Graph Neural Networks II

Neil Band 6.874 Deep Learning in the Life Sciences Spring 2021

Sources / Further Reading

- Adapted from
 - Thomas Kipf's presentations (Cambridge CompBio, IPAM UCLA)
 - CS224W Machine Learning on Graphs by Jure Leskovec (Course @ Stanford)
 - Graph Neural Networks by Xavier Bresson (Guest lecture in Yann LeCun's NYU DL course)
 - Theoretical Foundations of Graph Neural Networks by Petar Veličković (@ Cambridge Computer Lab Seminar)
 - Junction Tree Variational Autoencoder (Wengong Jin, ICML 2018)
- Mining and Learning with Graphs at Scale (Google Graph Mining team @ NIPS 2020)
- Graph Representation Learning (Book by Will Hamilton, 2020)
- Thomas Kipf's thesis (Deep Learning with Graph Structured Representations, 2020)
- Further reading: Petar Veličković's thread of resources

Outline

- 1. Refresher on graph neural nets (GNNs)
- 2. More problem domains

3. Research frontiers

With applications in...

- Chemical synthesis
- Interacting systems (physical, multiagent, biological)
- Causal inference
- Program induction

1 Refresher on GNNs

Aggregating neighbors

Idea: Node's neighborhood defines a computation graph

Learn how to propagate information across the graph to compute node features

Stanford CS224W

Graph convolutional networks (GCNs)

Kipf & Welling (ICLR 2017), related previous works: Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this undirected graph:

Calculate update for node in red:

Credits to Thomas Kipf

Credits to Thomas Kipf

Credits to Thomas Kipf

GCN classification on citation networks

Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

Input: Citation networks (nodes are papers, edges are citation links, optionally bag-of-words features on nodes)

Target: Paper category (e.g. stat.ML, cs.LG, ...)

Model: 2-layer GCN $Z = f(X, A) = \operatorname{softmax}\left(\hat{A} \operatorname{ReLU}\left(\hat{A}XW^{(0)}\right)W^{(1)}\right)$

		Method	Citeseer	Cora	Pubmed	NELL
no input features		ManiReg [3]	60.1	59.5	70.7	21.8
		SemiEmb [24]	59.6	59.0	71.1	26.7
		LP [27]	45.3	68.0	63.0	26.5
		DeepWalk [18]	43.2	67.2	65.3	58.1
		Planetoid* [25]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
		GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)

Classification results (accuracy)

(Figure from: Bronstein, Bruna, LeCun, Szlam, Vandergheynst, 2016)

Core models

Kipf & Welling (ICLR 2017); Kipf et al. (ICML 2018); Veličković et al. (ICLR 2018)

$$\mathbf{h}_i = \phi\left(\mathbf{x}_i, \bigoplus_{j \in \mathcal{N}_i} c_{ij}\psi(\mathbf{x}_j)
ight)$$

Credits to Petar Veličković

Core models

Kipf & Welling (ICLR 2017); Kipf et al. (ICML 2018); Veličković et al. (ICLR 2018)

Credits to Petar Veličković

Core models

Kipf & Welling (ICLR 2017); Kipf et al. (ICML 2018); Veličković et al. (ICLR 2018)

2 More problem domains

Semi-supervised learning Multi-relational data Natural language processing

Semi-supervised classification on graphs

Setting:

Some nodes are labeled (black circle) All other nodes are unlabeled

Task: Predict node label of unlabeled nodes

Evaluate loss on labeled nodes only:

$$\mathcal{L} = -\sum_{l \in \mathcal{Y}_L} \sum_{f=1}^F Y_{lf} \ln Z_{lf}$$

- \mathcal{Y}_L set of labeled node indices
- ${f Y}$ label matrix
- ${f Z}$ GCN output (after softmax)

Toy example (semi-supervised learning)

from tkipf.github.io/graph-convolutional-networks

Latent space dynamics for 300 training iterations. Labeled nodes are highlighted.

GCN model manages to linearly separate classes with only 1 training example per class, no node features!

MoNet & Relational GCN for modeling (multi-)relational data

Monti et al. (CVPR 2017), Schlichtkrull & Kipf et al. (ESWC 2018)

$$\mathbf{h}_{i}' = \sigma \left(\sum_{r=1}^{R} \sum_{j \in \mathcal{N}_{i}} \alpha_{ij}^{r} \mathbf{W}_{r} \mathbf{h}_{j} \right)$$

 α_{ij}^r based on:

- Edge type (Relational GCN)
- Auxiliary features (MoNet), e.g. node degree

Relational GCN update rule

Connection to NLP: Transformers

A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, I Polosukhin, Attention is all you need (2017)

Words in a sequence interact

• Define a graph over them

Why do we care about this connection?

