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6.874/6.802/20.390/20.490/HST.506 Deep Learning in the Life Sciences Spring 2021 Lec:Tue/Thu 1-2:30pm Rec:Fri 3-4pm Proj:Fri 4-5pm

Psets Date Module Week|Lec/R |Description
PS0: Set up Tuesday, February 16, 2021 LO1 Course Intro + Overview Foundations
Environment (Due Thursday, February 18, 2021 1 L02 ML foundations
Monday 2/22) Friday, February 19, 2021 RO1 ML Review
Friday, February 19, 2021 Projl |Intro video + personal profile
Tuesday, February 23, 2021 L03 Convolutional Neural Networks CNNs
Module 1: ML
Thursday, February 25, 2021 dels and 2 L04 RNNs, GNNs
PS1: Softmax Friday, February 26, 2021 interpretation RO2  |Neural Networks Review
warmup (MNIST)  |Friday, February 26, 2021 Proj2 |Research Mentors Introductions and Breakouts
(out: Tue 2/23, due: Tuesday, March 2, 2021 LOS Interpretability, Dimensionality Reduction, tSNE
Wed 3/10) Thursday, March 4, 2021 3 L06 Generative Models, GANs, VAEs
Friday, March 5, 2021 R0O3 |Interpreting ML Models
Friday, March 5, 2021 Proj3 |Research Team Building Breakout Rooms
Tuesday, March 9, 2021 No Class (Monday Schedule)
Thursday, March 11, 2021 4 L07 DNA accessibility, Promoters and Enhancers
Friday, March 12, 2021 RO4 Chromatin and gene regulation
Friday, March 12, 2021 Proj4 |Initial Ideas 1-slide presentations (teams, or individual)
PS2: CNN for TF  |Tuesday, March 16, 2021 Module 2: L08 |Transcription factors, DNA methlyation
binding prediction |Thursday, March 18, 2021 Gene 5 L09 Gene Expression, Splicing
(out: Tue 3/16, Due: |Friday, March 19, 2021 Regulation RO5 |RNA-seq, Splicing
Mon 3/29) Friday, March 19, 2021 Proj5 |Meet with potential mentors (optional, asynchronous)
Tuesday, March 23, 2021 No Class (Student Holiday)
Thursday, March 25, 2021 6 L10 Single-cell RNA-sequencing
Friday, March 26, 2021 R06  |scRNA-seq, dimensionality reduction
Friday, March 26, 2021 Proj6 |Full Project Proposals Due (pdf, slides, team video)
Tuesday, March 30, 2021 L11 Dimensionality reduction, PCA, t-SNE, NNMF
Thursday, April 1, 2021 7 L12 GWAS, variant calling, variant interpretation
Friday April 2, 2021 Module 3: RO7 Genetics
PS3: scRNA-seq tSNE[— - ) - - "
analysis (out: Tue Friday, April 2, 2021 Gejne'tlc Proj7 |Meet with your mentors (optional, asynchronous)
3/30, due Mon 4/12) Tuesday, April 6, 2021 Varllatlon / L13 eQTLs, intermediate molecular phenotypes
Thursday, April 8, 2021 Disease 3 L14 Electronic health records and patient data
Friday April 9, 2021 RO8 ML for health data
Friday, April 9, 2021 Proj8 |End-to-End pipeline demo (team video)
Tuesday, April 13, 2021 L15 Graphs, GNNs, Protein-protein interactions
Thursday, April 15, 2021 9 [L16 GNNs for Protein Structure and Drug Design
PS4: Graph Neural Friday April 16, 2021 Module 4: R0O9 Graph Neural Networks
Networks (Out: Tue - n
4/13, Due: Wed Tuesday, April 20, 2021 Graphs.and No Class (Student Holiday)
4/28) Thursday, April 22, 2021 Proteins 10 L17 GNNs for Protein Structure and Drug Design
Friday April 23, 2021 R10 Drug Development
Friday, April 23, 2021 Proj9 |Meet with your mentors (optional, asynchronous)
Tuesday, April 27,2021 Quiz In-class quiz
Thursday, April 29, 2021 L19 Imaging, Morphology
PS5: Image Analysis |Friday, April 30, 2021 11 |R11 |Therapeutics, 3D structure, imaging
(Out: Wed 4/28,  |Friday, April 30, 2021 Module 5: Proj10 |Midcourse report (google doc)
Due: Mon 5/10) Tuesday, May 4, 2021 Imaging 120 Imaging applications in healthcare
Thursday, May 6, 2021 12 121 Video processing, structure determination
Friday May 7, 2021 No Class (Student Holiday)
Tuesday, May 11, 2021 L22 Text applications in healthcare, clinical decision making
Thursday, May 13, 2021 13 L23  |Neuroscience
Friday, May 14, 2021 R12 How to Present
Finalize Projects Friday, May 14, 2021 Modul'e 6: Proj11 |How to Present
Monday, May 17, 2021 Frontiers Proj12 |Final Reports due (Google doc + pdf)
Tuesday, May 18, 2021 14 L24 Cancer and Infectious Disease
Wednesday, May 19, 2021 Proj13 |Final Presentations (slides, team video)
Thursday, May 20, 2021 L25 Final Presentations

