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Systems Genetics – LMMs, PRS, Heritability, LDSC, EHR
1. Review: GWAS, mechanistic dissection, SNP prioritization, eQTLs
2. Linear Mixed Models for GWAS and for eQTL calling
3. Polygenic Risk Scores (PRS): Summing over all variants (and more)
4. Heritability: Definition, Missing Heritability, Partitioning Heritability
5. Polygenic and Omnigenic models of disease
6. LD Score Regression (LDSC): Computing and partitioning heritability
7. GWAS networks for evidence boosting
8. Machine Learning methods in genetics
9. Deep Learning methods for GWAS
10.Guest Lecture: Alkes Price on stratified LD Score Regression
11.Guest Lecture: Manuel Rivas on EHR-GWAS-Genomics integration



1. Review: GWAS, mechanistic dissection, 
variant prioritization, eQTLs, allelic activity



Monogenic vs. oligogenic vs. polygenic disorders

Many variants
of small effects

Few variants
of large effects

Combination of 
large/small effects

Molecular genetic studies of complex phenotypes. Marian - Translational Research, 2012

Linkage analysis GWAS

Mostly coding Mostly non-coding



Common variants (SNPs) live in Haplotypes

• Common SNPs only once every 1000 nucleotides or so

• These are co-inherited, so only need to profile a subset

• Markers selected for haplotype profiling are “tag” SNPs

ATC
ACG
GTC
ACC



Genomic medicine: challenge and promises

The promise of genetics
– Disease mechanism
– New target genes
– New therapeutics
– Personalized medicine

The challenge of mechanism
– 90+% disease hits non-coding
– Target gene not known
– Causal variant not known
– Cell type of action not known
– Relevant pathways not known
– Mechanism not known

GWAS Manhattan Plot: simple χ2 statistical test

SNP genomic position (23 chrs)

BM
I a

ss
oc

ia
tio

n 
(-l

og
10

P)

Dina NG 2007, Frayling Science 2007, Claussnitzer NEJM 2015

LD
 (L

in
ka

ge
Di

se
qu

ili
br

iu
m

)

Speliotes NG 2010



Summary: Dissect circuitry of disease-associated regions

1. Disease genetics reveals
common + rare variants/regions

7

2. Profile RNA + Epigenome
in healthy + disease samples

3. Integrate data to predict driver 
genes, regions, cell types

4. Validate predictions in 
human cells + mouse models

Cell cultures Mouse models

5. Disseminate results



Regulatory circuitry of GWAS loci

• Expand each GWAS locus using SNP linkage disequilibrium (LD)
– Recognize relevant cell types: tissue-specific enhancer enrichment
– Recognize driver TFs: enriched motifs in multiple GWAS loci
– Recognize target genes: linked to causal enhancers

Region of association



Dissecting non-coding genetic associations

1. Establish relevant tissue/cell type
2. Establish downstream target gene(s)
3. Establishing causal nucleotide variant 
4. Establish upstream regulator causality
5. Establish cellular phenotypic consequences
6. Establish organismal phenotypic consequences

3. Causal nucleotide(s)

2. Target gene(s)
1. Tissue/cell type(s)

4. Upstream regulator(s)TF
TF TF

5. Cellular phenotypes 6. Organismal phenotypes

Goal: 
Apply these to 
the FTO locus

in obesity

GWAS region SNPs



Manipulate circuitry  reverse disease phenotypes

Obese

Lean

C-to-T  Lean
T-to-C  Obese

Decrease IRX3, IRX5 Lean
Increase IRX3, IRX5 Obese

Incr. ARID5B  Lean
Decr ARID5BObese

CRISPR-edit human fat cells
 able to burn calories again

IRX3 KD  Burn calories in their sleep
 54% weight loss. Can’t gain weight



GWAS hits in enhancers of relevant cell types



Bayesian fine-mapping: Predict causal variant and cell type

RiVIERA: multi-trait GWAS integration Capture conserved elements

Capture eQTLs from GTExPredict causal variants and cell types



Combine GWAS+Epig to find new target genes/SNPs

Prioritize sub-threshold loci (<10-4)

Machine learning predictive features

Validate new enhancers: 
allelic activity, enh-prom looping

Validate new genes in hum/mou/zb



EpiMap: 834 tissue/cell types  30k GWAS SNPs in 534 traits

127 Epigenomes 
(Roadmap 2015)

834 Epigenomes 
(EpiMap 2019)

54 enriched GWAS
traits (2015)

534 enriched traits

30,247 SNPs in 
enriched enhancers
 Highly-specific
associations Emerge
 Precise biological
hypotheses on
mechanistic basis

Tissue enrich/co-enrichments  trait clustering, trait-tissue network

Carles Boix, 
Nature, revisions

 http://compbio.mit.edu/epimap 



Dissect circuitry of 30,000 GWAS loci: TFEnhSNPgenepathways

Epigenomic partitioning
of complex traits 
into components

PLPP3: Both liver and coronary artery: 
multi-gene/multi-tissue pleiotropy

3

3

PCSK9: Liver-only mechanism, 
mediated through primarily one variant

1

1

EDNRA Heart/vasculature-only, 
mediated through multiple enhancers2

2

Example: CAD
Coronary Artery Disease

Coronary 
Artery Disease

Cor.art

Liver
Adipose

Thyroid

MultAdip

UmbVein
Heart

Epith
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Imputed MWAS: increased power, genetic component

Key Idea: 
• Learn GM model (ROSMAP n=800) Fewer indiv. Simpler phenotype
• Impute methylation iM for GWAS cohort (n=74k)
• iMWAS between genotype-driven M and AD phenotype (n=47k)
Advantage: 
• Much larger GWAS cohorts (>>MWAS): increased power
• Genetic component of methyl. variation
Logistical challenge: 
• Summary stats, not full genotypes  Linear model, impute stats direct

M DMWAS: N=800

G iM DiMWAS: N=74k

MmeQTL: N=800G Learn GM
(simpler phenotype)

MD (no causality)

Apply GM to get iM
iMD (causality)

G DGWAS: N=74k Learn GD directly
(complex phenotype)



iMTWAS: Imputation across multiple intermediate variables

D
disease

Model multiple mediator variables
SNP  Methylation  Expression  Disease
Predict new loci, increased power
Predict regulatory regions & target genes



The nuts and bolts of an eQTL study
Cell isolation

RNA isolation

Expression
measurement DNA

Genotyping

Linear Regression 
Expression = genotype  + covariates

Subjects

G
en

es
 

Filter transcripts

QC

Determine 
significance

threshold

Annotation
Visualization
Interpretation

Millions of 
SNP

Age, gender
Pop 

stratification
Technical Covs



Expanded eQTL models

Yij = α +  βijsgenotype + ε

Yij = α +  β1ijsgenotype +  β2igender +  β3iage +  

β4igPC1 +  β5igPC2 +  β6igPC3 +  β7igPC4 +  

β8iePC1 +  β9iePC2 +  β10iePC3 +  β11iePC4 +  
β12iePC5 +  β13iePC6 +  β14iePC7 

+ ε

Genotype PCs

Expression PCs
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2. Linear Mixed Models (LMMs)
for GWAS and for eQTL calling



What are we missing in the 
previous multivariate model?

