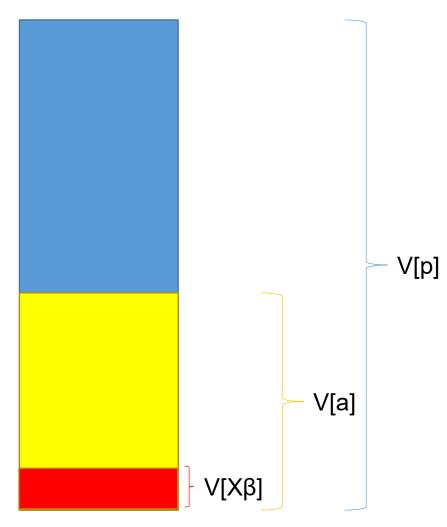

Estimating heritability in relatives

```
p = g + e
E[p<sub>i</sub> p<sub>j</sub>] = h<sup>2</sup> E[g<sub>i</sub> g<sub>j</sub>]
```

- Intuition: heritability relates phenotypic correlations to genotypic correlations
- If two individuals have the same allele at each of the causal variants, they will have the same phenotype
- Haseman-Elston regression: fit linear regression of phenotypic correlations against genotypic correlations
- Derive genotypic correlation from family relationships: monozygotic twins share 100% of genome, siblings share 50%, etc.
- Example (height): $h^2 = 0.73$

Estimating heritability from GWAS

- Linear model g = Xβ
- We can estimate SNP effect sizes β from GWAS
- The variance explained by each SNP depends on effect size and MAF
- $V[X_j \beta_j] = 2 f_j (1 f_j) \beta_j^2$
- If we do this with genome-wide significant SNPs, we usually $h_{GWAS}^2 < h^2$
- Example (height): 253,288 samples; 697 genome-wide significant loci; h²_{GWAS}=0.16, h² = 0.73
- Known as the missing heritability problem

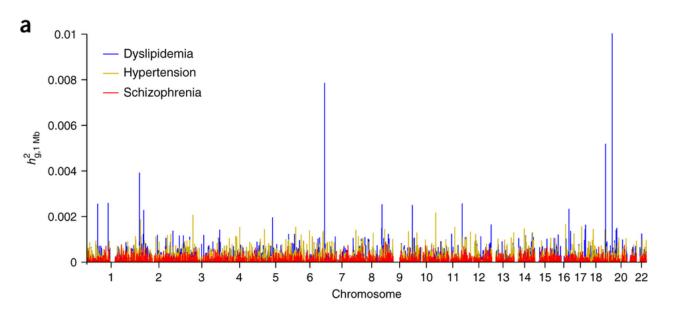


Sources of missing heritability

Ongoing debate about several possible explanations for the missing heritability problem.

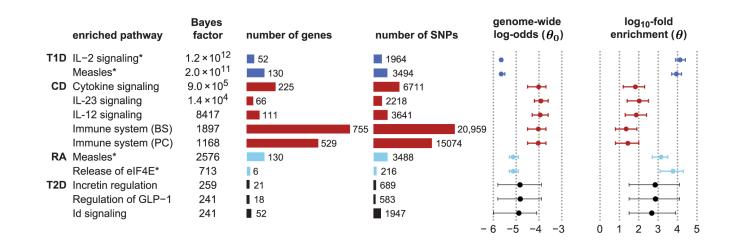
- 1. Many common variants, small effects
- 2. Unobserved rare variants, large effects
- 3. Wrong model assumptions

Each has very different implications for the future of human genetics studies.

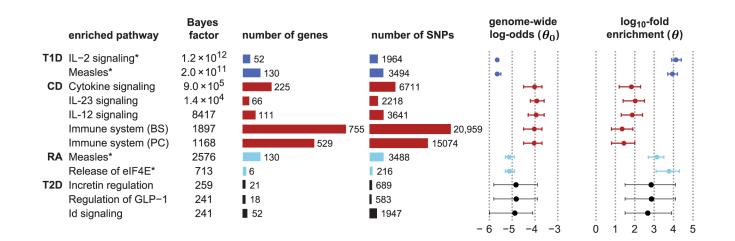


Partitioning heritability

- Extend the model so chromosomes can explain different proportions of variance
- Intuition: add more variance parameters for each partition of SNPs
- Each partition induces a different genetic relationship matrix
- Longer chromosomes explain more heritability
- Suggests causal variants are spread uniformly through the genome



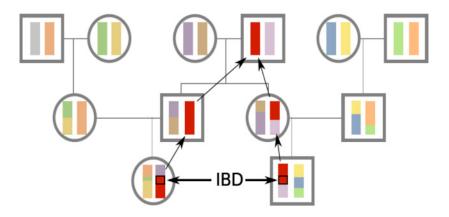
Partitioning heritability


- Fit a model with one component per 1MB window (Loh 2015)
- Bound cumulative heritability explained to estimate number of regions
- Most of the genome explains non-zero heritability

