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Drug discovery is a time-consuming process

2Figure source:  Pharmaceutical Research and Manufacturers of America

Average time/cost for designing one drug = 10 years + $2.6B



Obviously, we can’t wait for 10 years…
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Drug discovery is a challenging search problem
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Search in the 
chemical space

A good drug (e.g., kills virus)

thosewith low predicted toxicity. The compound that satisfied all
of these criteria was the c-Jun N-terminal kinase inhibitor
SU3327 (De et al., 2009; Jang et al., 2015) (renamed halicin), a
preclinical nitrothiazole under investigation as a treatment for
diabetes. Excitingly, halicin, which is structurally most similar
to a family of nitro-containing antiparasitic compounds (Tani-
moto similarity !0.37; Figures 2G and 2H; Table S2H) (Rogers

and Hahn, 2010) and the antibiotic metronidazole (Tanimoto
similarity !0.21), displayed excellent growth inhibitory activity
against E. coli, achieving a minimum inhibitory concentration
(MIC) of 2 mg/mL (Figure 2I).
Importantly, we observed that the prediction rank of halicin

in our model (position 89) was greater than that in four of the
other five models tested (positions ranging from 273 to 1987;
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Figure 2. Initial Model Training and the Identification of Halicin
(A) Primary screening data for growth inhibition of E. coli by 2,560molecules within the FDA-approved drug library supplementedwith a natural product collection.

Shown is the mean of two biological replicates. Red are growth inhibitory molecules; blue are non-growth inhibitory molecules.

(B) ROC-AUC plot evaluating model performance after training. Dark blue is the mean of six individual trials (cyan).

(C) Rank-ordered prediction scores of Drug Repurposing Hub molecules that were not present in the training dataset.

(D) The top 99 predictions from the data shown in (C) were curated for empirical testing for growth inhibition of E. coli. Fifty-one of 99molecules were validated as

true positives based on a cut-off of OD600 <0.2. Shown is the mean of two biological replicates. Red are growth inhibitory molecules; blue are non-growth

inhibitory molecules.

(E) For all molecules shown in (D), ratios of OD600 to prediction score were calculated and these values were plotted based on prediction score for each cor-

responding molecule. These results show that a higher prediction score correlates with a greater probability of growth inhibition.

(F) The bottom 63 predictions from the data shown in (C) were curated for empirical testing for growth inhibition of E. coli. Shown is the mean of two biological

replicates. Red are growth inhibitory molecules; blue are non-growth inhibitory molecules.

(G) t-Distributed stochastic neighbor embedding (t-SNE) of all molecules from the training dataset (blue) and the Drug Repurposing Hub (red), revealing chemical

relationships between these libraries. Halicin is shown as a black and yellow circle.

(H) Tanimoto similarity between halicin (structure inset) and each molecule in the de-duplicated training dataset. The Tanimoto nearest neighbor is the anti-

protozoal drug nithiamide (score !0.37), with metronidazole being the nearest antibiotic (score !0.21).

(I) Growth inhibition of E. coli by halicin. Shown is the mean of two biological replicates. Bars denote absolute error.

See also Figure S1 and Tables S1 and S2.
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1060
Number of possible 
drug-like molecules

(Kirkpatrick, et al. 2004)

≈

Figure: Koch et al., PNAS 2005
Kirkpatrick, et al., Nature. 2004

• Experimental facilities in industry can only test  compounds/day105



Automate drug discovery with computation
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Figure source: Andrii Buvailo

Let AI find 
good drugs!



time between steps. The ultimate aim is to
concurrently propose, create, and characterize
new materials, with each component transmitt-
ing and receiving data simultaneously. This
process is called “closing the loop,” and inverse
design is a critical facet (12, 15).