- Cross-pollination (e.g., Strategies for Pre-training Graph Neural Networks, Hu et al. 2020)
- Fast and optimized libraries
- New way to consider (the validity of) edges in GNN datasets

Transformer "update"

A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, I Polosukhin, Attention is all you need (2017)

Transformer "update"

A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, I Polosukhin, Attention is all you need (2017)

Transformer "update"

A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, I Polosukhin, Attention is all you need (2017)

Credits to Jay Alammar

Graph Transformers (Li et al. 2018)

A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, I Polosukhin, Attention is all you need (2017)

- We can frame transformers as a special case of GCNs when the graph is fully connected.
- The neighborhood \mathcal{N}_i is the whole graph.

Fully connected graph

 $d \vee d$

$$\begin{split} h_{i}^{\ell+1} &= W^{\ell} \operatorname{Concat}_{k=1}^{K} \Big(\sum_{j \in \mathcal{N}_{i}} e_{ij}^{k,\ell} V^{k,\ell} h_{j}^{\ell} \Big) \\ e_{ij}^{k,\ell} &= \operatorname{Softmax}_{\mathcal{N}_{i}} (\hat{e}_{ij}^{k,\ell}) = \frac{\exp(\hat{e}_{ij}^{k,\ell})}{\sum_{j' \in \mathcal{N}_{i}} \exp(\hat{e}_{ij'}^{k,\ell})} \end{split} \xrightarrow{\mathcal{N}_{i} = V} \qquad \stackrel{\mathcal{N}_{i} = V}{\longrightarrow} \qquad \stackrel{h^{\ell+1} = \operatorname{Concat}_{k=1}^{K} \Big(\operatorname{Softmax}(Q^{\ell} K^{\ell^{T}}) V^{\ell} \Big) \overset{w^{\ell}}{W^{\ell}} W^{\ell} \\ Q^{\ell} &= h^{\ell} W_{Q}^{\ell} \\ K^{\ell} &= h^{\ell} W_{K}^{\ell} \\ V^{\ell} &= h^{\ell} W_{V}^{\ell} \\ N \times \frac{d}{K} \overset{n \times n}{H} \overset{n \times \frac{d}{K}}{H} \overset{n \times n}{H} \overset{n \times \frac{d}{K}}{H} \end{split} \xrightarrow{n \times \frac{d}{K}} \end{split}$$

3 Research frontiers

Unsupervised learning with GNNs

Objective: Learn node embeddings for downstream tasks

Most approaches follow a contrastive learning approach:

Unsupervised learning with GNNs

Objective: Learn node embeddings for downstream tasks

Most approaches follow a contrastive learning approach:

• Sampling strategies

e.g. positive: neighbor; negative: random node

• Encoder variants

GCN, GAT, MLP, Lookup table

• Node representations

Geometry of latent space, distributional embeddings (e.g. Hyperbolic GCNN, Chami et al. 2019)

• Score functions

Inner/bilinear product, local vs. global (e.g. Deep Graph Infomax, Velickovic et al. 2019)

• Loss

(Cross-entropy, MSE, exponential)

Unsupervised learning takeaways

A Modular Framework for Unsupervised Graph Representation Learning, Daza & Kipf (WIP)

- Graph-based encoders often improve performance
- Neighbor-based scoring (GAE) effective for both link prediction & node classification
- Local-global scoring (DGI) especially effective for node classification
- Ideal node representation (distributional, hyperspherical, etc.) heavily data-dependent

Credits to Thomas Kipf

Likelihood-based:

- we have some ground truth graphs
- define likelihood as how well a generated graph matches a ground truth graph

Version 1: Generate graph (or predict new links) between known entities

Graph-based autoencoders:

- Encoder: GNN/GCN
- Decoder: Pairwise scoring function

$$p(A_{ij}) = f(\mathbf{z}_i, \mathbf{z}_j)$$

e.g.
$$p(A_{ij}) = \sigma(\mathbf{z}_i^T \mathbf{z}_j)$$

Likelihood-based:

- we have some ground truth graphs
- define likelihood as how well a generated graph matches a ground truth graph

Version 1: Generate graph (or predict new links) between known entities

Graph-based autoencoders:

- Encoder: GNN/GCN

е

- Decoder: Pairwise scoring function

$$p(A_{ij}) = f(\mathbf{z}_i, \mathbf{z}_j)$$

.g.
$$p(A_{ij}) = \sigma(\mathbf{z}_i^T \mathbf{z}_j)$$

Likelihood-based:

- we have some ground truth graphs
- define likelihood as how well a generated graph matches a ground truth graph

$$p(\mathbf{A} | \mathbf{Z}) = \prod_{i=1}^{N} \prod_{j=1}^{N} p(A_{ij} | \mathbf{z}_i, \mathbf{z}_j), \text{ with } p(A_{ij} = 1 | \mathbf{z}_i, \mathbf{z}_j) = \sigma(\mathbf{z}_i^\top \mathbf{z}_j)$$

VGAE generative model (with ELBO loss)

(Incomplete) History:

Version 2: Generate graphs from scratch (single embedding vector)

Version 2: Generate graphs from scratch (single embedding vector)

Credits to Thomas Kipf

Graph generation for drug discovery

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

Aim: generate molecules with high potency

How should we decode the graph?

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

- Not every graph is chemically valid
- Invalid intermediate states \rightarrow hard to validate
- Many intermediate states (i.e. long sequences) \rightarrow difficult to train (Li et al. 2018)

How should we decode the graph?

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

Tree Decomposition

- Shorter action sequence
- Easy to check validity as we construct
- Vocabulary size: ~800 for 250K molecules

High-level approach

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

Focus on a cool part: tree decoding

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)

Topological Prediction: Should we add a child node, or backtrack? **Label Prediction:** What do we label the new node?

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)

Topological Prediction: Should we add a child node, or backtrack?

Label Prediction: What do we label the new node?

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR 2017)

JTVAE evaluation

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

•		*	
Method	Reconstruction	Validity	
CVAE	44.6%	0.7%	
GVAE	53.7%	7.2%	
SD-VAE	76.2%	43.5%	
GraphVAE	-	13.5%	
Atom-by-Atom LSTM	-	89.2%	
JT-VAE	76.7%	100.0%	

1 Molecule Reconstruction

100 forward passes per molecule, report portion of decoded molecules identical to input

2 Molecule Validity

Random samples from latent z, report portion that are chemically valid (RDKit) JTVAE without validity checking: 93.5%

Method	1st	2nd	3rd
CVAE	1.98	1.42	1.19
GVAE	2.94	2.89	2.80
SD-VAE	4.04	3.50	2.96
JT-VAE	5.30	4.93	4.49

3 Bayesian Optimization

- 1. Train a VAE, associate each molecule with latent vector (mean of encoding distribution)
- 2. Train a sparse GP to predict target chemical property y(m) given the latent representation
- 3. Use property predictor for BO

3 Research frontiers

Deep generative graph models

Modeling implicit/hidden structure

Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)

Neural Relational Inference with GNNs

Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)

Reconstruction

Regularization

NRI evaluation - toy data

Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)

	Spr	ings	Kuramoto	
Number of objects	5	10	5	10
Correlation (path)	52.4±0.0	50.4±0.0	62.8±0.0	59.3±0.0
Correlation (LSTM)	52.7±0.9	54.9±1.0	54.4 ± 0.5	56.2 ± 0.7
NRI (simulation decoder)	99.8 ±0.0	98.2±0.0	_	_
NRI (learned decoder)	99.9 ±0.0	98.4 ±0.0	96.0 ±0.1	$75.7{\pm}\text{o.}{3}$
Supervised	99.9±0.0	98.8±0.0	99.7±0.0	97.1±0.1

Table 6.1: Accuracy (in %) of unsupervised interaction recovery.

Credits to Thomas Kipf

NRI evaluation - CMU Motion Capture (e.g. walking)

Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)

(c) Motion capture data

NRI applications - causal discovery

Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data, Lowe et al. 2020

Figure 1: Amortized Causal Discovery. We propose to train a single model that infers causal relations across samples with different underlying causal graphs but shared dynamics. This allows us to generalize across samples and to improve our performance with additional training data. In contrast, previous approaches fit a new model for every sample with a different underlying causal graph.

Challenges and future work in graph neural nets

- Problems of neighborhood aggregation / message passing
 - Theoretical relation to WL isomorphism, simple graph convolutions; tree-structured computation graphs \rightarrow **bounded power**
 - **Oversmoothing** (residual/gated updates help, but don't solve)
 - See recent work from Max Welling e.g. Natural Graph Networks
- Scalable, stable generative models
- Learning on large, evolving data
- (Mostly) assume a graph structure is provided as input
 - Neural Relational Inference is a preliminary work here, also see Pointer Graph Networks (Velickovic et al., NeurIPS 2020)
- Multi-modal and cross-modal learning (e.g. sequence2graph)