6.874 Deep Learning in the Life Sciences

Lecture 15 Graph Neural Networks Foundations, GNNs, PPIs, Graphs

Manolis Kellis Guest lecture: Neil Band (part 2) Guest lecture: Maria Brbic / Jure Leskovec

Slides credit: Soheil Feizi

6.874/6.802/20.390/20.490/HST.506 Deep Learning in the Life Sciences Spring 2021 Lec:Tue/Thu 1-2:30pm Rec:Fri 3-4pm Proj:Fri 4-5pm

Psets	Date	Module	Week	Lec/R	Description	
DCO: Cot up	Tuesday, February 16, 2021			L01	Course Intro + Overview Foundations	
PS0: Set up Environment (Due Monday 2/22)	Thursday, February 18, 2021		1	L02	ML foundations	
	Friday, February 19, 2021			R01	ML Review	
	Friday, February 19, 2021			Proj1	Intro video + personal profile	
	Tuesday, February 23, 2021	Module 1: ML models and interpretation		L03	Convolutional Neural Networks CNNs	
	Thursday, February 25, 2021		2	L04	RNNs, GNNs	
PS1: Softmax	Friday, February 26, 2021		2	R02	Neural Networks Review	
warmup (MNIST)	Friday, February 26, 2021			Proj2	Research Mentors Introductions and Breakouts	
(out: Tue 2/23, due: Wed 3/10)	Tuesday, March 2, 2021		3	L05	Interpretability, Dimensionality Reduction, tSNE	
	Thursday, March 4, 2021			L06	Generative Models, GANs, VAEs	
	Friday, March 5, 2021			R03	Interpreting ML Models	
	Friday, March 5, 2021			Proj3	Research Team Building Breakout Rooms	
	Tuesday, March 9, 2021	Module 2: Gene Regulation			No Class (Monday Schedule)	
	Thursday, March 11, 2021		4	L07	DNA accessibility, Promoters and Enhancers	
	Friday, March 12, 2021			R04	Chromatin and gene regulation	
	Friday, March 12, 2021			Proj4	Initial Ideas 1-slide presentations (teams, or individual)	
PS2: CNN for TF	Tuesday, March 16, 2021			L08	Transcription factors, DNA methlyation	
binding prediction	Thursday, March 18, 2021			L09	Gene Expression, Splicing	
(out: Tue 3/16, Due:	Friday, March 19, 2021			R05	RNA-seq, Splicing	
Mon 3/29)	Friday, March 19, 2021			Proj5	Meet with potential mentors (optional, asynchronous)	
	Tuesday, March 23, 2021		6		No Class (Student Holiday)	
	Thursday, March 25, 2021			L10	Single-cell RNA-sequencing	
	Friday, March 26, 2021			R06	scRNA-seq, dimensionality reduction	
	Friday, March 26, 2021			Proj6	Full Project Proposals Due (pdf, slides, team video)	
	Tuesday, March 30, 2021	Module 3: Genetic Variation / Disease		L11	Dimensionality reduction, PCA, t-SNE, NNMF	
	Thursday, April 1, 2021		7	L12	GWAS, variant calling, variant interpretation	
PS3: scRNA-seg tSNE	Friday April 2, 2021			R07	Genetics	
analysis (out: Tue	Friday, April 2, 2021		8	Proj7	Meet with your mentors (optional, asynchronous)	
3/30, due Mon 4/12)	Tuesday, April 6, 2021			L13	eQTLs, intermediate molecular phenotypes	
	Thursday, April 8, 2021			L14	Electronic health records and patient data	
	Friday April 9, 2021			R08	ML for health data	
	Friday, April 9, 2021			Proj8	End-to-End pipeline demo (team video)	
	Tuesday, April 13, 2021		9	L15	Graphs, GNNs, Protein-protein interactions	
PS4: Graph Neural Networks (Out: Tue 4/13, Due: Wed 4/28)	Thursday, April 15, 2021			L16	GNNs for Protein Structure and Drug Design	
	Friday April 16, 2021	Module 4:		R09	Graph Neural Networks	
	Tuesday, April 20, 2021	Graphs and	10		No Class (Student Holiday)	
	Thursday, April 22, 2021	Proteins		L17	GNNs for Protein Structure and Drug Design	
	Friday April 23, 2021			R10	Drug Development	
	Friday, April 23, 2021			Proj9	Meet with your mentors (optional, asynchronous)	
PS5: Image Analysis	Tuesday, April 27, 2021	Quiz		140	In-class quiz	
	Friday, April 29, 2021		11	L19 D11	There are the 2D structure in the size	
	Friday, April 30, 2021	Module 5: Imaging		R11	Therapeutics, 3D structure, imaging	
(Out: Wed 4/28, Due: Mon 5/10)	Friday, April 30, 2021			Proj10	Midcourse report (google doc)	
Due: Mon 3/10)	Tuesday, May 4, 2021		12	120	Imaging applications in healthcare	
	Thursday, May 6, 2021			121	Video processing, structure determination	
Finalize Projects	Friday May 7, 2021	Module 6: Frontiers	13	1.22	No Class (Student Holiday)	
	Tuesday, May 11, 2021			122	rext applications in healthcare, clinical decision making	
	Friday, May 13, 2021			LZ3	Neuroscience	
	Friday, May 14, 2021			R12	How to Present	
	Friday, May 14, 2021			Proj11	How to Present	
	Tuesday, May 17, 2021			Proj12	rinai keports due (Google doc + pdf)	
	Tuesday, May 18, 2021			L24	Cancer and Intectious Disease	
	Thursday, May 19, 2021			Proj13	rinal Presentations (slides, team video)	
	http://comphie.mit.edu/697	a/		LZD	rinal Presentations	

