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Goals for today: Network analysis
1. Introduction to networks

– Network types: regulatory, metab., signal., interact., func.
– Bayesian (probabilistic) and Algebraic views

2. Network Centrality Measures
– Local centrality metrics (degree, betweenness, closeness, etc)
– Global centrality metrics (eigenvector centrality, page-rank)

3. Linear Algebra Review: eigenvalues, SVD, low-rank approximations
– Eigenvector and singular vector decomposition
– Low rank approximations, Wigner semicircle law 

4. Sparse Principal Component Analysis
– Lasso and Elastic lasso
– PCA and Sparse PCA 

5. Network Communities and Modules
– Guilt by association
– Maximum cliques, density-based modules and spectral clustering

6. Network Diffusion Kernels and Deconvolution
– Network diffusion kernels
– Network deconvolution



Graph Theory: Abstracting real-world into graphs

Cycles in Polyhedra

Thomas Kirkman
William Hamilton

Hamiltonian cycles in Platonic graphsLeonhard Euler, Bridges of Königsberg, 1736. 

Gustav Kirchhoff
Trees in Electric Circuits

Arthur 
Cayley

Four Colors of Maps

Auguste
DeMorgan



Social Network
Collaboration Network Commercial Networks

Biological networks Transportation Networks Computer Networks

Networks are everywhere in the real world

Biotech



Social networks are most popular websites

• Social Network: asocial structure of individuals/organizations (nodes) 
tied (connected) by interdependencies (eg. friendship, interests, etc)

• Social Network Analysis (SNA): can reveal patterns, properties, 
important nodes, subnetworks, classification of individuals, etc
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MAUs = Monthly Active Users



TRANSCRIPTOME

The multi-layered organization of 
information in living systems
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Biological networks at all cellular levels
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Five major types of biological networks
Regulatory network Metabolic network
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Information exchange across networks
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Network applications and challenges
Element Identification
(motif finding lecture)

Network Structure 
Analysis

Inferring networks
from functional data

Using networks to 
predict cellular activity
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Beyond real-world networks

More abstractly, edges can represent 
relationships between data points

Even more abstractly, nodes themselves 
can simply be probabilistic variables



Physical and Relevance Networks
• Physical Networks: 

– edges represent 
“physical interaction” 
among nodes

– Example: physical 
regulatory networks

• Relevance Networks: 
– edge weights represent 

node similarities
– Example: functional 

regulatory networks
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Probabilistic networks and graphical 
model

• There are several types of networks, with different 
meanings, and different applications

• Networks as graphical models:
– modeling joint probability distribution of variables using 

graphs
– Bayesian networks (directed), Markov Random Fields 

(undirected)

S1
S2 S3

Next Lecture!



Representing Networks as Graphs
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• Weighted graphs: weights 
associated to every edge, 
generally positive

• Multigraphs (Pseudographs): 
multiple edges can exist 
among nodes

• Digraphs: edges have 
directions

• Simple graphs: no multiple 
edges or self-loops
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Matrix representation of networks

• A matrix representation of a network:
– Unweighted network: binary adjacency matrix
– Weighted network: real-valued matrix

Degree
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Goals for today: Network analysis
1. Introduction to networks

– Network types: regulatory, metab., signal., interact., func.
– Bayesian (probabilistic) and Algebraic views

2. Network Centrality Measures
– Local centrality metrics (degree, betweenness, closeness, etc)
– Global centrality metrics (eigenvector centrality, page-rank)

3. Linear Algebra Review: eigenvalues, SVD, low-rank approximations
– Eigenvector and singular vector decomposition
– Low rank approximations, Wigner semicircle law 

4. Sparse Principal Component Analysis
– Lasso and Elastic lasso
– PCA and Sparse PCA 

5. Network Communities and Modules
– Guilt by association
– Maximum cliques, density-based modules and spectral clustering

6. Network Diffusion Kernels and Deconvolution
– Network diffusion kernels
– Network deconvolution



Centrality Measures in Networks
Question: how important is a node/edge to the 
structural characteristics of the system?

High connectivity 
node

Low degree but 
still important?



Degree Centrality
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• Example:

• Degree Centrality can be similarly defined for 
– Directed graphs, in- and out- degrees
– Weighted graphs, weighted degrees 



Betweenness centrality
• The number of shortest paths 

in the graph that pass through 
the node divided by the total 
number of shortest paths.
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• Nodes with a high 
betweenness centrality control 
information flow in a network.