Inverse design

Quantum chemical methods reveal properties
of a molecular system only after specifying the
essential parameters of the constituent atomic
nuclei and their three-dimensional (3D) coor-
dinate positions (16). Inverse design, as its name
suggests, inverts this paradigm by starting with
the desired functionality and searching for an
ideal molecular structure. Here the input is the
functionality and the output is the structure.
Functionality need not necessarily map to one
unique structure but to a distribution of prob-
able structures. Inverse design (Fig. 2) uses
optimization, sampling, and search methods
to navigate the manifold of functionality of
chemical space (17, 18).
One of the earliest efforts in inverse design

was the methodology of high-throughput virtual
screening (HTVS). HTVS has its roots in the
pharmaceutical industry for drug discovery, where
simulation is an exploratory tool for screening a
large number of molecules (19, 20). HTVS starts
with an initial library of molecules built on the
basis of researchers’ intuition, which narrows
down the pool of possible candidate molecules
to a tractable range of a thousand to a million.
Initial candidates are filtered on the basis of
focused targets such as ease of synthesis, sol-
ubility, toxicity, stability, activity, and selectivity.
Molecules are also filtered by expert opinion,
eventually considered as potential lead com-
pounds for organic synthesis. Successful motifs
and substructures are further incorporated in
future cycles to further optimize functionality.
Although HTVS might seem like an ensemble

version of the direct approach for material
design, it differs in its underlying philosophy
(4). HTVS is focused on data-driven discovery,
which incorporates automation, time-critical per-
formance, and computational funnels; promising
candidates are further processed by more ex-
pensive methodologies. A crucial component is
feedback between theory and experiment.
The HTVS methodology has been quite suc-

cessful at generating new and high-performing
materials in other domains. In organic photo-
voltaics, molecules have been screened on the
basis of frontier orbital energies and photovoltaic
conversion efficiency and orbital energies (21–24).
In organic redox flow batteries, redox potential,
solubility, and ease of synthesis (25, 26) are
prioritized. For organic light-emitting diodes,
molecules have been screened for their singlet-
triplet gap and photoluminescent emission (27).
Massive explorations of reactions for catalysis
(28) or redox potentials in biochemistry have
been undertaken (28). For inorganic materials,
the Materials Project (29) spawns many appli-
cations such as dielectric and optical materials
(30), photoanode materials for generation of

chemical fuels from sunlight (31), and battery
electrolytes (32).
Arguably, an optimization approach is pref-

erable to HTVS because it generally visits a
smaller number of configurations when ex-
ploring the manifold of functionality. An op-
timization incorporates and learns geometric
information of the functionality manifold, guided
by general trends, directions, and curvature (17).
Within discrete optimization methods, Evolu-

tion Strategies (ES) is a popular choice for global
optimization (33–35) and has been used to map
chemical space (36). ES involves a structured
search that incorporates heuristics and proce-
dures inspired by natural evolution (37). At each
iteration, parameter vectors (“genotypes”) in a
population are perturbed (“mutated”) and their
objective function value (“fitness”) evaluated.
ES has been likened to hill-climbing in high-
dimensional space, following the numerical
finite difference across parameters that aremore
successful at optimizing the fitness. With ap-
propriately designed genotypes and muta-
tion operations, ES can be quite successful at
hard optimization problems, even overcoming
state-of-the-artmachine learning approaches (38).
In other cases, inverse design is realized by

incorporating expert knowledge into the op-
timization procedure, via improved Bayesian
sampling with sequential Monte Carlo (39),
invertible system Hamiltonians (18), deriving
analytical gradients of properties with respect
to a molecular system (40), optimizing potential
energy surfaces of chemical systems (41), or dis-
covering design patterns via data-mining tech-
niques (42, 43).
Finally, another approach involves generative

models stemming from the field of machine
learning. Before delving into the details, it is
appropriate to highlight the differences between
generative and discriminative models. A dis-
criminativemodel tries to determine conditional

probabilities (p(y|x)): that is, the probability of
observing properties y (such as the bandgap
energy or solvation energy), given x (a mole-
cular representation). By contrast, a generative
model attempts to determine a joint probability
distribution p(x, y): the probability of observing
both the molecular representation and the phys-
ical property. By conditioning the probability
on a molecule (x) or a property (y), we retrieve
the notion of direct (p(y|x)) and inverse design
(p(x|y)).
As expected, deep generative models are more