Bayesian variable selection

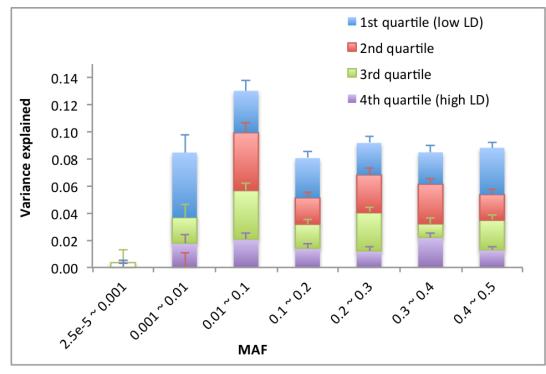
- Directly fitting the underlying linear model is ill-posed: we have n
- Idea: use **spike and slab** prior to force many effects to be exactly 0 and regularize the problem (one solution)
- Inference goal: estimate the effect sizes and the level of sparsity (Carbonetto 2013)

Pathways-informed prior from enrichments



- Extension: some pathways contain more causal variants than the rest of the genome
- Incorporate into the prior
- Identifies relevant immune signaling pathways which are not found using existing methods
- Identifies tens of thousands of SNPs which could be affecting those pathways

Evidence for other explanations

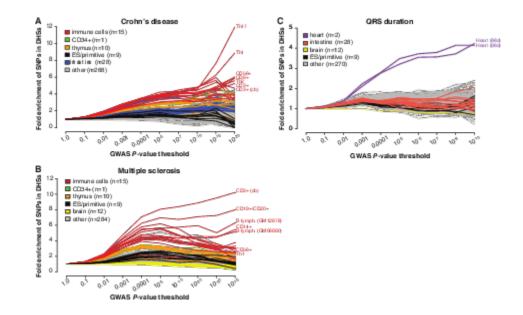

- Incorporating Identity by Descent (IBD) in unrelated individuals
- Partitioning SNPs by MAF, LD
- Assumptions do not hold in real data

Estimating heritability: shared haplotypes

- Shared haplotypes explain more heritability than tag SNPs
- There is a still a discrepancy between h_{a}^{2} and h^{2}
- If two individual share a chromosomal segment, unobserved variants should also be shared (Bhatia 2015)
- Idea: Identify IBD segments by quickly scanning SNPs and finding stretches of identical alleles
- Inferring shared segments captures rarer variants more effectively than LD

Partitioning SNPs by MAF/LD

- Low frequency/low LD variants are poorly tagged by observed/imputed variants, so estimate variance for them separately (Yang 2015)
- Partitioning appears to explain all of the heritability of height using only common/low frequency variants!


Examining model assumptions

- Phenotypes might not be Gaussian
- GWAS samples are not independent and identically distributed
- SNPs are not independent
- Not all SNPs have an effect
- Not all causal SNPs have equal effects
- There are gene-environment interactions
- There are gene-gene interactions

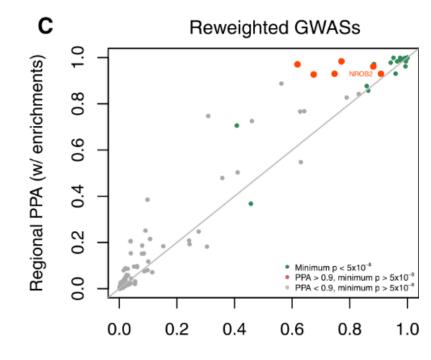
Limitations of heritability

- Explaining all of the heritability of complex traits is not enough
- As sample size goes to infinity, will the entire genome be associated with all traits? (Goldstein 2009)
- **Goal:** Find biological pathways recurrently disrupted by non-coding variation

Regulatory enrichments

- Weakly associated variants overlap accessible chromatin more often than expected by chance (Maurano 2012)
- Same trend observed in other predicted regulatory elements: histone peaks, ChromHMM segments, super enhancer clusters

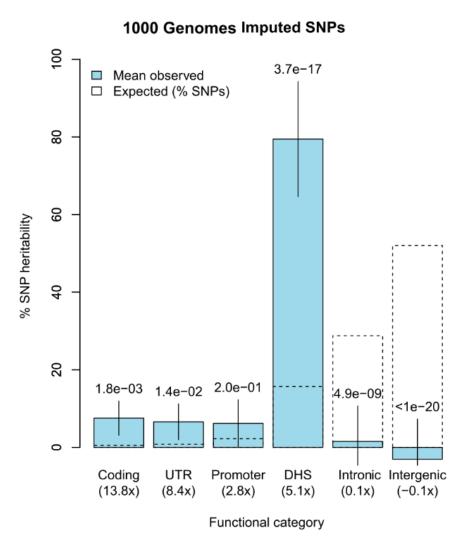
Joint model of SNPs and annotations


- Use **penalized stepwise regression** to pick relevant annotations (Pickrell 2014)
- Use approximate Bayes factors to compute posterior probability of association
- Forward steps: add annotations to the model until they don't explain enough variance
- Backward steps: remove annotations from the fitted model until variance explained drops too much