𝐲𝐲 = 𝑋𝑋𝛉𝛉 + 𝜖𝜖, 𝛜𝛜 ∼ 𝒩𝒩 𝟎𝟎,𝜎𝜎2𝐼𝐼 .
Assume IID individuals.
This may not be true.

𝐲𝐲 = 𝑋𝑋𝛉𝛉 + 𝒖𝒖 + 𝜖𝜖. Add random effects
to account for the unknown

𝒖𝒖 ∼ 𝒩𝒩 𝟎𝟎, K

In GWAS problems, the most influential/spurious
random effect stems from population structure.

We assume this random effect
can be captured by Kinship
covariance.



Why do we need a random 
effect?

𝒖𝒖 Unknown population structure

Influence to many SNPs
𝒙𝒙𝟏𝟏 𝒙𝒙𝒑𝒑(…)

𝒚𝒚

Phenotypic variation
due to both pop. struct. &
actual association



A Bayesian approach to account 
for the random effect u

𝐲𝐲 = 𝑋𝑋𝛉𝛉 + 𝒖𝒖 + 𝜖𝜖.

𝒖𝒖 ∼ 𝒩𝒩 𝟎𝟎, K

𝑝𝑝 𝒚𝒚 𝑋𝑋𝜃𝜃 = ∫ 𝑝𝑝 𝒚𝒚 𝑋𝑋𝜃𝜃,𝒖𝒖 𝑝𝑝 𝒖𝒖 𝑑𝑑𝒖𝒖

A Bayesian method ≈ Address/remove uncertainty by averaging out

Likelihood model:

(Empirical) prior knowledge:

𝐲𝐲 = 𝑋𝑋𝛉𝛉 + ̃𝜖𝜖

A Linear mixed effect model:

̃𝜖𝜖~𝒩𝒩 𝟎𝟎,𝜎𝜎2𝐼𝐼 + 𝜏𝜏2K

two components
in covariance matrix

with

IID error Kinship
components



Linear mixed models

• Joint model of all SNPs explains more heritability (Yang 2010)
• Idea: under suitable assumptions, V[a] = Σβj

2

• Under the infinitesimal assumption βj ~ N(0, h2/p), 
we can estimate V[a] without estimating individual βj using 
residual maximum likelihood (REML)

• REML avoids using ML fit of parameters, instead uses 
transformed data so that nuisance parameters have no effect. 

• In variance components analysis (random effects model), 
transformation focuses on differences, sum of variances

• This works despite not knowing the causal variants
• Example (height): ; h2

GWAS = 0.16, h2 = 0.73, h2
g = 0.5

p ~ N(0, h2 G + (1 – h2) I)
G = XX’ / p



Linear mixed models

• We can generalize Haseman-Elston regression to estimate 
heritability for unrelated individuals using LMM

• Intuition: genetic relationship matrix G captures identity by 
state in unrelated individuals

• This is again the probability of sharing the same allele at the 
causal variants

• This is called PCGC regression (Golan 2015) 
(phenotype correlation – genotype correlation regression

p ~ N(0, h2 G – (1 – h2) I)
G = XX’ / p

E[pi pj] = h2 Gij



Imputation-based association
1 = learn eQTLs in reference panel

2 = impute expression for each 
person in a genotyped cohort

3 = use summary statistics to 
get to associations directly

Gusev et al. “Integrative approaches for large-scale transcriptome-wide association studies” 2016 Nature Genetics



Bayesian linear regression for eQTL modeling

4/8/2021 29Stegle et al. PLoS Genetics (2010)

u = magitude
& direction of 
effect size

s = SNP doage

b = binary 
indicator of 
including QTL 
genes

f = known factors
v = factor loading
α = prior variance

x = hidden factors
w = factor loading
β = prior variance
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1. Spike-slab prior to select relevant variables
2. Random effect models
3. Bayesian sparse linear mixed effect model
4. Fine mapping causal variants in LD correlation

Bayesian extension to ordinary 
regression models



Extension 1: spike-slab prior on θ
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p(θ) ~ exp(-λ|θ|)

p(θ|z=1) ~ Ν(0, 1/τ)

p(θ|z=0) = δ(θ)

z = 1 ~ Bernoulli(π)

Dirac δ

Figure: Hernandez-Lobato (2014)

Fat Gaussian for true effects
(slab; magnitude and direction)

Completely set to zero
if not selected

π determines prior prob.
of including variables
(usually < .1; spike;
prescribed or optimized)

Gaussian



Spike-slab prior model effectively avoid colinearity
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Simulated model:
y ~ X1 θ1
Χ2 ~ X1 γ

Fitted model:
y ~ X1 θ1 + Χ2 θ2
θj ~ spike-slab

OLS model:
y ~ X1 θ1 + Χ2 θ2

MLE is
overfitting

Rockova & George, Metron (2014)
θ1

θ2

Can L1-regularized one
handle this?

If correlation between 
X1 ~ X2 is strong, 
probably not …
(best solution within 
the box is still non-zero 
for both vars).