Goals for today: Network analysis

1. Introduction to networks

- Network types: regulatory, metab., signal., interact., func.
- Bayesian (probabilistic) and Algebraic views

2. Network Centrality Measures

- Local centrality metrics (degree, betweenness, closeness, etc)
- Global centrality metrics (eigenvector centrality, page-rank)

3. Linear Algebra Review: eigenvalues, SVD, low-rank approximations

- Eigenvector and singular vector decomposition
- Low rank approximations, Wigner semicircle law

4. Sparse Principal Component Analysis

- Lasso and Elastic lasso
- PCA and Sparse PCA

5. Network Communities and Modules

- Guilt by association
- Maximum cliques, density-based modules and spectral clustering

6. Network Diffusion Kernels and Deconvolution

- Network diffusion kernels
- Network deconvolution

Graph Theory: Abstracting real-world into graphs

Trees in Electric Circuits

Four Colors of Maps

Networks are everywhere in the real world

Biological networks

Transportation Networks

Computer Networks

Social networks are most popular websites

Rank	Social Network	MAUs In Millions	Country of Origin	Rank	Social Network	MAUs In Millions	Country of Origin			
#1	Facebook	2,603 2.6B	■ U.S.	#12	Telegram	400	💻 Russia			
#2	WhatsApp	2,000 2B	■ U.S.	#13	Snapchat	397	■ U.S.			
#3	YouTube	2,000	■ U.S.	#14	Pinterest	367	■ U.S.			
#4	Messenger	1,300	■ U.S.	#15	Twitter	326	■ U.S.			
#5	WeChat	1,203	드 China	#16	LinkedIn	310	■ U S			
#6	Instagram	1,082	■ U.S.	#17	Vibor	260	_ Lanan			
#7	TikTok	800	📁 China	#1/	Viber	260	 Japan 			
#8	QQ	694	📟 China	#18	Line	187	• Japan			
#9	Weibo	550	드 China	#19	YY	157	📟 China			
#10	Qzone	517	드 China	#20	Twitch	140	■ U.S.			
#11	Reddit	430	■ U.S.	#21	Vkontakte	100	💻 Russia			
MAUS = Monthly Active Users										