Enrichments (HDL) А Repressed (HepG2) TSS (HepG2) Repressed (K562) DNase (fetal large intestine) Transcribed (K562) Coding exons DNase (fetal small intestine) DNase (fetal large intestine) DNase (fetal large intestine) DNase (liver carcinoma) Transcribed (HepG2) Nonsynonymous DNase (fetal large intestine) 3' UTR DNase (fetal small intestine) DNase (villous mesenchymal fibroblast) DNase (liver carcinoma) DNase (fetal large intestine) DNase (fetal muscle) Repressed (ES cells) DNase (fetal large intestine) DNase (fetal muscle) DNase (fetal muscle) DNase (fetal spleen) DNase (fetal adrenal gland) DNase (fetal muscle) DNase (fetal muscle) DNase (fetal small intestine) DNase (fetal large intestine) DNase (promyelocytic leukemia) DNase (fetal large intestine) DNase (fetal muscle) DNase (fetal muscle) DNase (CD14+ cells) DNase (fetal muscle) DNase (fetal small intestine) -5 0 5

log₂ (enrichment)

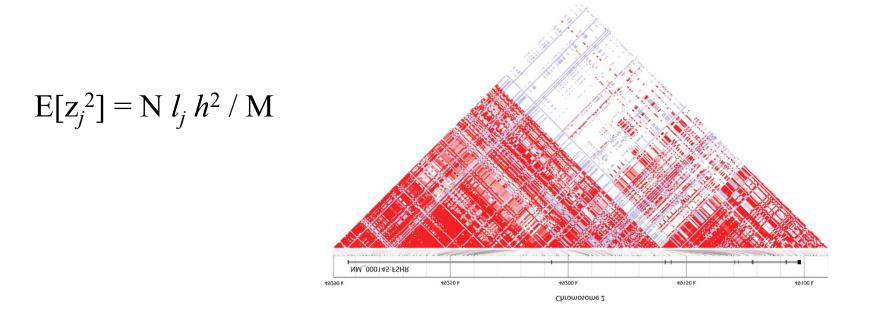
Joint model of SNPs and annotations


- Use approximate Bayes factors to compute posterior probability of association
- Posterior probability of association re-prioritizes new GWAS loci

Regional PPA (no enrichments)

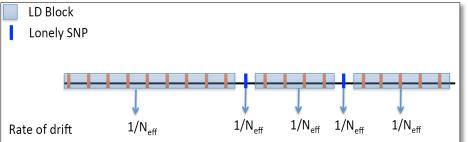
Partitioning heritability by annotation

- Accessible chromatin
 explains more heritability
- Combine DHS in >100 cell types: 70% of genome is accessible in some cell type, but only 16% is accessible in multiple cell types
- Implies non-coding SNPs explain more variance per SNP than coding SNPs

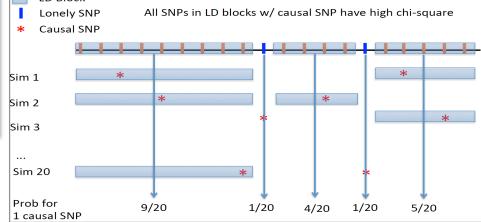


GWAS mechanism: epigenomics, eQTLs, Causality

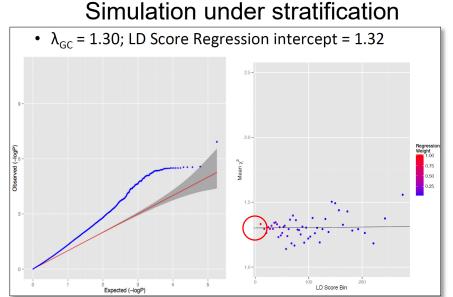
- 1. Review: GWAS, fine-mapping, locus mechanistic dissection
- 2. Global enrichment analyses: epigenomics, Tissues, Regulators, Cell types, target genes
- 3. eQTLs and mediation analysis: intermediate molecular phenotypes
- 4. Linear Mixed Models for GWAS and for eQTL calling
- 5. Polygenic Risk Scores (PRS): Summing over all variants (and more)
- 6. Heritability: Definition, Missing Heritability, Partitioning Heritability
- 7. LD Score Regression (LDSC): Computing and partitioning heritability
- 8. Polygenic and Omnigenic models of disease
- 9. Guest Lecture: Yongjin Park (UBC) on Causality

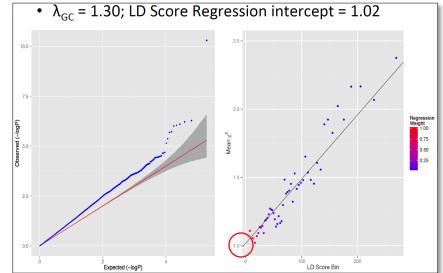

7. LD SCore regression (LDSC): Computing and partitioning* heritability quickly (* with stratified LD SCore regression)

LD SCore regression (LDSC)