True effect
locates
little deeper
in likelihood
contour



Ext 2: random-effect for pop. stratification
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𝐲𝐲 = 𝑋𝑋𝛉𝛉 + 𝐮𝐮 + 𝛜𝛜

𝐮𝐮 ∼ 𝒩𝒩 0, 𝜏𝜏2𝐾𝐾

Additive effect of random vector u (n × 1):

The random effect captures population 
structure K (kinship matrix):

∫ 𝐩𝐩 𝐲𝐲 𝑋𝑋,𝛉𝛉,𝐮𝐮 𝐩𝐩 𝐮𝐮 𝛕𝛕,𝚱𝚱 𝐝𝐝𝐮𝐮
= 𝒩𝒩 𝐲𝐲|Xθ, 𝜏𝜏2𝐾𝐾 + 𝜎𝜎2𝐼𝐼

Integrate out uncertain random effect u:

random noise
population
structure

J Novembre et al. Nature 000, 1-4 (2008)

n × n
covar.
(~PCs)

Linear Gaussian model with two 
variance components.



Extension 2: random effect model
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Linear mixed-
effect 
calibrated the 
null distrib.

Inflated statistics 
due to unknown 
population structure 
(almost all loci are 
significant)

Zou .. Listergarten, Nat. Methods (2014)

Adjusted GWAS 
qq-plot with 
correct 
structure

LMM can 
correctly 
capture 
significant 
ones.

Null

significant



Extension 3: Bayesian sparse linear 
mixed effect model
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𝐲𝐲 = 𝑋𝑋𝛉𝛉 + 𝐮𝐮 + 𝛜𝛜,
𝐮𝐮 ∼ 𝒩𝒩 0,𝐾𝐾 ,

𝜃𝜃𝑗𝑗 ~ 𝜋𝜋𝒩𝒩 0, 𝜏𝜏12 + (1 − 𝜋𝜋)𝒩𝒩 0, 𝜏𝜏22
Random effect A sort of spike-slab (two mixture model)

causal effect infinitesimal
background effect

Zhou, Carbonetto, Stephens, PLoS Gen. (2013)



Extension 4: Fine-mapping causal 
variants

4/8/2021 36

Hormozdiari et al. (2014)



Extension 4: Fine-mapping under the 
hood
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𝐳𝐳 ≈ 𝑋𝑋⊤𝐲𝐲/ 𝑛𝑛𝜎𝜎

We assume phenotype vector were 
generated by

𝐲𝐲 ∼ 𝒩𝒩 𝑋𝑋𝛉𝛉,𝜎𝜎2𝐼𝐼 .

Therefore 𝑝𝑝 × 1 vector follows

𝐳𝐳 ∼ 𝒩𝒩
𝑋𝑋⊤𝑋𝑋𝛉𝛉
𝑛𝑛𝜎𝜎

,
𝑋𝑋⊤𝑋𝑋
𝑛𝑛

≈ 𝒩𝒩 𝜆𝜆𝑅𝑅𝛉𝛉,𝑅𝑅 .

where LD matrix 𝑅𝑅 = 𝑛𝑛−1𝑋𝑋⊤𝑋𝑋 and 𝜆𝜆 =
(𝑛𝑛𝜎𝜎2)−1/2 absorbs all scaling factors.

unkonwn
phenotype

y vectorsummary
z-score obs.

unknown
genotype

Hormozdiari et al. (2014)

(a) Considering potential colinearity
embedded in the R matrix, θ
desperately needs spike-slab 
prior.

(b) For computational efficiency, 
previously developed algorithms 
restrict number of causal variants 
(e.g., at most 3).

R



Bayesian inference algorithms
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Exact inference Markov Chain 
Monte Carlo

Variational Bayes

Accuracy correct approximate,
stochastic

approximate,
deterministic

Convergence sure Global optima
at equilibrium

Local optima
in finite time

Flexibility very limited high high

Examples HMM’s forward-
backward,
Dynamic
programming

Importance 
sampling, 
Metropolis-
Hastings, Gibbs, 
Hamiltonian MC, 
Elliptical slice 
sampling

Laplace, Mean-field 
approx., Belief 
propagation, 
Expectation 
propagation
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3. Polygenic Risk Scores (PRS): 
Summing over all variants (and more)



Estimate absolute risk combining 
genetic and environmental risk factors

Chatterjee et al. Nature Reviews Genetics (2016)



How do we estimate polygenic 
risk score?

PRS = Σj ∈ {SNPs} βj gj

βj = log(odds ratio of SNP j)

Univariate GWAS statistics teach us:

Predict overall risk by combining many, many variants!

gj = genotype (dosage)

Can we just combine all the SNPs? Why not?

• Is correlation between g1 and g2 zero?
• Can we trust the estimate β of all the SNPs?
• Can we just select GWAS significant SNPs? 



A common practice of PRS estimation

PRS[i] = Σj ∈ {SNPs} βj gj[i]βj = log(OR of SNP j)

Univariate GWAS statistics: PRS model:

gj = genotype (dosage)

Goal: Tuning this parameter

LD

-log10
P-value

Filter #1: p-value 
thresholding

Filter #2: LD pruing



A common practice of PRS estimation:
Cross-validation with observed phenotype

PRS[i] = Σj ∈ {SNPs} βj gj[i]βj = log(OR of SNP j)

Univariate GWAS statistics: PRS model:

gj = genotype (dosage)

Goal: Tuning this parameter

How do we know the selected SNPs are good?

Predicted risk

Observed
risk

?

AUROC



An alternative method for estimating PRS
(and a simpler and more powerful way)

PRS[i] = Σj ∈ {SNPs} βj gj[i]βj = log(OR of SNP j)

Univariate GWAS statistics: PRS model:

gj = genotype (dosage)

Baker et al., Genetic Epidemiology (2017)

What’s wrong with using all
the SNPs? LD between them.
Adjust spurious weak effects.

Chun .. Sunyeav, BioRxiv (2019)



Idea: Decorrelate LD structure

Baker et al., Genetic Epidemiology (2017)
Chun .. Sunyeav, BioRxiv (2019)

• Transform SNP space to
multi-SNP space (SVD)

• Select independent &
orthogonal factors.

• Or regularize eigen-
values to smooth out
spurious associations.

• We don’t need much
tuning with regularization.