• Edge betweenness is defined 
similarly.



Closeness Centrality
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• Node B is the most 
central one in 
spreading information 
from it to the other 
nodes in the network.

• DC, BC and CC all agree

CC



Which is the most central node?

A

B

When closeness centrality and degree 
centrality are different 

§ A is the most central 
according to the 
degree

§ B is the most central 
according to closeness 
and betweenness



Eigenvector Centrality: Extending 
the Concept of Degree
§ Make xi proportional to the average of the centralities
of its i’s network neighbors

where λ is a constant. In matrix-vector notation we 
can write

In order to make the centralities non-negative we select
the eigenvector corresponding to the principal eigenvalue
(Perron-Frobenius theorem).
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Goals for today: Network analysis
1. Introduction to networks

– Network types: regulatory, metab., signal., interact., func.
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3. Linear Algebra Review: eigenvalues, SVD, low-rank approximations
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– Guilt by association
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Matrix interpretation of graphs



Matrix operations on graphs



• Let                  be a square matrix with m
linearly independent eigenvectors (a “non-
defective” matrix)

• Theorem: Exists an eigen decomposition

– (cf. matrix diagonalization theorem)

• Columns of U are eigenvectors of S

• Diagonal elements of     are eigenvalues of 

Eigen/diagonal Decomposition

diagonal Unique 
for 

distinct 
eigen-
values

v1 v2 v3 … vm

λ1
λ2

λ3
… 

λm

S =     U          Λ U-1



Singular Value Decomposition

TVUA S=

m´m m´n V is n´n

For an m´ n matrix A of rank r there exists a factorization
(Singular Value Decomposition = SVD) as follows:

The columns of U are orthogonal eigenvectors of AAT.

The columns of V are orthogonal eigenvectors of ATA.

ii ls =

( )rdiag ss ...1=S Singular values.

Eigenvalues l1 … lr of AAT are the eigenvalues of ATA.



Geometric interpretation of SVD

Mx = M(x) = U( S( V*(x) ) )

Rotation

Scaling

Rotation

Shearing
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Gene Expression Data
(RNA-Seq, Microarray, …)
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• n = 20k genes, m = 100 arrays
• n >> m

Sparse Principal Component Analysis
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Modularity of regulatory networks

• Modular: Graph with densely connected subgraphs

• Genes in modules involved in similar functions  and co-
regulated

• Modules can be identified using graph partitioning 
algorithms
– Markov Clustering Algorithm (random walks on graph)
– Girvan-Newman Algorithm (hierarchical communities)
– Spectral partitioning (eigenvalue of Laplacian matrix)

Newman PNAS 2007



Eigen decomposition-example
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0.3536   -0.3825    0.2714   -0.1628   -0.7783    0.0495   -0.0064   -0.1426  
0.3536   -0.3825    0.5580   -0.1628    0.6066    0.0495   -0.0064   -0.1426
0.3536   -0.3825   -0.4495    0.6251    0.0930    0.0495   -0.3231   -0.1426
0.3536   -0.2470   -0.3799   -0.2995    0.0786   -0.1485    0.3358    0.6626
0.3536    0.2470   -0.3799   -0.2995    0.0786   -0.1485    0.3358   -0.6626
0.3536    0.3825    0.3514    0.5572   -0.0727   -0.3466    0.3860    0.1426
0.3536    0.3825    0.0284   -0.2577   -0.0059   -0.3466   -0.7218    0.1426
0.3536    0.3825    0.0000     0.0000   0.0000    0.8416   -0.0000    0.1426

0         0         0         0         0         0         0         0
0      0.3542  0         0         0         0         0         0
0         0      4.0000   0         0         0         0         0
0         0         0      4.0000   0         0         0         0
0         0         0         0      4.0000   0         0         0
0         0         0         0         0      4.0000   0         0
0         0         0         0         0         0      4.0000   0
0         0         0         0         0         0         0      5.6458

U=

• First smallest eigenvalue of 
Laplacian matrix is always 
zero.

• Second smallest 
eigenvector of Laplacian 
matrix characterizes a 
network partition.
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Network Diffusion Kernels
• Define closeness of two nodes in the network 

How Close?

• One way: use weighted shortest path
• Invariant to the position of edges over a path



Conclusion: Network analysis
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