- Intuition: Causal variants drawn uniformly at random from the genome are more likely to come from larger LD blocks (Bulik-Sullivan 2014)
- Linear regression of summary statistics against LD score gives h² without access to individual-level genotype matrix


Intuition: LD score A heritability


Under pure drift, LD is uncorrelated to magnitude of allele frequency differences between populations

Assuming *i.i.d.* (standardized) effect sizes, more LD yields higher chi-square (on average) More tags → more causal SNPs. More shots → more shots on goal

Simulation under association

Linkage disequilibrium: D and D'

- Genetic variants do not segregate independently
- D = coeff. of linkage disequilibrium between alleles A and B at loci L1 and L2
 - D_{AB}=P₁₁P₀₀-P₁₀P₀₁=0.07
 - Property of the specific **alleles**. Different alleles at these loci will have diff D_{AB}
- If independent, then $D_{AB}=0$ ($P_{11}P_{00}=P_{10}P_{01}$)
- Linkage disequilibrium measures the degree of departure from Mendel's laws of independent assortment

How to interpret actual values?

- Relative to D_{ABmax}, which depends on frequencies of individual alleles at A, B
- $D_{ABmax} = P_{0*}P_{*1} P_{1*}P_{*0} = 0.138$
- D'=D/D_{max}=0.51
- → 51% of max possible disequilibrium

Haplotype AB	Marginal allele frequency
0*	0.54
1*	0.46
*0	0.30
*1	0.60

Haplotype	Expected	Observed
00	0.162	0.24**
01	0.324	0.31
10	0.138	0.07**
11	0.276	0.39**

Linkage disequilibrium: r²

 Define

•
$$r^2 = \frac{D^2}{P(A=0)P(B=0)P(A=1)P(B=1)} = 0.37$$

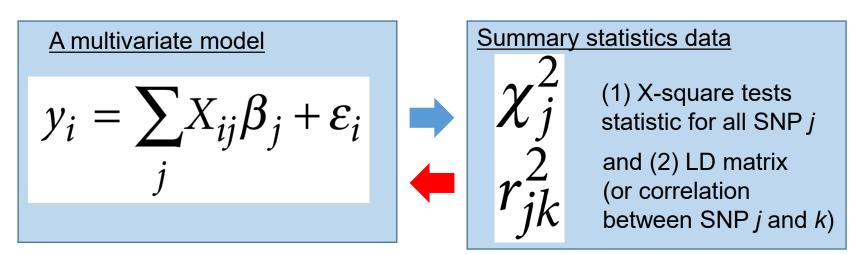
- This really is the squared Pearson correlation of the two SNPs
- In practice, Pearson correlation is efficiently computed for all SNPs in windows as X'X/n
- This is a fundamental quantity for modeling GWAS z-scores

Haplotype AB	-	Marginal allele frequency		
0*	0.54			
1*	0.46			
*0	0.30			
*1	0.60			
Haplotype	Expected	Observed		
00	0.162	0.24		
01	0.324	0.31		
10	0.138	0.07		
11	0.276	0.39		

Key property: r² correlation for individual SNPs is exactly the r² of the GWAS association summary statistics of these SNPs

LD score regression estimates heritability from summary data

A multivariate model for phenotype variation


phenotype
$$y_i = \sum_{j} X_{ij} \beta_j + \varepsilon_i$$
 non-genetic for indiv. *i*
 j multivar.
effect on SNP *j*

Assuming $E[X_j]=0$ and $V[X_j]=1$, heritability= $V[X\beta] \approx \Sigma X^2 \beta^2 \approx \Sigma \beta^2$ $h^2 = \sum_j \beta_j^2$ <u>Heritability by partitioning</u> (restricting on a set C):

$$h^2(C) = \sum_{j \in C} \beta_j^2$$

Finucane *et al.* (2015)

LD score regression estimates heritability from summary data

Assuming $E[X_j]=0$ and $V[X_j] = 1$, heritability= $V[X\beta] \approx \Sigma X^2 \beta^2 \approx \Sigma \beta^2$

$$h^2 = \sum_j \beta_j^2$$

<u>Heritability by partitioning</u> (restricting on a set C):

 $h^2(C) = \sum \beta_j^2$ $j \in C$

Finucane et al. (2015)

Idea: Reverse-engineer summary data to find multivar. parameters

A univariate effect (GWAS)

A univariate chi-square (GWAS)

$$\hat{\beta}_{j} = \frac{1}{N} X_{j}^{T} (X\beta + \epsilon) \qquad \chi_{j}^{2} = N \hat{\beta}_{j}^{2}$$

$$= \sum_{k} \hat{r}_{jk} \beta_{k} + \epsilon'_{j} \qquad \mathbf{E}[\chi_{j}^{2}] = N \mathbf{E} \left(\sum_{k} \hat{r}_{jk} \beta_{k} + \epsilon'_{j} \right)^{2}$$
LD between
SNP *i* and *k*