Polygenic risk scores

• Aggregate burden of sub-threshold SNPs to improve 
prediction performance (Stahl 2012)

• As we include more SNPs in the risk score, the association 
with RA, celiac disease, MI, CAD gets stronger

• In practice, requires tuning of p-value threshold, LD pruning 
threshold

Rheumatoid
Arthritis

Celiac Myocardial 
infarction

Coronary 
artery disease



Phasing diploid genomes is hard
• Humans are diploid organisms
• Each individual carries two

homologous copies of each 
chromosome

• Therefore, they carry two copies of 
each variant (called the 
maternal/paternal allele)

• Variants co-occur in haplotypes
which are inherited as a unit

• Experimentally possible, but 
currently infeasible, to directly 
measure haplotypes over the 
whole genome

• Cheaper and more efficient to 
measure genotypes (counts of 
minor allele)

• Genotyping loses information, 
which we need algorithms and 
statistical models to recover 
(phasing, imputation)

Haplotypes
0 0 1 0 1 1 0 (maternal)
0 1 1 0 0 1 0 (paternal)

Genotypes
0 1 2 0 1 2 0



Molecular diagnostics in IBD

‘Molecular’ diagnosis (based on GWAS 
SNPs & serologic biomarkers) 
concordant with GI dx:  CD & UC 
patients can be distinguished accurately

>90% of patients correctly classified 
with >90% reliability

Jonah Essers (MGH/CHB), Dermot McGovern (CSMC)



Molecular diagnostics flag 
patients with worst outcome 

Black dots represent patients diagnosed with UC who later underwent
colectomy and then developed full-blown Crohn’s disease

UC          |-- unc --|                         CD
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4. Heritability: 
Definition, Missing Heritability, Partitioning



Lessons of GWAS

1. We haven't found all causal loci: known loci explain little 
phenotypic variance

2. Most loci affect transcriptional regulation: they don't 
tag coding variation

NHGRI GWAS catalog



Components of phenotypic variance
• Assume p (phenotype) = g (genetic) + e (environment)
• Then, V[p] = V[g] + V[e] + 2Cov(G,E)

(assume no gene-environment interactions)

• Example: one causal variant
• Three possible genetic values

in the population
• Intuition: V[g] is the variance of 

mean phenotype across 
different genetic values

• V[e] is the variance of phenotype 
for the same genetic value

V[genetics] V[environment]

V[phenotype]



Components of genetic variance
• Assume V[g] = V[a] (additive) 

+ V[d] (dominance) + V[i] 
(interactions)

• The additive component 
corresponds to a linear model

• As we add more causal 
variants, phenotypes become 
closer to Gaussian

• We could further decompose 
interactions

• We could include variance 
due to de novo mutations



Heritability is a ratio of variances
• V[p] = V[g] + V[e]
• V[g] = V[a] + V[d] + V[i]
• Broad sense heritability

H2 = V[g] / V[p]
• Broad sense captures all 

genetic factors
• Narrow sense heritability

h2 = V[a] / V[p]
• Narrow sense captures 

only additive effects
• Ongoing debate about the 

relative importance of 
additive vs. other effects in 
disease, selection, etc.

V[a]

V[d]

V[i]

V[g]

V[p]



Why study heritability?
• Quantify the importance of 

genetics vs. environment in 
traits of interest

• Learn about genetic 
architecture: how many 
causal variants, effect sizes, 
allele frequencies

• Narrow sense heritability is 
the fundamental parameter 
needed for phenotype 
prediction (and is the 
theoretical best possible 
prediction performance with a 
linear model)

V[a]

V[d]

V[i]

V[g]

V[p]



Estimating heritability in relatives

• Intuition: heritability relates phenotypic correlations to 
genotypic correlations

• If two individuals have the same allele at each of the 
causal variants, they will have the same phenotype

• Haseman-Elston regression: fit linear regression of 
phenotypic correlations against genotypic correlations

• Derive genotypic correlation from family relationships: 
monozygotic twins share 100% of genome, siblings 
share 50%, etc.

• Example (height): h2 = 0.73

p = g + e
E[pi pj] = h2 E[gi gj]



Estimating heritability from GWAS
• Linear model g = Xβ
• We can estimate SNP effect 

sizes β from GWAS
• The variance explained by each 

SNP depends on effect size and 
MAF

• V[Xj βj] = 2 fj (1 – fj) βj
2

• If we do this with genome-wide 
significant SNPs, we usually 
h2

GWAS < h2

• Example (height): 253,288 
samples; 697 genome-wide 
significant loci; h2

GWAS=0.16, h2

= 0.73
• Known as the missing 

heritability problem

V[a]

V[p]

V[Xβ]



Sources of missing heritability
Ongoing debate about several 
possible explanations for the 
missing heritability problem.
1. Many common variants, 

small effects
2. Unobserved rare variants, 

large effects
3. Wrong model assumptions

Each has very different 
implications for the future of 
human genetics studies.

V[a]

V[p]

V[Xβ]



Partitioning heritability
• Extend the model so 

chromosomes can explain 
different proportions of    
variance 

• Intuition: add more 
variance parameters for 
each partition of SNPs

• Each partition induces a 
different genetic 
relationship matrix

• Longer chromosomes 
explain more heritability

• Suggests causal variants 
are spread uniformly 
through the genome



Partitioning heritability

• Fit a model with one component per 1MB window (Loh
2015)

• Bound cumulative heritability explained to estimate 
number of regions

• Most of the genome explains non-zero heritability



• Directly fitting the underlying linear model is ill-posed: 
we have n < p so there are infinitely many solutions

• Idea: use spike and slab prior to force many effects to 
be exactly 0 and regularize the problem (one solution)

• Inference goal: estimate the effect sizes and the level 
of sparsity (Carbonetto 2013)

Bayesian variable selection



• Extension: some pathways contain more causal variants 
than the rest of the genome

• Incorporate into the prior
• Identifies relevant immune signaling pathways which are not 

found using existing methods
• Identifies tens of thousands of SNPs which could be 

affecting those pathways

Pathways-informed prior from enrichments



Evidence for other explanations
• Incorporating Identity by Descent (IBD) in unrelated 

individuals
• Partitioning SNPs by MAF, LD
• Assumptions do not hold in real data



Estimating heritability: shared haplotypes

• Shared haplotypes explain more heritability than tag SNPs
• There is a still a discrepancy between h2

g and h2

• If two individual share a chromosomal segment, unobserved 
variants should also be shared (Bhatia 2015)

• Idea: Identify IBD segments by quickly scanning SNPs and finding 
stretches of identical alleles

• Inferring shared segments captures rarer variants more effectively 
than LD

Image credit: http://gcbias.org/european-genealogy-faq/



Partitioning SNPs by MAF/LD

• Low frequency/low LD variants are poorly tagged by 
observed/imputed variants, so estimate variance for 
them separately (Yang 2015)

• Partitioning appears to explain all of the heritability of 
height using only common/low frequency variants!



