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Sources / Further Reading

e Adapted from
o  Thomas Kipf's presentations (Cambridge CompBio, IPAM UCLA)
o CS224W Machine Learning on Graphs by Jure Leskovec (Course @ Stanford)
o  Graph Neural Networks by Xavier Bresson (Guest lecture in Yann LeCun’s NYU DL course)

o  Theoretical Foundations of Graph Neural Networks by Petar Veli¢kovi¢ (@ Cambridge Computer Lab
Seminar)

o Junction Tree Variational Autoencoder (Wengong Jin, ICML 2018)
e Mining and Learning with Graphs at Scale (Google Graph Mining team @ NIPS 2020)
e Graph Representation Learning (Book by Will Hamilton, 2020)
e Thomas Kipf's thesis (Deep Learning with Graph Structured Representations, 2020)

e Further reading: Petar Velickovic's thread of resources


http://tkipf.github.io/misc/SlidesCambridge.pdf
http://tkipf.github.io/misc/SlidesCambridge.pdf
http://helper.ipam.ucla.edu/publications/glws4/glws4_15546.pdf
http://web.stanford.edu/class/cs224w/
https://atcold.github.io/pytorch-Deep-Learning/en/week13/13-1/
https://www.youtube.com/watch?v=uF53xsT7mjc
https://qdata.github.io/deep2Read/talks2019/Extra19s/TkachJunctionTreeVAE.pdf
https://gm-neurips-2020.github.io/master-deck.pdf
https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book.pdf
https://dare.uva.nl/search?identifier=1b63b965-24c4-4bcd-aabb-b849056fa76d
https://twitter.com/petarv_93/status/1306689702020382720?lang=en
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With applications in...

e Chemical synthesis

e Interacting systems (physical, multi-
agent, biological)

e Causal inference

e Program induction



1 Refresher on GNNs

Main idea Standard tasks Core models



Aggregating neighbors

ldea: Node’s neighborhood defines a
computation graph

]/ label

[
@
1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Learn how to propagate information across the
graph to compute node features

Stanford CS224W


https://web.stanford.edu/class/cs224w/

Graph convolutional networks (GCNs)

Kipf & Welling (ICLR 2017), related previous works: Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update
undirected graph: for node in red:
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M : neighbor indices  C;; : norm. constant
(fixed/trainable)

Credits to Thomas Kipf


https://tkipf.github.io/misc/SlidesCambridge.pdf

One fits all: Classification and link prediction with
GNNs/GCNs
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Credits to Thomas Kipf


https://tkipf.github.io/misc/SlidesCambridge.pdf

One fits all: Classification and link prediction with
GNNs/GCNs
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Credits to Thomas Kipf


https://tkipf.github.io/misc/SlidesCambridge.pdf

One fits all: Classification and link prediction with
GNNs/GCNs

Hidden layer

Credits to Thomas Kipf
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Hidden layer

Node classification:

softmax(zy, )
Output
\ e.g. Kipf & Welling (ICLR 2017)
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. Graph classification:
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e.g. Duvenaud et al. (NIPS 2015
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https://tkipf.github.io/misc/SlidesCambridge.pdf

One fits all: Classification and link prediction with
GNNs/GCNs

Hidden layer

Credits to Thomas Kipf
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Hidden layer

Node classification:

softmax(z
Output ( n)
~ e.g. Kipf & Welling (ICLR 2017)
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* o Graph classification:
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“«  eg. Duvenaud et al. (NIPS 2015)
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Link prediction:
T
p(Aij) = o(z; z;)

Kipf & Welling (NIPS BDL 2016)
“Graph Auto-Encoders”


https://tkipf.github.io/misc/SlidesCambridge.pdf

GCN classification on citation networks

Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

Input: Citation networks (nodes are papers, edges are citation links,
optionally bag-of-words features on nodes) \ 1

Target: Paper category (e.g. stat.ML, cs.LG, ...)