challenging to create than directML approaches,
but DL algorithms and computational strategies
have advanced substantially in the last few years,
producing astonishing results for generating
natural-looking images (44), constructing high-
quality audiowaveforms containing speech (45),
generating coherent and structured text (46),
and most recently, designing molecules (47).
There are several ways of building generative
models, but for the purposes of this Review, we
will focus on threemain approaches: variational
autoencoders (VAEs) (48), reinforcement learn-
ing (RL) (49), and generative adversarial net-
works (GANs) (44).
Before describing how each approach differs,

we consider representations of molecules, which
in turn determine the types of tools available and
the types of information that can be exploited in
the models.

Representation of molecules

Tomodel molecular systems accurately, wemust
solve the Schrödinger equation (SE) for the
molecular electronic Hamiltonian, from which
we obtain properties relating to the energy, geom-
etry, and curvature of the potential energy
surface of our system. In the SE, the molecule
is represented as a set of nuclear charges and
the corresponding Cartesian coordinates of
the atomic positions in 3D space. Meanwhile,
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Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.
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time between steps. The ultimate aim is to
concurrently propose, create, and characterize
new materials, with each component transmitt-
ing and receiving data simultaneously. This
process is called “closing the loop,” and inverse
design is a critical facet (12, 15).

Inverse design

Quantum chemical methods reveal properties
of a molecular system only after specifying the
essential parameters of the constituent atomic
nuclei and their three-dimensional (3D) coor-
dinate positions (16). Inverse design, as its name
suggests, inverts this paradigm by starting with
the desired functionality and searching for an
ideal molecular structure. Here the input is the
functionality and the output is the structure.
Functionality need not necessarily map to one
unique structure but to a distribution of prob-
able structures. Inverse design (Fig. 2) uses
optimization, sampling, and search methods
to navigate the manifold of functionality of
chemical space (17, 18).
One of the earliest efforts in inverse design

was the methodology of high-throughput virtual
screening (HTVS). HTVS has its roots in the
pharmaceutical industry for drug discovery, where
simulation is an exploratory tool for screening a
large number of molecules (19, 20). HTVS starts
with an initial library of molecules built on the
basis of researchers’ intuition, which narrows
down the pool of possible candidate molecules
to a tractable range of a thousand to a million.
Initial candidates are filtered on the basis of
focused targets such as ease of synthesis, sol-
ubility, toxicity, stability, activity, and selectivity.
Molecules are also filtered by expert opinion,
eventually considered as potential lead com-
pounds for organic synthesis. Successful motifs
and substructures are further incorporated in
future cycles to further optimize functionality.
Although HTVS might seem like an ensemble

version of the direct approach for material
design, it differs in its underlying philosophy
(4). HTVS is focused on data-driven discovery,
which incorporates automation, time-critical per-
formance, and computational funnels; promising
candidates are further processed by more ex-
pensive methodologies. A crucial component is
feedback between theory and experiment.
The HTVS methodology has been quite suc-

cessful at generating new and high-performing
materials in other domains. In organic photo-
voltaics, molecules have been screened on the
basis of frontier orbital energies and photovoltaic
conversion efficiency and orbital energies (21–24).
In organic redox flow batteries, redox potential,
solubility, and ease of synthesis (25, 26) are
prioritized. For organic light-emitting diodes,
molecules have been screened for their singlet-
triplet gap and photoluminescent emission (27).
Massive explorations of reactions for catalysis
(28) or redox potentials in biochemistry have
been undertaken (28). For inorganic materials,
the Materials Project (29) spawns many appli-
cations such as dielectric and optical materials
(30), photoanode materials for generation of

chemical fuels from sunlight (31), and battery
electrolytes (32).
Arguably, an optimization approach is pref-

erable to HTVS because it generally visits a
smaller number of configurations when ex-
ploring the manifold of functionality. An op-
timization incorporates and learns geometric
information of the functionality manifold, guided
by general trends, directions, and curvature (17).
Within discrete optimization methods, Evolu-