Examining model assumptions
• Phenotypes might not be Gaussian 
• GWAS samples are not independent and identically 

distributed
• SNPs are not independent 
• Not all SNPs have an effect
• Not all causal SNPs have equal effects
• There are gene-environment interactions
• There are gene-gene interactions



Limitations of heritability
• Explaining all of the heritability of complex traits is not 

enough
• As sample size goes to infinity, will the entire genome 

be associated with all traits? (Goldstein 2009)
• Goal: Find biological pathways recurrently disrupted by 

non-coding variation



Regulatory enrichments

• Weakly associated variants overlap accessible 
chromatin more often than expected by chance 
(Maurano 2012)

• Same trend observed in other predicted regulatory 
elements: histone peaks, ChromHMM segments, super 
enhancer clusters



Joint model of SNPs and annotations 
• Use penalized stepwise 

regression to pick relevant 
annotations (Pickrell 2014)

• Use approximate Bayes 
factors to compute posterior 
probability of association

• Forward steps: add 
annotations to the model until 
they don’t explain enough 
variance

• Backward steps: remove 
annotations from the fitted 
model until variance explained 
drops too much



Joint model of SNPs and annotations 
• Use approximate Bayes 

factors to compute posterior 
probability of association

• Posterior probability of 
association re-prioritizes 
new GWAS loci



Partitioning heritability by annotation
• Accessible chromatin 

explains more heritability
• Combine DHS in >100 cell 

types: 70% of genome is 
accessible in some cell 
type, but only 16% is 
accessible in multiple cell 
types

• Implies non-coding SNPs 
explain more variance per 
SNP than coding SNPs
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5. Polygenic  Omnigenic models of disease
Recognizing “core” vs. “periphery” pathways



Schizophrenia GWAS: Number of significant loci

35,000 cases  62 loci!

3,500 cases  0 loci

10,000 cases  5 loci

65,000 cases  265 loci!





How far down the SNP list does enrichment go?

• Use functional enrichment to gain insight into genetic 
architecture (Sarkar 2016)

• Idea: as we consider more SNPs beyond genome-wide 
significance, relevant regulatory regions will be 
disrupted more often than irrelevant regions



Long tails of enrichment for 8 diseases

• Use functional enrichment to gain insight into genetic 
architecture (Sarkar 2016)

• Idea: as we consider more SNPs beyond genome-wide 
significance, relevant regulatory regions will be 
disrupted more often than irrelevant regions



Omnigenic model of heritability

• (A) Genome-wide inflation of small p values from the GWAS for height, with particular enrichment among 
expression quantitative trait loci and single-nucleotide polymorphisms (SNPs) in active chromatin (H3K27ac).

• (B) Estimated fraction of SNPs associated with non-zero effects on height (Stephens, 2017) as a function of 
linkage disequilibrium score (i.e., the effective number of SNPs tagged by each SNP; Bulik-Sullivan et al., 2015b). 
Each dot represents a bin of 1% of all SNPs, sorted by LD score. Overall, we estimate that 62% of all SNPs are 
associated with a non-zero effect on height. The best-fit line estimates that 3.8% of SNPs have causal effects.

• (C) Estimated mean effect size for SNPs, sorted by GIANT p value with the direction (sign) of effect ascertained by 
GIANT. Replication effect sizes were estimated using data from the Health and Retirement Study (HRS). The 
points show averages of 1,000 consecutive SNPS in the p-value-sorted list. The effect size on the median SNP in 
the genome is about 10% of that for genome-wide significant hits.

Boyle, Li, Pritchard, Cell, 2017



More heritability in broad classes

• Contributions to heritability 
(relative to random SNPs) as a 
function of chromatin context. 
There is enrichment for signal 
among SNPs that are in 
chromatin active in the relevant 
tissue, regardless of the overall 
tissue breadth of activity

• Genes with brain-specific 
expression show the strongest 
enrichment of schizophrenia 
signal (left), but broadly 
expressed genes contribute 
more to total heritability due to 
their greater number (right)

Boyle, Li, Pritchard, Cell, 2017



Most GO categories are enriched

• Gene Ontology Enrichments for Three Diseases, with Categories of Particular 
Interest Labeled. The x axis indicates the fraction of SNPs in each category; 
the y axis shows the fraction of heritability assigned to each category as a 
fraction of the heritability assigned to all SNPs. Note that the diagonal 
indicates the genome-wide average across all SNPs; most GO categories lie 
above the line due to the general enrichment of signal in and around genes. 
Analysis by stratified LD score regression

Boyle, Li, Pritchard, Cell, 2017



Core genes vs. periphery

• Omnigenic Model of Complex 
Traits

• (A) For any given disease 
phenotype, a limited number 
of genes have direct effects on 
disease risk. However, by the 
small world property of 
networks, most expressed 
genes are only a few steps 
from the nearest core gene 
and thus may have non-zero 
effects on disease. Since core 
genes only constitute a tiny 
fraction of all genes, most 
heritability comes from genes 
with indirect effects.

• (B) Diseases are generally 
associated with dysfunction of 
specific tissues; genetic 
variants are only relevant if 
they perturb gene expression 
(and hence network state) in 
those tissues. For traits that 
are mediated through multiple 
cell types or tissues, the 
overall effect size of any given 
SNP would be a weighted 
average of its effects in each 
cell type.