Idea: Reverse-engineer summary data to find multivar. parameters

A univariate effect (GWAS)

$$\hat{\beta}_{j} = \frac{1}{N} X_{j}^{T} (X\beta + \epsilon) \qquad \chi_{j}^{2} = N \hat{\beta}_{j}^{2}$$

$$= \sum_{k} \hat{r}_{jk} \beta_{k} + \epsilon'_{j} \qquad \mathbf{E}[\chi_{j}^{2}] = N \mathbf{E} \left(\sum_{k} \hat{r}_{jk} \beta_{k} + \epsilon'_{j} \right)^{2}$$

$$\text{LD between}$$

$$\text{SNP } j \text{ and } k \qquad \qquad = N \sum_{k} \hat{r}_{jk}^{2} \mathbf{E}[\beta_{k}^{2}] + N \mathbf{E}[\epsilon'_{j}^{2}]$$

Per SNP variance (heritability)

$$\operatorname{Var}(\beta_j) = \sum_{c:j \in \mathcal{C}_c} \tau_c$$

= E[β_j^2] (assuming E[β_j] \approx 0)

Finucane et al. (2015)

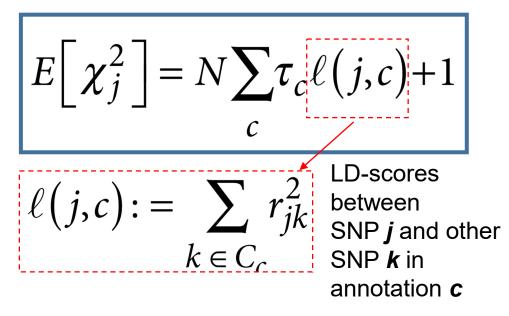
Idea: Reverse-engineer summary data to find multivar. parameters

A univariate effect (GWAS)

$$\hat{\beta}_{j} = \frac{1}{N} X_{j}^{T} \left(X\beta + \epsilon \right)$$
$$= \sum_{k} \hat{r}_{jk} \beta_{k} + \epsilon'_{j}$$
LD between
SNP *j* and *k*

<u>A univariate chi-square (GWAS)</u>

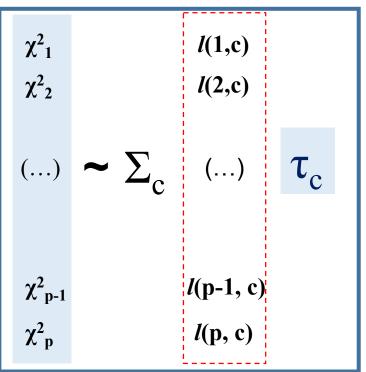
$$\begin{split} \chi_j^2 &= N \hat{\beta}_j^2 \\ \mathrm{E}[\chi_j^2] &= N \mathrm{E}\left(\sum_k \hat{r}_{jk} \beta_k + \epsilon_j'\right)^2 \\ &= N \sum_k \hat{r}_{jk}^2 \mathrm{E}[\beta_k^2] + N \mathrm{E}[\epsilon_j']^2 \end{split}$$


Per SNP variance (heritability)

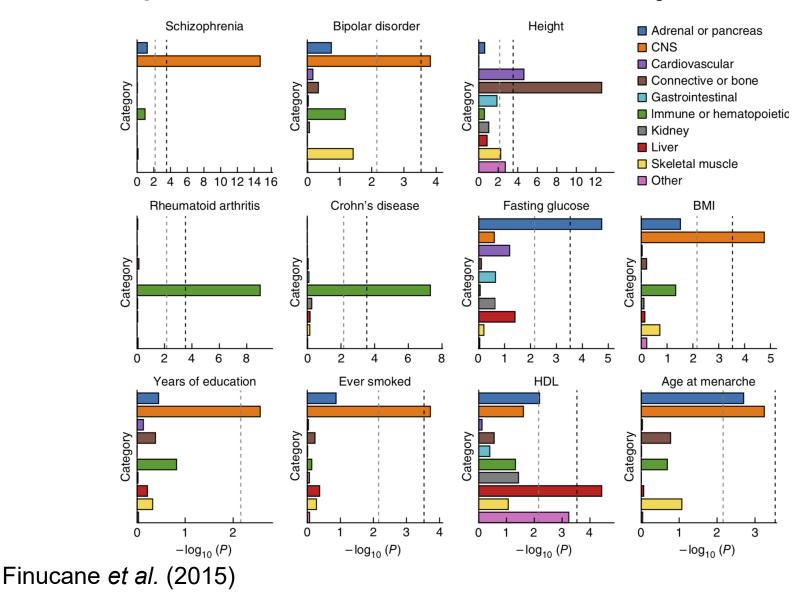
 $\operatorname{Var}(\beta_j) = \sum_{c:j \in \mathcal{C}_c} \tau_c$ $= \operatorname{E}[\beta_j^2] \text{ (assuming } \operatorname{E}[\beta_j] \approx 0)$ Finucane *et al.* (2015)

$$\mathbf{E}[\chi_j^2] = N \sum_c \tau_c \sum_{k \in \mathcal{C}_c} \hat{r}_{jk}^2 + \sigma_e^2$$