Model: 2-layer GCN Z — f(X, A) = softmax (A ReL.U (AXW“))) W<1>)

Classification results (accuracy) e T

Method Citeseer Cora Pubmed NELL
ManiReg [3] 60.1 59.5 70.7 21.8
SemiEmb [24] 59.6 59.0 71.1 26.7
_ - LP[27] 45.3 68.0 63.0 26.5
no input features  — DeepWalk [18] 43.2 67.2 65.3 58.1 7
Planetoid* [25] 64.7(26s) 75.7(13s) 77.2(25s) 61.9 (185s) /
GCN (this paper)  70.3(7s) 81.5(4s) 79.0(38s) 66.0 (48s) §  (Figure from: Bronstein, Bruna, LeCun,

Szlam, Vandergheynst, 2016)

Credits to Thomas Kipf


https://tkipf.github.io/misc/SlidesCambridge.pdf

Core models

Kipf & Welling (ICLR 2017); Kipf et al. (ICML 2018); Velickovi¢ et al. (ICLR 2018)
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Convolutional

h; = ¢ | xi, P cijv(x;)

JEN;

Credits to Petar Velickovic¢


https://www.youtube.com/watch?v=uF53xsT7mjc

Core models

Kipf & Welling (ICLR 2017); Kipf et al. (ICML 2018); Velickovi¢ et al. (ICLR 2018)
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Credits to Petar Velickovic¢


https://www.youtube.com/watch?v=uF53xsT7mjc

Core models

Kipf & Welling (ICLR 2017); Kipf et al. (ICML 2018); Velickovi¢ et al. (ICLR 2018)
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Credits to Petar Velickovic¢


https://www.youtube.com/watch?v=uF53xsT7mjc

2 More problem domains

Natural
language
processing

Semi-supervised Multi-relational
learning data



Semi-supervised classification on graphs

Setting:

Some nodes are labeled (black circle)
All other nodes are unlabeled

Task:
Predict node label of unlabeled nodes

Evaluate loss on labeled nodes only:

F
ﬁ:— Z ZYlfanlf

leyr f=1

Credits to Thomas Kipf

Y; set of labeled node indices

Y label matrix
7, GCN output (after softmax)


https://tkipf.github.io/misc/SlidesCambridge.pdf

Toy example (semi-supervised learning)

from tkipf.github.io/graph-convolutional-networks
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Latent space dynamics for 300 training iterations.
Labeled nodes are highlighted.

GCN model manages to linearly separate classes with
only 1 training example per class, no node features!

Credits to Thomas Kipf


http://tkipf.github.io/graph-convolutional-networks/
https://tkipf.github.io/misc/SlidesCambridge.pdf

MoNet & Relational GCN for modeling (multi-)relational data

Monti et al. (CVPR 2017), Schlichtkrull & Kipf et al. (ESWC 2018)
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* Auxiliary features (MoNet), e.g. node degree I

Relational GCN update rule

Credits to Thomas Kipf


https://tkipf.github.io/misc/SlidesCambridge.pdf

Connection to NLP: Transformers

A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, | Polosukhin, Attention is all you need (2017)

Layer:| 5 4| Attention: | Input - Input % Words in a sequence interact
The_ The_ e Define a graph over them
animal_ animal_
didn_ didn_ . . 2
, , Why do we care about this connection?
t_ t N .
cross. oross. e Cross-pollination (e.g., Strategies for
the_ the_ Pre-training Graph Neural Networks,
— street. Hu et al. 2020)
ecause_ because_ L. . .
it_ it_ e Fast and optimized libraries
“tvas— l”as— e New way to consider (the validity of)
00_ 00_ .
ire tire edges in GNN datasets
d d

Credits to Jay Alammar


https://jalammar.github.io/illustrated-transformer/

Transformer “update”

A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, | Polosukhin, Attention is all you need (2017)
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Credits to Jay Alammar


https://jalammar.github.io/illustrated-transformer/

Transformer “update”

A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, | Polosukhin, Attention is all you need (2017)
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Credits to Jay Alammar


https://jalammar.github.io/illustrated-transformer/

Transformer “update”

A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, | Polosukhin, Attention is all you need (2017)

Credits to Jay Alammar
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https://jalammar.github.io/illustrated-transformer/

Graph Transformers (Li et al. 2018)

A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, | Polosukhin, Attention is all you need (2017)

e We can frame transformers as a special case of GCNs when the

graph is fully connected.
e The neighborhood /; is the whole graph.
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https://atcold.github.io/pytorch-Deep-Learning/en/week13/13-1/

3 Research frontiers

Deep
generative
graph models

Latent graph
inference



Unsupervised learning with GNNs

Objective: Learn node embeddings for downstream tasks

Most approaches follow a contrastive learning approach:

pos
® lL\

neg

GCN/ MLP
)