tion Strategies (ES) is a popular choice for global
optimization (33–35) and has been used to map
chemical space (36). ES involves a structured
search that incorporates heuristics and proce-
dures inspired by natural evolution (37). At each
iteration, parameter vectors (“genotypes”) in a
population are perturbed (“mutated”) and their
objective function value (“fitness”) evaluated.
ES has been likened to hill-climbing in high-
dimensional space, following the numerical
finite difference across parameters that aremore
successful at optimizing the fitness. With ap-
propriately designed genotypes and muta-
tion operations, ES can be quite successful at
hard optimization problems, even overcoming
state-of-the-artmachine learning approaches (38).
In other cases, inverse design is realized by

incorporating expert knowledge into the op-
timization procedure, via improved Bayesian
sampling with sequential Monte Carlo (39),
invertible system Hamiltonians (18), deriving
analytical gradients of properties with respect
to a molecular system (40), optimizing potential
energy surfaces of chemical systems (41), or dis-
covering design patterns via data-mining tech-
niques (42, 43).
Finally, another approach involves generative

models stemming from the field of machine
learning. Before delving into the details, it is
appropriate to highlight the differences between
generative and discriminative models. A dis-
criminativemodel tries to determine conditional

probabilities (p(y|x)): that is, the probability of
observing properties y (such as the bandgap
energy or solvation energy), given x (a mole-
cular representation). By contrast, a generative
model attempts to determine a joint probability
distribution p(x, y): the probability of observing
both the molecular representation and the phys-
ical property. By conditioning the probability
on a molecule (x) or a property (y), we retrieve
the notion of direct (p(y|x)) and inverse design
(p(x|y)).
As expected, deep generative models are more

challenging to create than directML approaches,
but DL algorithms and computational strategies
have advanced substantially in the last few years,
producing astonishing results for generating
natural-looking images (44), constructing high-
quality audiowaveforms containing speech (45),
generating coherent and structured text (46),
and most recently, designing molecules (47).
There are several ways of building generative
models, but for the purposes of this Review, we
will focus on threemain approaches: variational
autoencoders (VAEs) (48), reinforcement learn-
ing (RL) (49), and generative adversarial net-
works (GANs) (44).
Before describing how each approach differs,

we consider representations of molecules, which
in turn determine the types of tools available and
the types of information that can be exploited in
the models.

Representation of molecules

Tomodel molecular systems accurately, wemust
solve the Schrödinger equation (SE) for the
molecular electronic Hamiltonian, from which
we obtain properties relating to the energy, geom-
etry, and curvature of the potential energy
surface of our system. In the SE, the molecule
is represented as a set of nuclear charges and
the corresponding Cartesian coordinates of
the atomic positions in 3D space. Meanwhile,
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Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.
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time between steps. The ultimate aim is to
concurrently propose, create, and characterize
new materials, with each component transmitt-
ing and receiving data simultaneously. This
process is called “closing the loop,” and inverse
design is a critical facet (12, 15).

Inverse design

Quantum chemical methods reveal properties
of a molecular system only after specifying the
essential parameters of the constituent atomic
nuclei and their three-dimensional (3D) coor-
dinate positions (16). Inverse design, as its name
suggests, inverts this paradigm by starting with
the desired functionality and searching for an
ideal molecular structure. Here the input is the
functionality and the output is the structure.
Functionality need not necessarily map to one
unique structure but to a distribution of prob-
able structures. Inverse design (Fig. 2) uses
optimization, sampling, and search methods
to navigate the manifold of functionality of
chemical space (17, 18).
One of the earliest efforts in inverse design