Regression of chi-square statistics on LD scores

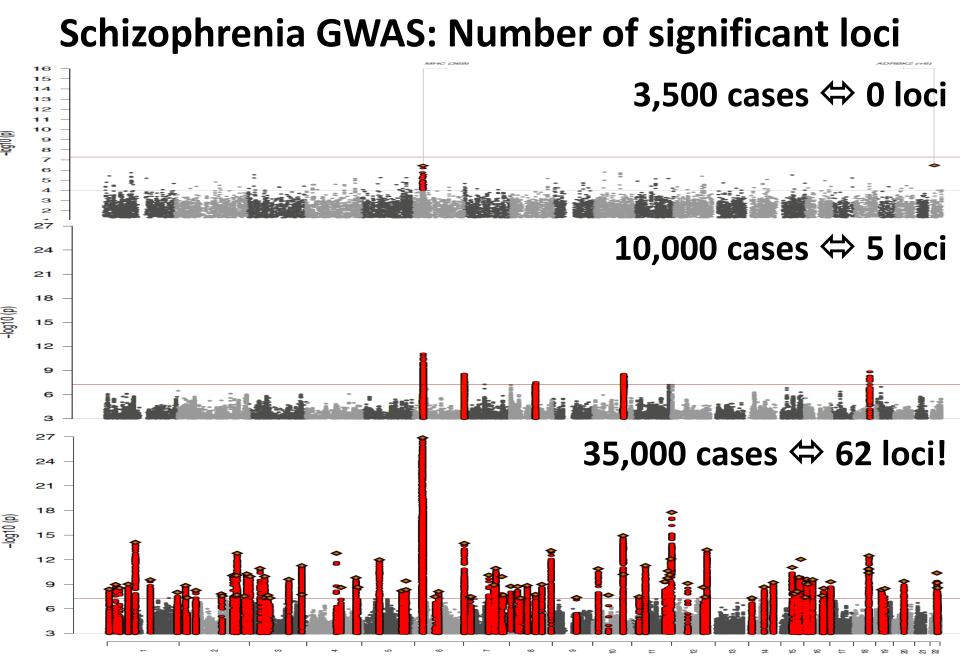

$$\mathbf{E}[\chi_j^2] = N \sum_c \tau_c \sum_{k \in \mathcal{C}_c} \hat{r}_{jk}^2 + \sigma_e^2$$

Intuition: Remove unwanted "double-counting" of annotation enrichment due to LD

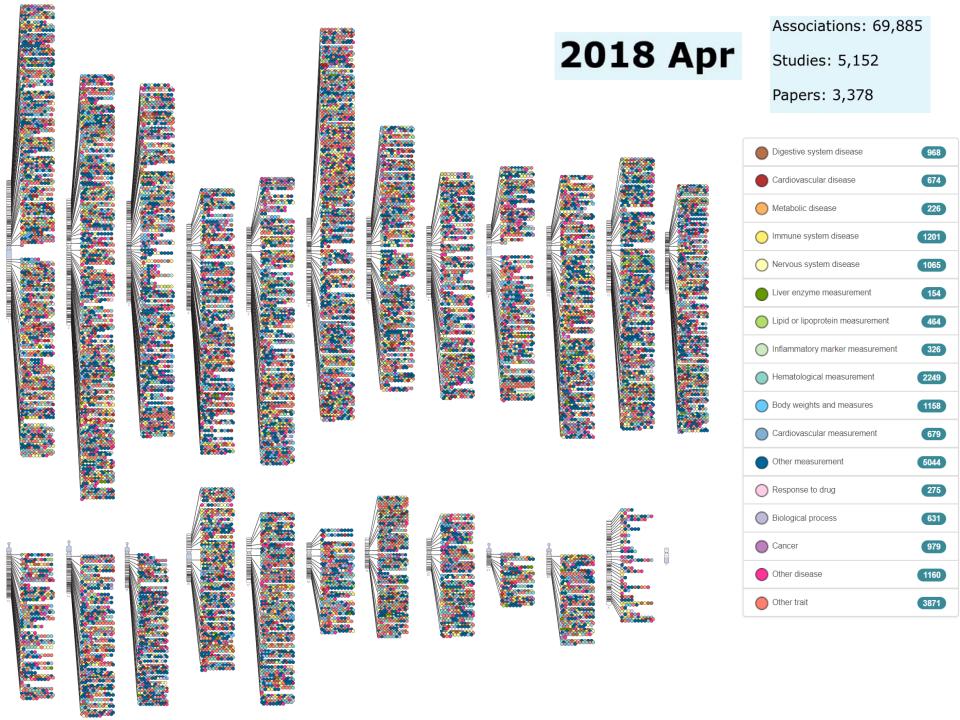

Finucane *et al.* (2015)

Regression to estimate T_c:

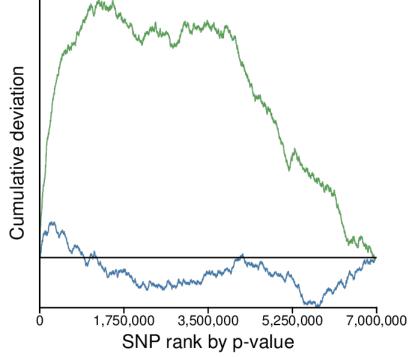
p SNPs = *p* observations


Stratified LDSC partitions heritability of complex trait GWAS summary

GWAS mechanism: epigenomics, eQTLs, Causality

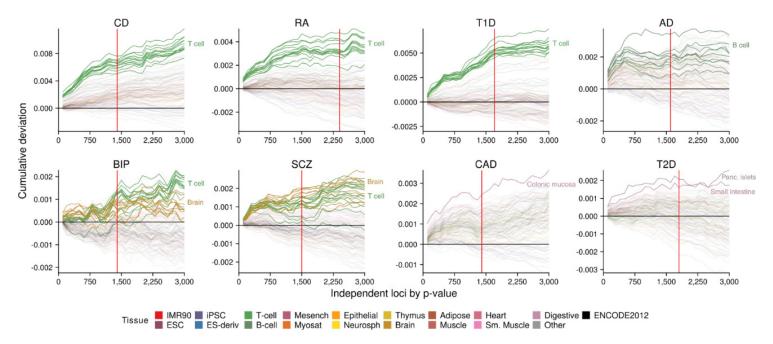

- 1. Review: GWAS, fine-mapping, locus mechanistic dissection
- 2. Global enrichment analyses: epigenomics, Tissues, Regulators, Cell types, target genes
- 3. eQTLs and mediation analysis: intermediate molecular phenotypes
- 4. Linear Mixed Models for GWAS and for eQTL calling
- 5. Polygenic Risk Scores (PRS): Summing over all variants (and more)
- 6. Heritability: Definition, Missing Heritability, Partitioning Heritability
- 7. LD Score Regression (LDSC): Computing and partitioning heritability
- 8. Polygenic and Omnigenic models of disease
- 9. Guest Lecture: Yongjin Park (UBC) on Causality

8. Polygenic → Omnigenic models of disease Recognizing "core" vs. "periphery" pathways

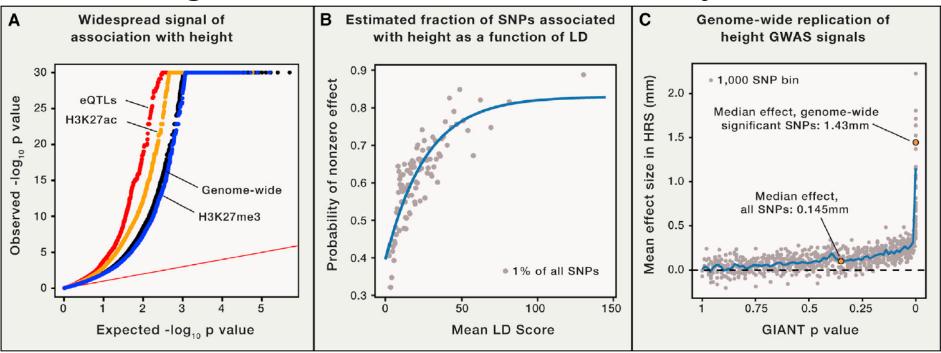


Chromosome

65,000 cases ⇔ 265 loci!

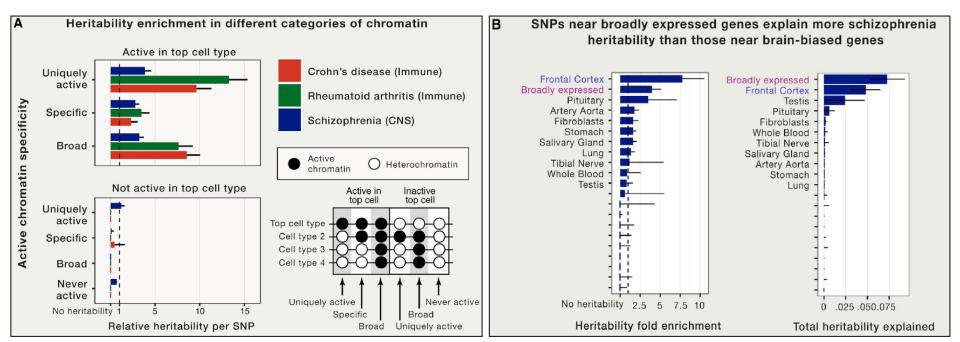


How far down the SNP list does enrichment go?