 Social Network: asocial structure of individuals/organizations (nodes) tied (connected) by interdependencies (eg. friendship, interests, etc)

Instagram

• Social Network Analysis (SNA): can reveal patterns, properties, important nodes, subnetworks, classification of individuals, etc

Messenger

YouTube

WhatsApp

The multi-layered organization of information in living systems

Biological networks at all cellular levels

Five major types of biological networks

Information exchange across networks

Network applications and challenges

Element Identification (motif finding lecture)

B

Using networks to predict cellular activity

Predict expression levels

Predict gene ontology (GO) functional annotation terms

3

Inferring networks from functional data

Network Structure

Analysis

Activity patterns Structure Hubs Netw Funct X=f(A,B) Y=g(B) Function

Hubs (degree-distribution) Network motifs Functional modules

Beyond real-world networks

More abstractly, edges can represent relationships between data points

Even more abstractly, nodes themselves can simply be probabilistic variables

Physical and Relevance Networks

- Physical Networks:
 - edges represent
 "physical interaction"
 among nodes
 - Example: physical regulatory networks

- Relevance Networks:
 - edge weights represent node similarities
 - Example: functional regulatory networks

Probabilistic networks and graphical model

- There are several types of networks, with different meanings, and different applications
- Networks as graphical models:
 - modeling joint probability distribution of variables using graphs

Next Lecture!

 $X_{S_1} \perp \!\!\!\perp X_{S_2} | X_{S_2}$

 Bayesian networks (directed), Markov Random Fields (undirected)

 S_3

Representing Networks as Graphs

 Weighted graphs: weights associated to every edge, generally positive

 Digraphs: edges have directions

• Multigraphs (Pseudographs): multiple edges can exist among nodes

• Simple graphs: no multiple edges or self-loops

Matrix representation of networks

- A matrix representation of a network:
 - Unweighted network: binary adjacency matrix
 - Weighted network: real-valued matrix

Goals for today: Network analysis

1. Introduction to networks

- Network types: regulatory, metab., signal., interact., func.
- Bayesian (probabilistic) and Algebraic views

2. Network Centrality Measures

- Local centrality metrics (degree, betweenness, closeness, etc)
- Global centrality metrics (eigenvector centrality, page-rank)

3. Linear Algebra Review: eigenvalues, SVD, low-rank approximations

- Eigenvector and singular vector decomposition
- Low rank approximations, Wigner semicircle law

4. Sparse Principal Component Analysis

- Lasso and Elastic lasso
- PCA and Sparse PCA

5. Network Communities and Modules

- Guilt by association
- Maximum cliques, density-based modules and spectral clustering

6. Network Diffusion Kernels and Deconvolution

- Network diffusion kernels
- Network deconvolution

Centrality Measures in Networks

Question: how important is a node/edge to the structural characteristics of the system?

Degree Centrality

• Example:

- Degree Centrality can be similarly defined for
- Directed graphs, in- and out- degrees
- Weighted graphs, weighted degrees

Betweenness centrality

 The number of shortest paths in the graph that pass through the node divided by the total number of shortest paths.

$$BC(k) = \sum_{i} \sum_{j} \frac{\rho(i,k,j)}{\rho(i,j)}, \quad i \neq j \neq k$$

- Nodes with a high betweenness centrality control information flow in a network.
- Edge betweenness is defined similarly.

- Shortest paths are:
 - AB, AC, <u>ABD</u>, <u>ABE</u>,
 BC, BD, BE, <u>CBD</u>, <u>CBE</u>,
 <u>DBE</u>

$$\rho(A, B, D) = 1; \quad \rho(A, D) = 1
\rho(A, B, E) = 1; \quad \rho(A, E) = 1
\rho(C, B, D) = 1; \quad \rho(B, D) = 1
\rho(C, B, E) = 1; \quad \rho(C, E) = 1
\rho(D, B, E) = 1; \quad \rho(D, E) = 1$$

B has a BC of 5/10

Closeness Centrality

 The normalised inverse of the sum of topological distances in the graph.

$$CC(i) = \frac{N-1}{\sum_{j} d(i,j)}$$

- Node B is the most central one in spreading information from it to the other nodes in the network.
- DC, BC and CC all agree

When closeness centrality and degree centrality are different

- A is the most central according to the degree
- B is the most central according to closeness and betweenness

Which is the most central node?