was the methodology of high-throughput virtual
screening (HTVS). HTVS has its roots in the
pharmaceutical industry for drug discovery, where
simulation is an exploratory tool for screening a
large number of molecules (19, 20). HTVS starts
with an initial library of molecules built on the
basis of researchers’ intuition, which narrows
down the pool of possible candidate molecules
to a tractable range of a thousand to a million.
Initial candidates are filtered on the basis of
focused targets such as ease of synthesis, sol-
ubility, toxicity, stability, activity, and selectivity.
Molecules are also filtered by expert opinion,
eventually considered as potential lead com-
pounds for organic synthesis. Successful motifs
and substructures are further incorporated in
future cycles to further optimize functionality.
Although HTVS might seem like an ensemble

version of the direct approach for material
design, it differs in its underlying philosophy
(4). HTVS is focused on data-driven discovery,
which incorporates automation, time-critical per-
formance, and computational funnels; promising
candidates are further processed by more ex-
pensive methodologies. A crucial component is
feedback between theory and experiment.
The HTVS methodology has been quite suc-

cessful at generating new and high-performing
materials in other domains. In organic photo-
voltaics, molecules have been screened on the
basis of frontier orbital energies and photovoltaic
conversion efficiency and orbital energies (21–24).
In organic redox flow batteries, redox potential,
solubility, and ease of synthesis (25, 26) are
prioritized. For organic light-emitting diodes,
molecules have been screened for their singlet-
triplet gap and photoluminescent emission (27).
Massive explorations of reactions for catalysis
(28) or redox potentials in biochemistry have
been undertaken (28). For inorganic materials,
the Materials Project (29) spawns many appli-
cations such as dielectric and optical materials
(30), photoanode materials for generation of

chemical fuels from sunlight (31), and battery
electrolytes (32).
Arguably, an optimization approach is pref-

erable to HTVS because it generally visits a
smaller number of configurations when ex-
ploring the manifold of functionality. An op-
timization incorporates and learns geometric
information of the functionality manifold, guided
by general trends, directions, and curvature (17).
Within discrete optimization methods, Evolu-

tion Strategies (ES) is a popular choice for global
optimization (33–35) and has been used to map
chemical space (36). ES involves a structured
search that incorporates heuristics and proce-
dures inspired by natural evolution (37). At each
iteration, parameter vectors (“genotypes”) in a
population are perturbed (“mutated”) and their
objective function value (“fitness”) evaluated.
ES has been likened to hill-climbing in high-
dimensional space, following the numerical
finite difference across parameters that aremore
successful at optimizing the fitness. With ap-
propriately designed genotypes and muta-
tion operations, ES can be quite successful at
hard optimization problems, even overcoming
state-of-the-artmachine learning approaches (38).
In other cases, inverse design is realized by

incorporating expert knowledge into the op-
timization procedure, via improved Bayesian
sampling with sequential Monte Carlo (39),
invertible system Hamiltonians (18), deriving
analytical gradients of properties with respect
to a molecular system (40), optimizing potential
energy surfaces of chemical systems (41), or dis-
covering design patterns via data-mining tech-
niques (42, 43).
Finally, another approach involves generative

models stemming from the field of machine
learning. Before delving into the details, it is
appropriate to highlight the differences between
generative and discriminative models. A dis-
criminativemodel tries to determine conditional

probabilities (p(y|x)): that is, the probability of
observing properties y (such as the bandgap
energy or solvation energy), given x (a mole-
cular representation). By contrast, a generative
model attempts to determine a joint probability
distribution p(x, y): the probability of observing
both the molecular representation and the phys-
ical property. By conditioning the probability
on a molecule (x) or a property (y), we retrieve
the notion of direct (p(y|x)) and inverse design
(p(x|y)).
As expected, deep generative models are more

challenging to create than directML approaches,
but DL algorithms and computational strategies
have advanced substantially in the last few years,
producing astonishing results for generating
natural-looking images (44), constructing high-
quality audiowaveforms containing speech (45),
generating coherent and structured text (46),
and most recently, designing molecules (47).
There are several ways of building generative
models, but for the purposes of this Review, we
will focus on threemain approaches: variational
autoencoders (VAEs) (48), reinforcement learn-
ing (RL) (49), and generative adversarial net-
works (GANs) (44).
Before describing how each approach differs,

we consider representations of molecules, which
in turn determine the types of tools available and
the types of information that can be exploited in
the models.