Boyle, Li, Pritchard, Cell, 2017
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6. LD SCore regression (LDSC): 
Computing and partitioning* heritability quickly

(* with stratified LD SCore regression)



LD SCore regression (LDSC)

• Intuition: Causal variants drawn uniformly at random from 
the genome are more likely to come from larger LD blocks 
(Bulik-Sullivan 2014)

• Linear regression of summary statistics against LD score 
gives h2 without access to individual-level genotype matrix

E[zj
2] = N lj h2 / M

Image credit: Simoni 2008



Intuition: LD score  heritability

Simulation under stratification

More tags  more causal SNPs. 
More shots  more shots on goal

Simulation under association



Linkage disequilibrium: D and D’
• Genetic variants do not segregate independently
• D = coeff. of linkage disequilibrium between alleles A and B at loci L1 and L2

• DAB=P11P00-P10P01=0.07 
• Property of the specific alleles. Different alleles at these loci will have diff DAB

• If independent, then DAB=0 
(P11P00=P10P01)

• Linkage disequilibrium measures the 
degree of departure from Mendel’s laws
of independent assortment

How to interpret actual values? 
• Relative to DABmax, which depends on 

frequencies of individual alleles at A, B
• DABmax=P0*P*1-P1*P*0=0.138
• D’=D/Dmax=0.51
 51% of max possible disequilibrium

Haplotype 
AB

Marginal allele 
frequency

0* 0.54

1* 0.46

*0 0.30

*1 0.60

Haplotype Expected Observed

00 0.162 0.24**

01 0.324 0.31

10 0.138 0.07**

11 0.276 0.39**



Linkage disequilibrium: r2

Haplotype 
AB

Marginal allele 
frequency

0* 0.54

1* 0.46

*0 0.30

*1 0.60

Haplotype Expected Observed

00 0.162 0.24

01 0.324 0.31

10 0.138 0.07

11 0.276 0.39

Key property: r2 correlation for individual SNPs
is exactly the r2 of the GWAS association summary statistics of these SNPs



LD score regression estimates 
heritability from summary data

A multivariate model for phenotype variation

phenotype
indiv. i

multivar.
effect on SNP j 

non-genetic
for indiv. i

Assuming Ε[Xj]=0 and V[Xj] = 1,
heritability= V[Xβ] ≈ ΣX2β2 ≈ Σβ2

Heritability by partitioning
(restricting on a set C):

Finucane et al. (2015)



LD score regression estimates 
heritability from summary data

A multivariate model

Assuming Ε[Xj]=0 and V[Xj] = 1,
heritability= V[Xβ] ≈ ΣX2β2 ≈ Σβ2

Heritability by partitioning
(restricting on a set C):

Finucane et al. (2015)

Summary statistics data

and (2) LD matrix
(or correlation
between SNP j and k)

(1) Χ-square tests
statistic for all SNP j



Idea: Reverse-engineer summary 
data to find multivar. parameters

Finucane et al. (2015)

A univariate effect (GWAS) A univariate chi-square (GWAS)

LD between
SNP j and k



Idea: Reverse-engineer summary 
data to find multivar. parameters

Finucane et al. (2015)

A univariate effect (GWAS) A univariate chi-square (GWAS)

LD between
SNP j and k

Per SNP variance (heritability)

= E[βj
2] (assuming E[βj] ≈ 0)



Idea: Reverse-engineer summary 
data to find multivar. parameters

Finucane et al. (2015)

A univariate effect (GWAS) A univariate chi-square (GWAS)

LD between
SNP j and k

Per SNP variance (heritability)

= E[βj
2] (assuming E[βj] ≈ 0)



Regression of chi-square 
statistics on LD scores

Finucane et al. (2015)

LD-scores
between
SNP j and other
SNP k in
annotation c

Intuition: Remove unwanted “double-counting”
of annotation enrichment due to LD

Regression to estimate τc:

χ2
1

χ2
2

χ2
p

(…)

χ2
p-1

~

l(1,c)

l(2,c)

l(p, c)

(…)

l(p-1, c)

τcΣc

p SNPs = p observations



Stratified LDSC partitions heritability of 
complex trait GWAS summary

Finucane et al. (2015)
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7. GWAS networks for evidence boosting



Enhancer modules: constitutive, cell type specific

• Challenge: annotations learned one cell type at a time can’t 
account for sharing of elements across cell types

• Use k-means clustering to define modules of enhancer 
activity

• Functional enrichments highlight importance of both 
constitutive and lineage-specific enhancers



From enhancers to genes to pathways

Trait Known pathways Total genes Total pathways
AD Cyclic GMP signaling, immune response 220 216
BIP Glucocorticoid signaling 217 230
CAD Cholesterol/triglyceride metabolism, IgA 248 215
CD CD8 T cell proliferation, IgE, IL4 224 359
RA NFKB, actin nucleation 196 146
SCZ Dendritic spine development 271 183
T1D MHC I/II, JAK-STAT, IFNG 266 245
T2D Pancreatic beta cell apoptosis 281 177

• Link enhancers to their downstream target genes
• Target genes enriched in known disease pathways, but 

through previously unknown mechanisms
• Reveals broad similarities at pathway level between classes 

of diseases (e.g. signaling in autoimmune traits), but also 
specific pathways important to each disease

• Potentially implicate novel genes in enriched pathways



From genes/pathways to upstream regulators

• Challenge: heritability-based methods can’t identify specific enhancer 
regions

• Our method can implicate specific enhancers, so we can dissect their 
mechanism

• Predict the upstream regulator using sequence-based enrichment 
(Kheradpour 2013) without considering GWAS

• Find master regulators recurrently disrupted by sub-threshold SNPs
• Many disease-specific regulators, but interesting shared regulators



Regulator  gene networks across diseases
• GWAS associated SNP 

often does not directly 
disrupt the predicted 
master regulator

• Instead, falls in a different 
motif instance for a 
putative co-factor

• Explains how master 
regulators can be shared 
across very different 
phenotypes (NFKB in 
schizophrenia, T1D)



Upstream regulators add cell-type-specificity

• Many predicted master regulators found in predicted constitutive 
enhancers rather than cell type-specific regulators

• Although enhancers might be constitutively marked, expression of the 
upstream regulator is cell type-specific

• Additional insight into transcriptional regulation needed to interpret non-
coding disease associations



Hypothesis: Many associated 
genes implicate limited 

number of pathways

Proof: Statistically significant excess 
connectivity of genes in GWAS regions



Computational tools enable the 
integration of ‘human genetic screens’

with other genome-scale screening data

GRAIL plot from 
Franke et al 2010 

DAPPLE

MAGENTA



Evaluating Significance

Repeat full 
permutation 
50,000 times

…keep moving labels 
until the network has 
been fully permuted
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PPI Networks identify specific genes and pathways

Fanconi anemia
9 synthetic loci

Direct connectivity
p << 2x10-5

Crohn’s disease
25 loci

Direct connectivity
p = 3x10-4

Direct connectivity
p = 1.11x10-3

Rheumatoid arthritis
27 loci

107



Tissue

Scores 
per
tissue

108

Network genes are co-
expressed

Connected proteins are 
enriched for newly confirmed 
associated genes (p=6.5x10-4)

Validation of PPI networks
Further experimental support that the non-random networks

are truly implicating the underlying genes



ImmGen data set:
223 murine immune cell subsets
Expression measured on 15,149
human homologs

Are human GWAS hits harboring
loci significantly co-expressed in 
specific immune cell subsets?