Eigenvector Centrality: Extending the Concept of Degree

 Make x_i proportional to the average of the centralities of its i's network neighbors

$$x_i = \frac{1}{\lambda} \sum_{j=1}^n A_{ij} x_j$$

where λ is a constant. In matrix-vector notation we can write

$$\mathbf{x} = \frac{1}{\lambda} \mathbf{A} \mathbf{x}$$

In order to make the centralities non-negative we select the *eigenvector* corresponding to the *principal eigenvalue* (Perron-Frobenius theorem).

Goals for today: Network analysis

1. Introduction to networks

- Network types: regulatory, metab., signal., interact., func.
- Bayesian (probabilistic) and Algebraic views

2. Network Centrality Measures

- Local centrality metrics (degree, betweenness, closeness, etc)
- Global centrality metrics (eigenvector centrality, page-rank)

3. Linear Algebra Review: eigenvalues, SVD, low-rank approximations

- Eigenvector and singular vector decomposition
- Low rank approximations, Wigner semicircle law

4. Sparse Principal Component Analysis

- Lasso and Elastic lasso
- PCA and Sparse PCA

5. Network Communities and Modules

- Guilt by association
- Maximum cliques, density-based modules and spectral clustering

6. Network Diffusion Kernels and Deconvolution

- Network diffusion kernels
- Network deconvolution

Matrix interpretation of graphs

• Graph (V,E) as a matrix

- Choose an ordering of vertices
- Number them sequentially
- Fill in |V|x|V| matrix
- Called "incidence matrix" of graph

Observations:

- Diagonal entries: weights on selfloops
- − Symmetric matrix \leftarrow → undirected graph
- Lower triangular matrix ← → no edges from lower numbered nodes to higher numbered nodes
- Dense matrix ← → clique (edge between every pair of nodes)

Matrix operations on graphs

- Matrix computation: y = Ax
- Graph interpretation:
 - Each node i has two values (labels) x(i) and y(i)
 - Each node i updates its label y using the x value from each of its neighbors j, scaled by the label on edge (i,j)
- Observation:
 - Graph perspective shows dense MVM is just a special case of sparse MVM

Eigen/diagonal Decomposition

- Let $S \in \mathbb{R}^{m \times m}$ be a square matrix with *m* linearly independent eigenvectors (a "nondefective" matrix) $S = \bigcup_{\lambda_2 \\ \lambda_3} \Lambda \bigcup_{\lambda_2 \\ \lambda_3} \Lambda$
- Theorem: Exists an eigen decomposition Unique diagonal Unique for distinct

eigen-

values

- (cf. matrix diagonalization theorem)
- Columns of *U* are eigenvectors of *S*
- Diagonal elements of Λ are eigenvalues of S $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_m), \ \lambda_i \ge \lambda_{i+1}$

Singular Value Decomposition

For an $m \times n$ matrix **A** of rank *r* there exists a factorization (Singular Value Decomposition = **SVD**) as follows:

The columns of **U** are orthogonal eigenvectors of AA^{T} . The columns of **V** are orthogonal eigenvectors of $A^{T}A$. Eigenvalues $\lambda_{1} \dots \lambda_{r}$ of AA^{T} are the eigenvalues of $A^{T}A$. $\sigma = \sqrt{\lambda}$

$$\sigma_i = \sqrt{\lambda_i}$$

$$\Sigma = diag(\sigma_1 \dots \sigma_r) \longrightarrow Singular values.$$

Geometric interpretation of SVD

Goals for today: Network analysis

1. Introduction to networks

- Network types: regulatory, metab., signal., interact., func.
- Bayesian (probabilistic) and Algebraic views