Course website:

http:

compbio.mit.edu/6874,




Goals for today: Network analysis

Introduction to networks
— Network types: regulatory, metab., signal., interact., func.
— Bayesian (probabilistic) and Algebraic views

Network Centrality Measures
— Local centrality metrics (degree, betweenness, closeness, etc)
— Global centrality metrics (eigenvector centrality, page-rank)

Linear Algebra Review: eigenvalues, SVD, low-rank approximations
— Eigenvector and singular vector decomposition

— Low rank approximations, Wigner semicircle law

Sparse Principal Component Analysis

— Lasso and Elastic lasso

— PCA and Sparse PCA

Network Communities and Modules

— Guilt by association

— Maximum cliques, density-based modules and spectral clustering
Network Diffusion Kernels and Deconvolution

— Network diffusion kernels
— Network deconvolution



Graph Theory Abstractlng real-world into graphs
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Networks are everywhere in the real world
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Social networks are most popular websites

Rank Social Network MAUSs In Millions Country of Origin Rank Social Network MAUs In Millions Country of Origin
#1 Facebook 2,603 2.6B £Us. #12 Telegram 400 == Russia
#2 WhatsApp 2,000 2B =Us. #13  Snapchat 397 EUs.
#3 YouTube 2,000 =Us. #14  Pinterest 367 = yUs.
#4 Messenger 1,300 EUS. .

#15 Twitter 326 £ Us.
#5 WeChat 1,203 @ China

#16 LinkedIn 310 £ Us.
#6 Instagram 1,082 £ Us.

#17 Viber 260 ® Japan
#7 TikTok 800 @ China

i °

48 0Q 694 @ China #18 Line 187 Japan
#9 Weibo 550 @ China A 157 @ China
#10 Qzone 517 @ China #20 Twitch 140 £ Us.
#11 Reddit 430 = Us. #21 Vkontakte 100 == Russia

MAUSs = Monthly Active Users
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Global Internet Users | »
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M
Facebook WhatsApp YouTube oo o

» Social Network: asocial structure of individuals/organizations (nodes)
tied (connected) by interdependencies (eg. friendship, interests, etc)

* Social Network Analysis (SNA): can reveal patterns, properties,
important nodes, subnetworks, classification of individuals, etc



The multi-layered organization of
information in living systems
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Biological networks at all cellular levels
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Five major types of biological networks

Regulatory network Metabolic network | Signaling network|/| PPI, Protein Functional
interaction network

Enzymes network (Co-expression)
Receptors
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Information exchange across networks
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Network applications and challenges

@ Element Identification
(motif finding lecture)

Using networks to
predict cellular activity

@ Inferring networks
from functional data

Network Structure
Analysis

) oy

Regulators

ATTAAT U (7]

CGCTT
Regulatory Motifs || Target genes

Predict expression levels

Predict gene ontology (GO)
functional annotation terms

X=f(A,B)

Activity patterns

> Y=g(B)

Structure Function

Network motifs
Functional modules

ﬁ g Hubs (degree-distribution)




Beyond real-world networks

More abstractly, edges can represent
relationships between data points

Even more abstractly, nodes themselves
can simply be probabilistic variables



Physical and Relevance Networks

* Physical Networks:

— edges represent
“physical interaction”
among nodes

— Example: physical
regulatory networks

* Relevance Networks:

— edge weights represent
node similarities

— Example: functional
regulatory networks
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Probabilistic networks and graphical

model
* There are several types of networks, with different
meanings, and different applications
* Networks as graphical models:

— modeling joint probability distribution of variables using
graphs

— Bayesian networks (directed), Markov Random Fields
(undlrected)

< ‘ Next Lecture!
;E ‘ ’ j :: Xg, 1L Xg,|Xs,




Representing Networks as Graphs

* Weighted graphs: weights  Multigraphs (Pseudographs):
associated to every edge, multiple edges can exist
generally positive among nodes

* Digraphs: edges have  Simple graphs: no multiple
directions edges or self-loops




Matrix representation of networks

* A matrix representation of a network:

— Unweighted network: binary adjacency matrix

— Weighted network: real-valued matrix
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Goals for today: Network analysis

Introduction to networks
— Network types: regulatory, metab., signal., interact., func.
— Bayesian (probabilistic) and Algebraic views

Network Centrality Measures
— Local centrality metrics (degree, betweenness, closeness, etc)
— Global centrality metrics (eigenvector centrality, page-rank)

Linear Algebra Review: eigenvalues, SVD, low-rank approximations
— Eigenvector and singular vector decomposition

— Low rank approximations, Wigner semicircle law

Sparse Principal Component Analysis

— Lasso and Elastic lasso

— PCA and Sparse PCA

Network Communities and Modules

— Guilt by association

— Maximum cliques, density-based modules and spectral clustering
Network Diffusion Kernels and Deconvolution

— Network diffusion kernels
— Network deconvolution



Centrality Measures in Networks

Question: how important is a node/edge to the
structural characteristics of the system?

Low degree but|  %e%, . 5.
still important? | &« [

High connectivity
node




Degree Centrality

« Example:
41 B C D E degree
~ a
A0 1 1 0 0 1
B|1 O 1 1 1 4
cl|/1 1 0 0 O 3
D0 1 0 0 0 1
E\0 1 0 0 0 1

 Degree Centrality can be similarly defined for
— Directed graphs, in- and out- degrees
— Weighted graphs, weighted degrees



Betweenness centrality

* The number of shortest paths (A
in the graph that pass through @’@
the node divided by the total
number of shortest paths. (o) (g

ok, ) m Shortest paths are:
BC(k)=D Y 5=, i#j#k = AB, AC, ABD, ABE,
T pli) BC, BD, BE, CBD, CBE,
* Nodes with a high DBE

betweenness centrality control p(4,B.D)=1; p(4,D)=1
information flow in a network. :ZE?:IIZZIE)))::II ,;((2,’1;)))111
 Edge betweenness is defined p(C,B,E)=1; p(C,E)=1
p(D,B,E)=1; p(D,E)=1

similarly.
= B hasaBCof5/10



Closeness Centrality

e The normalised inverse of

(A
the sum of topological
e sum o é o

distances in the graph.

N-1 (o) (E)
Zdl]

di,j) CC
j=1

e Node B is the most /A B C D E o
: Ao 1 1 2 2| 6 :

central one in
spreading information Bt o1 1 14 1.00
P . 5 cl1 1 0 2 2| 6 0.67
from it to the other bla 1 2 0 2l 7 ) or
nodes in the network. Ela 1 2 2 0) 7 )57

e DC, BCand CC all agree



When closeness centrality and degree
centrality are different

7] 1 A = Aisthe most central
3 R\J/ R |/ @ according to the
\ \_41 degree
I
" Bisthe most central
: according to closeness
E /_/ \_\' and betweenness

Which is the most central node?



Eigenvector Centrality: Extending
the Concept of Degree

" Make x; proportional to the average of the centralities
of its i’s network neighbors

1 n
3

where A is a constant. In matrix-vector notation we
can write i

X = AX
A
In order to make the centralities non-negative we select
the eigenvector corresponding to the principal eigenvalue
(Perron-Frobenius theorem).