- Use functional enrichment to gain insight into genetic architecture (Sarkar 2016)
- Idea: as we consider more SNPs beyond genome-wide significance, relevant regulatory regions will be disrupted more often than irrelevant regions

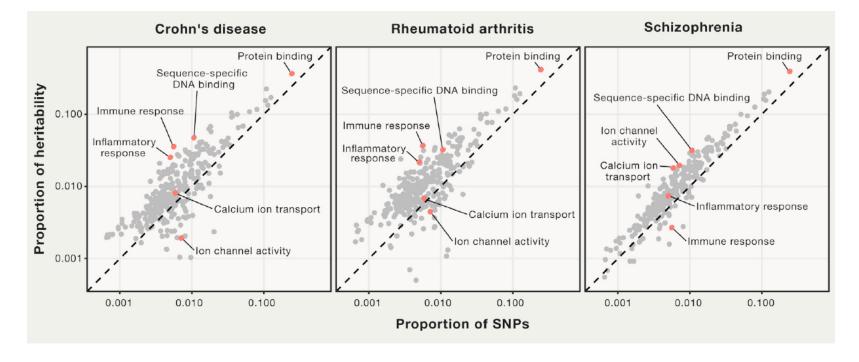
Long tails of enrichment for 8 diseases

- Use functional enrichment to gain insight into genetic architecture (Sarkar 2016)
- Idea: as we consider more SNPs beyond genome-wide significance, relevant regulatory regions will be disrupted more often than irrelevant regions

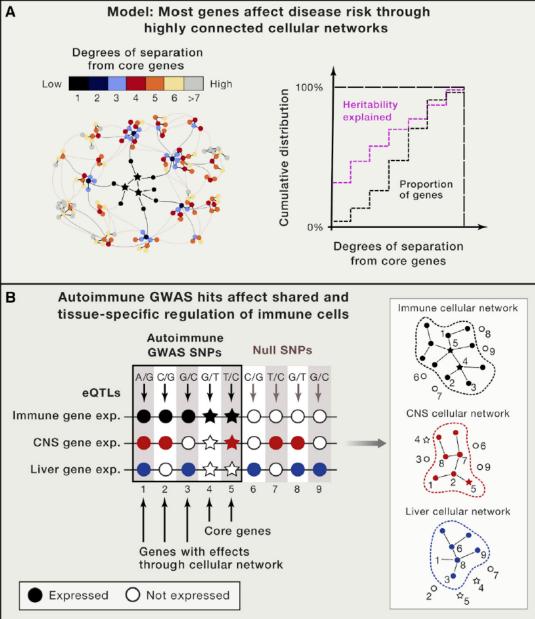

Omnigenic model of heritability

- (A) Genome-wide inflation of small p values from the GWAS for height, with particular enrichment among expression quantitative trait loci and single-nucleotide polymorphisms (SNPs) in active chromatin (H3K27ac).
- (B) Estimated fraction of SNPs associated with non-zero effects on height (Stephens, 2017) as a function of linkage disequilibrium score (i.e., the effective number of SNPs tagged by each SNP; Bulik-Sullivan et al., 2015b). Each dot represents a bin of 1% of all SNPs, sorted by LD score. Overall, we estimate that 62% of all SNPs are associated with a non-zero effect on height. The best-fit line estimates that 3.8% of SNPs have causal effects.
- (C) Estimated mean effect size for SNPs, sorted by GIANT p value with the direction (sign) of effect ascertained by GIANT. Replication effect sizes were estimated using data from the Health and Retirement Study (HRS). The points show averages of 1,000 consecutive SNPS in the p-value-sorted list. The effect size on the median SNP in the genome is about 10% of that for genome-wide significant hits.

Boyle, Li, Pritchard, Cell, 2017


More heritability in broad classes

- Contributions to heritability (relative to random SNPs) as a function of chromatin context. There is enrichment for signal among SNPs that are in chromatin active in the relevant tissue, regardless of the overall tissue breadth of activity
- Genes with brain-specific expression show the strongest enrichment of schizophrenia signal (left), but broadly expressed genes contribute more to total heritability due to their greater number (right)


Boyle, Li, Pritchard, Cell, 2017

Most GO categories are enriched

 Gene Ontology Enrichments for Three Diseases, with Categories of Particular Interest Labeled. The x axis indicates the fraction of SNPs in each category; the y axis shows the fraction of heritability assigned to each category as a fraction of the heritability assigned to all SNPs. Note that the diagonal indicates the genome-wide average across all SNPs; most GO categories lie above the line due to the general enrichment of signal in and around genes. Analysis by stratified LD score regression

Core genes vs. periphery

- Omnigenic Model of Complex Traits
- (A) For any given disease phenotype, a limited number of genes have direct effects on disease risk. However, by the small world property of networks, most expressed genes are only a few steps from the nearest core gene and thus may have non-zero effects on disease. Since core genes only constitute a tiny fraction of all genes, most heritability comes from genes with indirect effects.
- (B) Diseases are generally associated with dysfunction of specific tissues; genetic variants are only relevant if they perturb gene expression (and hence network state) in those tissues. For traits that are mediated through multiple cell types or tissues, the overall effect size of any given SNP would be a weighted average of its effects in each cell type.