2. Network Centrality Measures

- Local centrality metrics (degree, betweenness, closeness, etc)
- Global centrality metrics (eigenvector centrality, page-rank)

3. Linear Algebra Review: eigenvalues, SVD, low-rank approximations

- Eigenvector and singular vector decomposition
- Low rank approximations, Wigner semicircle law

4. Sparse Principal Component Analysis

- Lasso and Elastic lasso
- PCA and Sparse PCA
- 5. Network Communities and Modules
 - Guilt by association
 - Maximum cliques, density-based modules and spectral clustering
- 6. Network Diffusion Kernels and Deconvolution
 - Network diffusion kernels
 - Network deconvolution

Sparse Principal Component Analysis

Gene Expression Data (RNA-Seq, Microarray, ...)

- n = 20k genes, m = 100 arrays
- n >> m

Goals for today: Network analysis

1. Introduction to networks

- Network types: regulatory, metab., signal., interact., func.
- Bayesian (probabilistic) and Algebraic views

2. Network Centrality Measures

- Local centrality metrics (degree, betweenness, closeness, etc)
- Global centrality metrics (eigenvector centrality, page-rank)

3. Linear Algebra Review: eigenvalues, SVD, low-rank approximations

- Eigenvector and singular vector decomposition
- Low rank approximations, Wigner semicircle law

4. Sparse Principal Component Analysis

- Lasso and Elastic lasso
- PCA and Sparse PCA

5. Network Communities and Modules

- Guilt by association
- Maximum cliques, density-based modules and spectral clustering
- 6. Network Diffusion Kernels and Deconvolution
 - Network diffusion kernels
 - Network deconvolution

Modularity of regulatory networks

• Modular: Graph with densely connected subgraphs

- Genes in modules involved in similar functions and coregulated
- Modules can be identified using graph partitioning algorithms
 - Markov Clustering Algorithm (random walks on graph)
 - Girvan-Newman Algorithm (hierarchical communities)
 - Spectral partitioning (eigenvalue of Laplacian matrix)

Newman PNAS 2007

Eigen decomposition-example

U=

network partition.

Goals for today: Network analysis

1. Introduction to networks

- Network types: regulatory, metab., signal., interact., func.
- Bayesian (probabilistic) and Algebraic views

2. Network Centrality Measures

- Local centrality metrics (degree, betweenness, closeness, etc)
- Global centrality metrics (eigenvector centrality, page-rank)

3. Linear Algebra Review: eigenvalues, SVD, low-rank approximations

- Eigenvector and singular vector decomposition
- Low rank approximations, Wigner semicircle law

4. Sparse Principal Component Analysis

- Lasso and Elastic lasso
- PCA and Sparse PCA

5. Network Communities and Modules

- Guilt by association
- Maximum cliques, density-based modules and spectral clustering
- 6. Network Diffusion Kernels and Deconvolution
 - Network diffusion kernels
 - Network deconvolution

Network Diffusion Kernels

• Define closeness of two nodes in the network

- One way: use weighted shortest path
- Invariant to the position of edges over a path

Conclusion: Network analysis

1. Introduction to networks

- Network types: regulatory, metab., signal., interact., func.
- Bayesian (probabilistic) and Algebraic views

2. Network Centrality Measures

- Local centrality metrics (degree, betweenness, closeness, etc)
- Global centrality metrics (eigenvector centrality, page-rank)

3. Linear Algebra Review: eigenvalues, SVD, low-rank approximations

- Eigenvector and singular vector decomposition
- Low rank approximations, Wigner semicircle law

4. Sparse Principal Component Analysis

- Lasso and Elastic lasso
- PCA and Sparse PCA

5. Network Communities and Modules

- Guilt by association
- Maximum cliques, density-based modules and spectral clustering

6. Network Diffusion Kernels and Deconvolution

- Network diffusion kernels
- Network deconvolution