Goals for today: Network analysis

Introduction to networks
— Network types: regulatory, metab., signal., interact., func.
— Bayesian (probabilistic) and Algebraic views

Network Centrality Measures
— Local centrality metrics (degree, betweenness, closeness, etc)
— Global centrality metrics (eigenvector centrality, page-rank)

Linear Algebra Review: eigenvalues, SVD, low-rank approximations
— Eigenvector and singular vector decomposition
— Low rank approximations, Wigner semicircle law

Sparse Principal Component Analysis

— Lasso and Elastic lasso

— PCA and Sparse PCA

Network Communities and Modules

— Guilt by association

— Maximum cliques, density-based modules and spectral clustering
Network Diffusion Kernels and Deconvolution

— Network diffusion kernels
— Network deconvolution



Matrix interpretation of graphs

* Graph (V,E) as a matrix
— Choose an ordering of vertices

a__—7
— Number them sequentially 1 @ ¢/
— Fillin |V|x]V| matrix
— Called “incidence matrix” of graph f\ .
e (QObservations: fffa{,- e 4

— Diagonal entries: weights on self- ®

loops 3
— Symmetric matrix € -2 undirected

ki 12345

grap - -
— Lower triangular matrix €2 no 1 |0afo0o

edges from lower numbered nodes 2 000coO

to higher numbered nodes 3 |000e0
— Dense matrix € -2 clique (edge 4 |0000d

between every pair of nodes) 5 0b0O0g




Matrix operations on graphs

* Matrix computation: y = Ax

* Graph interpretation:
— Each node i has two values
(labels) x(i) and y(i)
— Each node i updates its label y
using the x value from each of

its neighbors j, scaled by the
label on edge (i,j)

* (QObservation:

— Graph perspective shows dense ; 8 g EOC%
MVM is just a special case of S loaoco
sparse MVM 2 looood

5 |lob0O0g



Eigen/diagonal Decomposition

e Let S e R™*™be a square matrix with m
linearly independent eigenvectors (a “non-

defective” matrix) -
S=||L W AEEE

A

 Theorem: Exists an eigen decomposition

diagonal Unique
} 1 for
S=UAU" ¢ distinct
eigen-
— (cf. matrix diagonalization theorem) values

* Columns of U are eigenvectors of §

* Diagonal elements of A are eigenvalues of S
A =diag(A1,..., Am), i > Aig1



Singular Value Decomposition

For an mx n matrix A of rank r there exists a factorization
(Singular Value Decomposition = SVD) as follows:

A=UxV"
N

mxm || mxn Vis nxn

The columns of U are orthogonal eigenvectors of AAT.

The columns of V are orthogonal eigenvectors of ATA.
Eigenvalues X, ... A, of AAT are the eigenvalues of A’A.

o= 4

> = dl'ag(glu O, )<:1 Singular values.




Geometric interpretation of SVD

n Shearmg ?

Rotation |v 7 Rotation

- =
Scaling

M=UX-V*

Mx = M(x) = U( S( V*(x) ) )



Goals for today: Network analysis

Introduction to networks
— Network types: regulatory, metab., signal., interact., func.
— Bayesian (probabilistic) and Algebraic views

Network Centrality Measures
— Local centrality metrics (degree, betweenness, closeness, etc)
— Global centrality metrics (eigenvector centrality, page-rank)

Linear Algebra Review: eigenvalues, SVD, low-rank approximations
— Eigenvector and singular vector decomposition
— Low rank approximations, Wigner semicircle law

Sparse Principal Component Analysis

— Lasso and Elastic lasso
— PCA and Sparse PCA

Network Communities and Modules

— Guilt by association

— Maximum cliques, density-based modules and spectral clustering
Network Diffusion Kernels and Deconvolution

— Network diffusion kernels
— Network deconvolution



Sparse Principal Component Analysis

Gene Expression Data
(RNA-Seq, Microarray, ...)

n genes

.............................

.............

.............................

——

t",‘:\. , =
'.' lns.

L ST T
L T T
.., ' e s swseseq o grpe : "e e . ™ .
LA TR PR TR R Y S ST TENE s sa ‘
'Y gqa o, 'Y coerneny TET Tt s vee
“i g ggi ol s w8 3a5s8 . . - . .

vl iy o te2at e . LI 1+ . . . «© - .-en .
i i g LR I s Biesnen . . . $£a e M -
. L "o an Naesw . e Ssie BSanks

$d 4, % s s -eemie . .- e . G o @ .