“\

Graph / sampling Encoder Representation Score Loss

Credits to Thomas Kipf


https://helper.ipam.ucla.edu/publications/glws4/glws4_15546.pdf

Unsupervised learning with GNNs

A
N : 5 ® :
Objective: Learn node embeddings for downstream tasks ﬁ s o L
- - (2
. . / 8 Sneg
Most approaches follow a contrastive learning approach:
[ ] Sampllng Strategies Graph / sampling Encoder Representation Score Loss

e.g. positive: neighbor; negative: random node

e Encoder variants
GCN, GAT, MLP, Lookup table

e Node representations
Geometry of latent space, distributional embeddings (e.g. Hyperbolic GCNN, Chami et al. 2019)

e Score functions
Inner/bilinear product, local vs. global (e.g. Deep Graph Infomax, Velickovic et al. 2019)

e Loss
(Cross-entropy, MSE, exponential)

Credits to Thomas Kipf


https://helper.ipam.ucla.edu/publications/glws4/glws4_15546.pdf

Unsupervised learning takeaways

A Modular Framework for Unsupervised Graph Representation Learning, Daza & Kipf (WIP)
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Graph / sampling Encoder Representation Score Loss

» Graph-based encoders often improve performance
* Neighbor-based scoring (GAE) effective for both link prediction & node classification
 Local-global scoring (DGI) especially effective for node classification

* |deal node representation (distributional, hyperspherical, etc.) heavily data-dependent

Credits to Thomas Kipf


https://helper.ipam.ucla.edu/publications/glws4/glws4_15546.pdf

Likelihood-based (deep) graph generation

Likelihood-based:
- we have some ground truth graphs

- define likelihood as how well a generated graph
matches a ground truth graph

Credits to Thomas Kipf


https://helper.ipam.ucla.edu/publications/glws4/glws4_15546.pdf

Likelihood-based (deep) graph generation

Version 1: Generate graph (or predict new links) between known entities

Graph-based autoencoders:
- Encoder: GNN/GCN

- Decoder: Pairwise scoring function

Likelihood-based:
- we have some ground truth graphs
p(Ai;) = f(zi,2;) - define likelihood as how well a generated graph

matches a ground truth graph
e.g. p(A,,;_,-) :O'(Zgﬂzj) g grap

Credits to Thomas Kipf


https://helper.ipam.ucla.edu/publications/glws4/glws4_15546.pdf

Likelihood-based (deep) graph generation

Version 1: Generate graph (or predict new links) between known entities

Graph-based autoencoders:
- Encoder: GNN/GCN

- Decoder: Pairwise scoring function

Likelihood-based:
- we have some ground truth graphs
p(Ai;) = f(zi,2;) - define likelihood as how well a generated graph

7 matches a ground truth graph

eg. p(Ai) =o(z z;)

N N .
p(A|Z) =TL,L, [I,21p(Aij | 2i,25) , with p(Ai = 1]2,2;) = o(z] 2;)
VGAE generative model (with ELBO loss)

(Incomplete) History:

(Variational)

Graph Auto- Graphite Graph2Ga.uss Hyperspherical VAEs
—_ | Bojchevski & .
Encoders Grover et al. = Gunneman = Davidson et al. —
Kipf & Welling (NIPS BDL 2017) (ICLR 2018) (UAI 2018)

(NIPS BDL 2016)
Credits to Thomas Kipf


https://helper.ipam.ucla.edu/publications/glws4/glws4_15546.pdf

Likelihood-based (deep) graph generation

Version 2: Generate graphs from scratch (single embedding vector)

Credits to Thomas Kipf


https://helper.ipam.ucla.edu/publications/glws4/glws4_15546.pdf

Likelihood-based (deep) graph generation

Version 2: Generate graphs from scratch (single embedding vector)
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Credits to Thomas Kipf


https://helper.ipam.ucla.edu/publications/glws4/glws4_15546.pdf

Likelihood-based (deep) graph generation

Version 2: Generate graphs from scratch (single embedding vector)

}ll ]lz

Sequentially:

e

GraphRNN

Credits to Thomas Kipf
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Graph-level RNN