GWAS hits significantly co-expressed in 
specific immune cell subsets



Other opportunities:
Cross-disease information

Genes coordinately associated to multiple disease are tightly functionally linked

Cotsapas et al, August 2011 PLoS Genetics
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8. Machine Learning methods in genetics



CADD: combine evidence to predict variant function 



Large number of methods for variant prioritization

DePristo, Human Molecular Genetics, 2018, 10.1093/hmg/ddy115



Whole genome variant calling:
GATK HaplotypeCaller

http://gatkforums.broadinstitute.org/gatk/discussion/4148/hc-overview-how-the-haplotypecaller-works

1. Use heuristic to find mismatches not 
explained by noise

2. Use assembly graph to identify possible 
haplotypes

3. For each haplotype, estimate:
P(read | haplotype) 

using probabilistic sequence alignment
• Hidden Markov Model
• States: insertion, deletion, substitution
• Emissions: pairs of aligned nucleotides/gaps
• Transitions: equivalent to insertion/deletion/gap 

penalties from Smith-Waterman algorithm (DP 
alignment)

• Get P(read | haplotype)
using forward-backward algorithm

4. Use Bayes rule to get P(haplotype | read)
5. Assign genotypes to each sample based on 

the max a posteriori haplotypes

Tour de Force, combining many methods: 
• Logistic regression to model base errors
• Hidden Markov models to compute read 

likelihoods
• Naive Bayes classification to identify variants
• Gaussian mixture model with hand-crafted 

features to filter likely false positive variants, 
capturing common error modes



Exome variant calling: atlas2

• Motivation: the exome has different sequence properties than the rest of the genome
(e.g., substitution rates, GC content).

• Train logistic regression classifier to predict which mismatches are errors and which are 
variants

• Training data: 1KG Exome project sequencing reads where >2 reads align with a mismatch
• True positives: Reads where mismatch is also discovered in 1KG Exon pilot project
• True negatives: Remaining reads
• Features: mismatch quality score, flanking quality score, whether neighboring nucleotides 

were swapped, normalized distance to 3’ end of the read
• Much faster than full Bayesian model (e.g. HaplotypeCaller), lower false positive rate in 

validation data Bamshad et al. Nat Rev Genet 2011



DeepVariant: Combine evidence to call variants



DeepBind

[Alipanahi et al., 2015]



Predicting disease mutations

[Alipanahi et al., 2015]



DeepBind summary

The key deep learning techniques:
•Convolutional learning
•Representational learning
•Back-propagation and stochastic gradient
•Regularization and dropout
•Parallel GPU computing especially useful for hyperparameter 

search
Limitations in DeepBind:

•Require defining negative training examples, which is often 
arbitrary

•Using observed mutation data only as post-hoc evaluation
•Modeling each regulatory dataset separately



DeepSea

DeepSea:
• Similar as DeepBind but 

trained a separate CNN on 
each of the 
ENCODE/Roadmap 
Epigenomic chromatin 
profiles 919 chromatin
features (125 DNase 
features, 690 TF features, 
104 histone features).

• It uses the ∆s  mutation 
score as input to train a 
linear logistic regression to 
predict GWAS and eQTL 
SNPs defined from the 
GRASP database with a P-
value cutoff of 1E-10 and 
GWAS SNPs from the 
NHGRI GWAS Catalog

[Zhou and Troyanskaya, 2015]
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9. Deep Learning methods for GWAS
Calling variants, prioritizing functional SNPs



CADD: combine evidence to predict variant function 



Large number of methods for variant prioritization

DePristo, Human Molecular Genetics, 2018, 10.1093/hmg/ddy115



Whole genome variant calling:
GATK HaplotypeCaller

http://gatkforums.broadinstitute.org/gatk/discussion/4148/hc-overview-how-the-haplotypecaller-works

1. Use heuristic to find mismatches not 
explained by noise

2. Use assembly graph to identify possible 
haplotypes

3. For each haplotype, estimate:
P(read | haplotype) 

using probabilistic sequence alignment
• Hidden Markov Model
• States: insertion, deletion, substitution
• Emissions: pairs of aligned nucleotides/gaps
• Transitions: equivalent to insertion/deletion/gap 

penalties from Smith-Waterman algorithm (DP 
alignment)

• Get P(read | haplotype)
using forward-backward algorithm

4. Use Bayes rule to get P(haplotype | read)
5. Assign genotypes to each sample based on 

the max a posteriori haplotypes

Tour de Force, combining many methods: 
• Logistic regression to model base errors
• Hidden Markov models to compute read 

likelihoods
• Naive Bayes classification to identify variants
• Gaussian mixture model with hand-crafted 

features to filter likely false positive variants, 
capturing common error modes



Exome variant calling: atlas2

• Motivation: the exome has different sequence properties than the rest of the genome
(e.g., substitution rates, GC content).

• Train logistic regression classifier to predict which mismatches are errors and which are 
variants

• Training data: 1KG Exome project sequencing reads where >2 reads align with a mismatch
• True positives: Reads where mismatch is also discovered in 1KG Exon pilot project
• True negatives: Remaining reads
• Features: mismatch quality score, flanking quality score, whether neighboring nucleotides 

were swapped, normalized distance to 3’ end of the read
• Much faster than full Bayesian model (e.g. HaplotypeCaller), lower false positive rate in 

validation data Bamshad et al. Nat Rev Genet 2011



DeepVariant: Combine evidence to call variants



DeepBind

[Alipanahi et al., 2015]



Predicting disease mutations

[Alipanahi et al., 2015]



DeepBind summary

The key deep learning techniques:
•Convolutional learning
•Representational learning
•Back-propagation and stochastic gradient
•Regularization and dropout
•Parallel GPU computing especially useful for hyperparameter 

search
Limitations in DeepBind:

•Require defining negative training examples, which is often 
arbitrary

•Using observed mutation data only as post-hoc evaluation
•Modeling each regulatory dataset separately



DeepSea

DeepSea:
• Similar as DeepBind but 

trained a separate CNN on 
each of the 
ENCODE/Roadmap 
Epigenomic chromatin 
profiles 919 chromatin
features (125 DNase 
features, 690 TF features, 
104 histone features).