. Y emae e (X .« s s
‘."°'~~- R . L L ¢ a tr TEaIB IS
"'llo ssara + 5. B = “h s e un

re e L B LI Al Rl . ' . - Al K
. .e y .
oK s T AR Yhand b R R
/& e » . . .
%

e n=20k genes, m =100 arrays

m arrays

®* N>>M



Goals for today: Network analysis

Introduction to networks
— Network types: regulatory, metab., signal., interact., func.
— Bayesian (probabilistic) and Algebraic views

Network Centrality Measures
— Local centrality metrics (degree, betweenness, closeness, etc)
— Global centrality metrics (eigenvector centrality, page-rank)

Linear Algebra Review: eigenvalues, SVD, low-rank approximations
— Eigenvector and singular vector decomposition
— Low rank approximations, Wigner semicircle law

Sparse Principal Component Analysis

— Lasso and Elastic lasso
— PCA and Sparse PCA

Network Communities and Modules
— Guilt by association
— Maximum cliques, density-based modules and spectral clustering

Network Diffusion Kernels and Deconvolution
— Network diffusion kernels
— Network deconvolution



Modularity of regulatory networks

 Modular: Graph with densely connected subgraphs

7’

e Genes in modules involved in similar functions and co-
regulated

 Modules can be identified using graph partitioning
algorithms

— Markov Clustering Algorithm (random walks on graph)
— Girvan-Newman Algorithm (hierarchical communities)
— Spectral partitioning (eigenvalue of Laplacian matrix)

Newman PNAS 2007



Eigen decomposition-example

L=UXU""!

U= /0. 3536\,-0 382§ /. 27111\ -0.1628 -0.7783 0.0495 -0.0064 AO 14)5
[ o. 3536/, -0. 3825) 0.5580)-0.1628 0.6066 0.0495 -0.0064, /0. 1426,
Io. 3536 \-o 3825/ -0.4495 | 0.6251 0.0930 0.0495 -O0. 3231 -0. 1426
| 0.3534 Lo, 247d 1-0.3799 !-0.2995 0.0786 -0.1485 0.3358 0.6626 |
| 0.3536 0. 247d -0.3799 -0.2995 0.0786 -0.1485 0.3358 -0.6626 |
0. 353é lo. 3825\l 0.3514 |0.5572 -0.0727 -0.3466 0.3860 0.1426 |
\ 0. 3536/ 0. 3825) 0.0284 j |0.2577 -0.0059 -0.3466 -0. 7218 0. 14261

\0 3536)\ 0. 382;’ \ 0. 000(} 0.0000 0.0000 0.8416 -0.0000 \\0.1426 ,/
/7 \

\>/ \\/ \\// -\\ /// .
> = ) o_ 0 o 0 0 0 o * Firstsmallest eigenvalue of
0 {035420_0 0 0 0 0 Laplacian matrix is always
o 0 (400000 0 0 o0 0 2610
0 0 0 4.0000 O 0 0 0 |
0O 0 0O O 400000 O O * Second smallest
c 0 0 0 0 400000 O eigenvector of Laplacian
0 0 0 0 0 0 4.0000 0_ tri h teri
0o o o o o o o (sea matrix characterizes a

network partition.



Goals for today: Network analysis

Introduction to networks
— Network types: regulatory, metab., signal., interact., func.
— Bayesian (probabilistic) and Algebraic views

Network Centrality Measures
— Local centrality metrics (degree, betweenness, closeness, etc)
— Global centrality metrics (eigenvector centrality, page-rank)

Linear Algebra Review: eigenvalues, SVD, low-rank approximations
— Eigenvector and singular vector decomposition

— Low rank approximations, Wigner semicircle law

Sparse Principal Component Analysis

— Lasso and Elastic lasso

— PCA and Sparse PCA

Network Communities and Modules

— Guilt by association
— Maximum cliques, density-based modules and spectral clustering

Network Diffusion Kernels and Deconvolution
— Network diffusion kernels
— Network deconvolution




Network Diffusion Kernels

e Define closeness of two nodes in the network

How Close?

W

* One way: use weighted shortest path

* Invariant to the position of edges over a path



Conclusion: Network analysis

Introduction to networks
— Network types: regulatory, metab., signal., interact., func.
— Bayesian (probabilistic) and Algebraic views

Network Centrality Measures
— Local centrality metrics (degree, betweenness, closeness, etc)
— Global centrality metrics (eigenvector centrality, page-rank)

Linear Algebra Review: eigenvalues, SVD, low-rank approximations
— Eigenvector and singular vector decomposition

— Low rank approximations, Wigner semicircle law

Sparse Principal Component Analysis

— Lasso and Elastic lasso

— PCA and Sparse PCA

Network Communities and Modules

— Guilt by association

— Maximum cliques, density-based modules and spectral clustering
Network Diffusion Kernels and Deconvolution

— Network diffusion kernels
— Network deconvolution