Or in a single step:

po(Glz)
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GraphVAE


https://helper.ipam.ucla.edu/publications/glws4/glws4_15546.pdf

Likelihood-based (deep) graph generation

Version 2: Generate graphs from scratch (single embedding vector) Or in a single step:
Sequentially: " = s i e @ ‘
| O—B O—0B N
o4 o ¥ il
J J O—® | 0@ v
~ | Z E
S3 .n pe(Glz)
S5 Sampﬂe—+gdge—level RNN — ﬁ
GraphRNN Grapml _— 1 GraphVAE
Learning Graphical Deep Generative
—  State Transitions | __ Models of Graphs | _ Slggfgzkvyﬁf ol f— G:gﬂt? aTN IS
Johnson Li et al. (arXiv 2018) (ICML 2018)
(ICLR 2017) (arXiv 2018)

Credits to Thomas Kipf


https://helper.ipam.ucla.edu/publications/glws4/glws4_15546.pdf

Graph generation for drug discovery

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

Aim: generate molecules with high potency
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Credits to Wengong Jin


https://qdata.github.io/deep2Read/talks2019/Extra19s/TkachJunctionTreeVAE.pdf

How should we decode the graph?

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

Node by Node

D e S A S S @)

/ Valid x Invalid x Invalid x Invalid v/ Valid

e Not every graph is chemically valid
e Invalid intermediate states — hard to validate

e Many intermediate states (i.e. long sequences) — difficult to train (Li et al. 2018)

Credits to Wengong Jin


https://qdata.github.io/deep2Read/talks2019/Extra19s/TkachJunctionTreeVAE.pdf

How should we decode the graph?

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

Group by GrOUp Functional Groups
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N N S N S a & & TR
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v Valid v Valid v’ Valid Aromatlc rings
Tree Decomposition
. (0] .
e Shorter action sequence Molecule | Junction tree ’
S N ©

e Easy to check validity as we construct Za

o — e
e Vocabulary size: ~800 for 250K &}
usters
molecules ©-—

N
Cluster label N N N N O O ¢C s -
Vocabulary E@g @ @ D O k/)\l s g I 1 .

Credits to Wengong Jin


https://qdata.github.io/deep2Read/talks2019/Extra19s/TkachJunctionTreeVAE.pdf

High-level approach

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

Molecule o Molecular - i
Graph (¢ .
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Credits to Wengong Jin


https://qdata.github.io/deep2Read/talks2019/Extra19s/TkachJunctionTreeVAE.pdf

Focus on a cool part: tree decoding

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)
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Credits to Wengong Jin


https://qdata.github.io/deep2Read/talks2019/Extra19s/TkachJunctionTreeVAE.pdf

Tree decoding

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR

2017)
Label Prediction @

Credits to Wengong Jin


https://qdata.github.io/deep2Read/talks2019/Extra19s/TkachJunctionTreeVAE.pdf

Tree decoding

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR

2017)
1. Topological Prediction @
Message vector IET W
O

2. Label Prediction

Topological Prediction: Should we add a child node, or backtrack?
Label Prediction: What do we label the new node?

Credits to Wengong Jin


https://qdata.github.io/deep2Read/talks2019/Extra19s/TkachJunctionTreeVAE.pdf

Tree decoding

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR

2017)

Topological Prediction
Backtrack

Topological Prediction: Should we add a child node, or backtrack?
Label Prediction: What do we label the new node?

Credits to Wengong Jin


https://qdata.github.io/deep2Read/talks2019/Extra19s/TkachJunctionTreeVAE.pdf

Tree decoding

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018); Tree-Structured Decoding, Alvarez-Melis & Jaakkola (ICLR
2017)

Label Prediction

ENEEEE NEEEE

Feedforward
NN

h;; = GRU(X{', {hyitren,()\y) h; ZT
Encodes state of subtree thus far Functional group features

Credits to Wengong Jin


https://qdata.github.io/deep2Read/talks2019/Extra19s/TkachJunctionTreeVAE.pdf

JTVAE evaluation

Junction Tree Variational Autoencoder, Jin et al. (ICML 2018)

Method Reconstruction  Validity 1 Molecule Reconstruction

CVAE 44.6% 0.7% 100 forward passes per molecule, report portion of
GVAE 53.7% 729 decoded molecules identical to input
SD-VAE 76.2% 43.5% 2 Molecule Validit
GraphVAE i 13.5% olecule Valicity
Atom-by-Atom LSTM _ 80.2% Random samples from latent z, report portion that
IT-VAE 76.7% 100.0% are chemically valid (RDKit)
JTVAE without validity checking: 93.5%
Method 1st nd 3rd 3 Bayesian Optimization
CVAE 1.98 1.42 1.19 1. Train a VAE, associate each molecule with
GVAE .04 789 780 latent vector (mean of encoding distribution)
SD-VAE 4.04 350 796 2. Train a sparse QP to predict target chemlgal
property y(m) given the latent representation
JT-VAE 5.30 4.93 4.49 3. Use property predictor for BO