Representation of molecules

Tomodel molecular systems accurately, wemust
solve the Schrödinger equation (SE) for the
molecular electronic Hamiltonian, from which
we obtain properties relating to the energy, geom-
etry, and curvature of the potential energy
surface of our system. In the SE, the molecule
is represented as a set of nuclear charges and
the corresponding Cartesian coordinates of
the atomic positions in 3D space. Meanwhile,
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Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.
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Computational drug discovery: three schemes
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time between steps. The ultimate aim is to
concurrently propose, create, and characterize
new materials, with each component transmitt-
ing and receiving data simultaneously. This
process is called “closing the loop,” and inverse
design is a critical facet (12, 15).

Inverse design

Quantum chemical methods reveal properties
of a molecular system only after specifying the
essential parameters of the constituent atomic
nuclei and their three-dimensional (3D) coor-
dinate positions (16). Inverse design, as its name
suggests, inverts this paradigm by starting with
the desired functionality and searching for an
ideal molecular structure. Here the input is the
functionality and the output is the structure.
Functionality need not necessarily map to one
unique structure but to a distribution of prob-
able structures. Inverse design (Fig. 2) uses
optimization, sampling, and search methods
to navigate the manifold of functionality of
chemical space (17, 18).
One of the earliest efforts in inverse design

was the methodology of high-throughput virtual
screening (HTVS). HTVS has its roots in the
pharmaceutical industry for drug discovery, where
simulation is an exploratory tool for screening a
large number of molecules (19, 20). HTVS starts
with an initial library of molecules built on the
basis of researchers’ intuition, which narrows
down the pool of possible candidate molecules
to a tractable range of a thousand to a million.
Initial candidates are filtered on the basis of
focused targets such as ease of synthesis, sol-
ubility, toxicity, stability, activity, and selectivity.
Molecules are also filtered by expert opinion,
eventually considered as potential lead com-
pounds for organic synthesis. Successful motifs
and substructures are further incorporated in
future cycles to further optimize functionality.
Although HTVS might seem like an ensemble

version of the direct approach for material
design, it differs in its underlying philosophy
(4). HTVS is focused on data-driven discovery,
which incorporates automation, time-critical per-
formance, and computational funnels; promising
candidates are further processed by more ex-
pensive methodologies. A crucial component is
feedback between theory and experiment.
The HTVS methodology has been quite suc-

cessful at generating new and high-performing
materials in other domains. In organic photo-
voltaics, molecules have been screened on the
basis of frontier orbital energies and photovoltaic
conversion efficiency and orbital energies (21–24).
In organic redox flow batteries, redox potential,
solubility, and ease of synthesis (25, 26) are
prioritized. For organic light-emitting diodes,
molecules have been screened for their singlet-
triplet gap and photoluminescent emission (27).
Massive explorations of reactions for catalysis
(28) or redox potentials in biochemistry have
been undertaken (28). For inorganic materials,
the Materials Project (29) spawns many appli-
cations such as dielectric and optical materials
(30), photoanode materials for generation of

chemical fuels from sunlight (31), and battery
electrolytes (32).
Arguably, an optimization approach is pref-

erable to HTVS because it generally visits a
smaller number of configurations when ex-
ploring the manifold of functionality. An op-
timization incorporates and learns geometric
information of the functionality manifold, guided
by general trends, directions, and curvature (17).
Within discrete optimization methods, Evolu-

tion Strategies (ES) is a popular choice for global
optimization (33–35) and has been used to map
chemical space (36). ES involves a structured
search that incorporates heuristics and proce-
dures inspired by natural evolution (37). At each
iteration, parameter vectors (“genotypes”) in a
population are perturbed (“mutated”) and their
objective function value (“fitness”) evaluated.
ES has been likened to hill-climbing in high-
dimensional space, following the numerical
finite difference across parameters that aremore
successful at optimizing the fitness. With ap-
propriately designed genotypes and muta-
tion operations, ES can be quite successful at
hard optimization problems, even overcoming
state-of-the-artmachine learning approaches (38).
In other cases, inverse design is realized by