• It uses the ∆s  mutation 
score as input to train a 
linear logistic regression to 
predict GWAS and eQTL 
SNPs defined from the 
GRASP database with a P-
value cutoff of 1E-10 and 
GWAS SNPs from the 
NHGRI GWAS Catalog

[Zhou and Troyanskaya, 2015]




	6.874, 6.802, 20.390, 20.490, HST.506�Computational Systems BiologyDeep Learning in the Life Sciences
	Systems Genetics – LMMs, PRS, Heritability, LDSC, EHR
	Slide Number 3
	Slide Number 4
	Common variants (SNPs) live in Haplotypes
	Genomic medicine: challenge and promises
	Summary: Dissect circuitry of disease-associated regions
	Regulatory circuitry of GWAS loci
	Dissecting non-coding genetic associations
	Manipulate circuitry  reverse disease phenotypes
	GWAS hits in enhancers of relevant cell types
	Bayesian fine-mapping: Predict causal variant and cell type
	Combine GWAS+Epig to find new target genes/SNPs
	EpiMap: 834 tissue/cell types  30k GWAS SNPs in 534 traits
	Dissect circuitry of 30,000 GWAS loci: TFEnhSNPgenepathways
	Slide Number 16
	Imputed MWAS: increased power, genetic component
	iMTWAS: Imputation across multiple intermediate variables
	The nuts and bolts of an eQTL study
	Expanded eQTL models
	Systems Genetics – LMMs, PRS, Heritability, LDSC, EHR
	Slide Number 22
	What are we missing in the previous multivariate model?
	Why do we need a random effect?
	A Bayesian approach to account for the random effect u
	Linear mixed models
	Linear mixed models
	Imputation-based association
	Bayesian linear regression for eQTL modeling
	Bayesian extension to ordinary regression models�
	Extension 1: spike-slab prior on θ
	Spike-slab prior model effectively avoid colinearity
	Ext 2: random-effect for pop. stratification
	Extension 2: random effect model
	Extension 3: Bayesian sparse linear mixed effect model
	Extension 4: Fine-mapping causal variants
	Extension 4: Fine-mapping under the hood
	Bayesian inference algorithms
	Systems Genetics – LMMs, PRS, Heritability, LDSC, EHR
	Slide Number 40
	Estimate absolute risk combining genetic and environmental risk factors
	How do we estimate polygenic risk score?
	A common practice of PRS estimation
	A common practice of PRS estimation:�Cross-validation with observed phenotype
	An alternative method for estimating PRS�(and a simpler and more powerful way)
	Idea: Decorrelate LD structure
	Polygenic risk scores
	Phasing diploid genomes is hard
	Molecular diagnostics in IBD
	Molecular diagnostics flag patients with worst outcome 
	Systems Genetics – LMMs, PRS, Heritability, LDSC, EHR
	Slide Number 52
	Lessons of GWAS
	Components of phenotypic variance
	Components of genetic variance
	Heritability is a ratio of variances
	Why study heritability?
	Estimating heritability in relatives
	Estimating heritability from GWAS
	Sources of missing heritability
	Partitioning heritability
	Partitioning heritability
	Bayesian variable selection
	Pathways-informed prior from enrichments
	Evidence for other explanations
	Estimating heritability: shared haplotypes
	Partitioning SNPs by MAF/LD
	Examining model assumptions
	Limitations of heritability
	Regulatory enrichments
	Joint model of SNPs and annotations 
	Joint model of SNPs and annotations 
	Partitioning heritability by annotation
	Systems Genetics – LMMs, PRS, Heritability, LDSC, EHR
	Slide Number 75
	Schizophrenia GWAS: Number of significant loci
	Slide Number 77
	How far down the SNP list does enrichment go?
	Long tails of enrichment for 8 diseases
	Omnigenic model of heritability
	More heritability in broad classes
	Most GO categories are enriched
	Core genes vs. periphery
	Systems Genetics – LMMs, PRS, Heritability, LDSC, EHR
	Slide Number 85
	LD SCore regression (LDSC)
	Intuition: LD score  heritability
	Linkage disequilibrium: D and D’
	Linkage disequilibrium: r2
	LD score regression estimates heritability from summary data
	LD score regression estimates heritability from summary data
	Idea: Reverse-engineer summary data to find multivar. parameters
	Idea: Reverse-engineer summary data to find multivar. parameters
	Idea: Reverse-engineer summary data to find multivar. parameters
	Regression of chi-square statistics on LD scores
	Stratified LDSC partitions heritability of complex trait GWAS summary
	Systems Genetics – LMMs, PRS, Heritability, LDSC, EHR
	Slide Number 98
	Enhancer modules: constitutive, cell type specific
	From enhancers to genes to pathways
	From genes/pathways to upstream regulators
	Regulator  gene networks across diseases
	Upstream regulators add cell-type-specificity
	Hypothesis: Many associated genes implicate limited number of pathways
	Computational tools enable the integration of ‘human genetic screens’ with other genome-scale screening data
	Evaluating Significance
	PPI Networks identify specific genes and pathways
	Slide Number 108
	Slide Number 109
	GWAS hits significantly co-expressed in specific immune cell subsets
	Other opportunities:�Cross-disease information
	Systems Genetics – LMMs, PRS, Heritability, LDSC, EHR
	Slide Number 113
	CADD: combine evidence to predict variant function 
	Large number of methods for variant prioritization
	Whole genome variant calling:�GATK HaplotypeCaller
	Exome variant calling: atlas2
	DeepVariant: Combine evidence to call variants
	DeepBind
	Predicting disease mutations
	DeepBind summary
	DeepSea
	Slide Number 123
	Systems Genetics – LMMs, PRS, Heritability, LDSC, EHR
	Slide Number 125
	CADD: combine evidence to predict variant function 
	Large number of methods for variant prioritization
	Whole genome variant calling:�GATK HaplotypeCaller
	Exome variant calling: atlas2
	DeepVariant: Combine evidence to call variants
	DeepBind
	Predicting disease mutations
	DeepBind summary
	DeepSea
	Slide Number 135