Credits to Wengong Jin


https://qdata.github.io/deep2Read/talks2019/Extra19s/TkachJunctionTreeVAE.pdf

3 Research frontiers

Deep
generative
graph models

Latent graph
inference



Modeling implicit/hidden structure

Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)
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Interaction graph

Observed dynamics

Credits to Thomas Kipf


https://helper.ipam.ucla.edu/publications/glws4/glws4_15546.pdf

Neural Relational Inference with GNNs

Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)

o @)
4 >
& GNN ® GNN
Zi4
] ¢
Observe dynamics Interaction graph proposal
x = (x',...,x") z ~ (p(2|x)

Discrete (Gumbel softmax trick)
[Jang et al., 2016, Maddison et al., 2016]

@
9
o
\ ]
Reconstruct dynamics”
po(x|z)

VAE Objective (ELBO) L = E, (;)x)[log pa(x|z)] — KL[qe(z|x)|[p(2)]

Reconstruction Regularization

Credits to Thomas Kipf


https://helper.ipam.ucla.edu/publications/glws4/glws4_15546.pdf

NRI evaluation - toy data

Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)

Table 6.1: Accuracy (in %) of unsupervised interaction recovery.

‘ Springs Kuramoto
Number of objects ‘ 5 10 5 10
Correlation (path) 52.4+0.0 50.4+o0.0 | 62.840.0 59.3+0.0
Correlation (LSTM) 52.74+0.9 549+1.0 | 544+05 56.2+0.7

NRI (simulation decoder) | 99.8+0.0 98.2+0.0 - -
NRI (learned decoder) 99.9+0.0 98.4+0.0 | 96.0+0.1 75.740.3

Supervised | 99.9+00 98.8+00 | 99.7+00 97.1%0.1
: 2 821 WWWW 831 W
. .. 821 MWW 831 WV
33 {00 VAN -5 {7000 Y]
o &= | o3 T VW 2 {000 ANV
Y S I 821 VAV ] NN
-2 -1 0 1 -2 -1 0 1 0 50 100 0 50 100
Springs (2D) Kuramoto (1D)

Credits to Thomas Kipf


https://helper.ipam.ucla.edu/publications/glws4/glws4_15546.pdf

NRI evaluation - CMU Motion Capture (e.g. walking)

Neural Relational Inference for Interacting Systems, Kipf & Fetaya et al. (ICML 2018)

| —— NRI (learned dynamic)
—— NRI (learned static)
—— NRI (full graph)
0.0104 —™ NRI (skeleton)
—e— LSTM (single)
—+— LSTM (joint)

o
o
Pt
€]

0.005 1

Mean squared error (MSE)

0.000 -

0 20 40
# frames predicted into future

(a) Test MSE comparison (b) Latent graph (left step) (c) Latent graph (right step)

98

(c) Motion capture data
Credits to Thomas Kipf


https://helper.ipam.ucla.edu/publications/glws4/glws4_15546.pdf

NRI applications - causal discovery

Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data, Lowe et al. 2020

Amortized Causal Discovery Previous Approaches
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Figure 1: Amortized Causal Discovery. We propose to train a single model that infers causal relations across
samples with different underlying causal graphs but shared dynamics. This allows us to generalize across
samples and to improve our performance with additional training data. In contrast, previous approaches fit a new
model for every sample with a different underlying causal graph.
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Challenges and future work in graph neural
nets

e Problems of neighborhood aggregation / message passing
o Theoretical relation to WL isomorphism, simple graph convolutions;
tree-structured computation graphs — bounded power
o Oversmoothing (residual/gated updates help, but don't solve)
o See recent work from Max Welling e.g. Natural Graph Networks
e Scalable, stable generative models
e Learning on large, evolving data
e (Mostly) assume a graph structure is provided as input
o Neural Relational Inference is a preliminary work here, also see Pointer
Graph Networks (Velickovic et al., NeurlPS 2020)
e Multi-modal and cross-modal learning (e.g. sequence2graph)