incorporating expert knowledge into the op-
timization procedure, via improved Bayesian
sampling with sequential Monte Carlo (39),
invertible system Hamiltonians (18), deriving
analytical gradients of properties with respect
to a molecular system (40), optimizing potential
energy surfaces of chemical systems (41), or dis-
covering design patterns via data-mining tech-
niques (42, 43).
Finally, another approach involves generative

models stemming from the field of machine
learning. Before delving into the details, it is
appropriate to highlight the differences between
generative and discriminative models. A dis-
criminativemodel tries to determine conditional

probabilities (p(y|x)): that is, the probability of
observing properties y (such as the bandgap
energy or solvation energy), given x (a mole-
cular representation). By contrast, a generative
model attempts to determine a joint probability
distribution p(x, y): the probability of observing
both the molecular representation and the phys-
ical property. By conditioning the probability
on a molecule (x) or a property (y), we retrieve
the notion of direct (p(y|x)) and inverse design
(p(x|y)).
As expected, deep generative models are more

challenging to create than directML approaches,
but DL algorithms and computational strategies
have advanced substantially in the last few years,
producing astonishing results for generating
natural-looking images (44), constructing high-
quality audiowaveforms containing speech (45),
generating coherent and structured text (46),
and most recently, designing molecules (47).
There are several ways of building generative
models, but for the purposes of this Review, we
will focus on threemain approaches: variational
autoencoders (VAEs) (48), reinforcement learn-
ing (RL) (49), and generative adversarial net-
works (GANs) (44).
Before describing how each approach differs,

we consider representations of molecules, which
in turn determine the types of tools available and
the types of information that can be exploited in
the models.

Representation of molecules

Tomodel molecular systems accurately, wemust
solve the Schrödinger equation (SE) for the
molecular electronic Hamiltonian, from which
we obtain properties relating to the energy, geom-
etry, and curvature of the potential energy
surface of our system. In the SE, the molecule
is represented as a set of nuclear charges and
the corresponding Cartesian coordinates of
the atomic positions in 3D space. Meanwhile,
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Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.
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time between steps. The ultimate aim is to
concurrently propose, create, and characterize
new materials, with each component transmitt-
ing and receiving data simultaneously. This
process is called “closing the loop,” and inverse
design is a critical facet (12, 15).

Inverse design

Quantum chemical methods reveal properties
of a molecular system only after specifying the
essential parameters of the constituent atomic
nuclei and their three-dimensional (3D) coor-
dinate positions (16). Inverse design, as its name
suggests, inverts this paradigm by starting with
the desired functionality and searching for an
ideal molecular structure. Here the input is the
functionality and the output is the structure.
Functionality need not necessarily map to one
unique structure but to a distribution of prob-
able structures. Inverse design (Fig. 2) uses
optimization, sampling, and search methods
to navigate the manifold of functionality of
chemical space (17, 18).
One of the earliest efforts in inverse design

was the methodology of high-throughput virtual
screening (HTVS). HTVS has its roots in the
pharmaceutical industry for drug discovery, where
simulation is an exploratory tool for screening a
large number of molecules (19, 20). HTVS starts
with an initial library of molecules built on the
basis of researchers’ intuition, which narrows
down the pool of possible candidate molecules
to a tractable range of a thousand to a million.
Initial candidates are filtered on the basis of
focused targets such as ease of synthesis, sol-
ubility, toxicity, stability, activity, and selectivity.
Molecules are also filtered by expert opinion,
eventually considered as potential lead com-
pounds for organic synthesis. Successful motifs
and substructures are further incorporated in
future cycles to further optimize functionality.
Although HTVS might seem like an ensemble

version of the direct approach for material
design, it differs in its underlying philosophy
(4). HTVS is focused on data-driven discovery,
which incorporates automation, time-critical per-
formance, and computational funnels; promising
candidates are further processed by more ex-
pensive methodologies. A crucial component is
feedback between theory and experiment.
The HTVS methodology has been quite suc-

cessful at generating new and high-performing
materials in other domains. In organic photo-
voltaics, molecules have been screened on the
basis of frontier orbital energies and photovoltaic
conversion efficiency and orbital energies (21–24).
In organic redox flow batteries, redox potential,
solubility, and ease of synthesis (25, 26) are
prioritized. For organic light-emitting diodes,
molecules have been screened for their singlet-
triplet gap and photoluminescent emission (27).
Massive explorations of reactions for catalysis
(28) or redox potentials in biochemistry have
been undertaken (28). For inorganic materials,
the Materials Project (29) spawns many appli-
cations such as dielectric and optical materials
(30), photoanode materials for generation of

chemical fuels from sunlight (31), and battery
electrolytes (32).
Arguably, an optimization approach is pref-

erable to HTVS because it generally visits a
smaller number of configurations when ex-
ploring the manifold of functionality. An op-
timization incorporates and learns geometric
information of the functionality manifold, guided
by general trends, directions, and curvature (17).
Within discrete optimization methods, Evolu-

tion Strategies (ES) is a popular choice for global
optimization (33–35) and has been used to map
chemical space (36). ES involves a structured
search that incorporates heuristics and proce-
dures inspired by natural evolution (37). At each
iteration, parameter vectors (“genotypes”) in a
population are perturbed (“mutated”) and their
objective function value (“fitness”) evaluated.
ES has been likened to hill-climbing in high-
dimensional space, following the numerical
finite difference across parameters that aremore
successful at optimizing the fitness. With ap-
propriately designed genotypes and muta-
tion operations, ES can be quite successful at
hard optimization problems, even overcoming
state-of-the-artmachine learning approaches (38).
In other cases, inverse design is realized by

incorporating expert knowledge into the op-
timization procedure, via improved Bayesian
sampling with sequential Monte Carlo (39),
invertible system Hamiltonians (18), deriving
analytical gradients of properties with respect
to a molecular system (40), optimizing potential
energy surfaces of chemical systems (41), or dis-
covering design patterns via data-mining tech-
niques (42, 43).
Finally, another approach involves generative

models stemming from the field of machine
learning. Before delving into the details, it is
appropriate to highlight the differences between
generative and discriminative models. A dis-
criminativemodel tries to determine conditional

probabilities (p(y|x)): that is, the probability of
observing properties y (such as the bandgap
energy or solvation energy), given x (a mole-
cular representation). By contrast, a generative
model attempts to determine a joint probability
distribution p(x, y): the probability of observing
both the molecular representation and the phys-
ical property. By conditioning the probability
on a molecule (x) or a property (y), we retrieve
the notion of direct (p(y|x)) and inverse design
(p(x|y)).
As expected, deep generative models are more

challenging to create than directML approaches,
but DL algorithms and computational strategies
have advanced substantially in the last few years,
producing astonishing results for generating
natural-looking images (44), constructing high-
quality audiowaveforms containing speech (45),
generating coherent and structured text (46),
and most recently, designing molecules (47).
There are several ways of building generative
models, but for the purposes of this Review, we
will focus on threemain approaches: variational
autoencoders (VAEs) (48), reinforcement learn-
ing (RL) (49), and generative adversarial net-
works (GANs) (44).
Before describing how each approach differs,

we consider representations of molecules, which
in turn determine the types of tools available and
the types of information that can be exploited in
the models.

Representation of molecules

Tomodel molecular systems accurately, wemust
solve the Schrödinger equation (SE) for the
molecular electronic Hamiltonian, from which
we obtain properties relating to the energy, geom-
etry, and curvature of the potential energy
surface of our system. In the SE, the molecule
is represented as a set of nuclear charges and
the corresponding Cartesian coordinates of
the atomic positions in 3D space. Meanwhile,
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Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.
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time between steps. The ultimate aim is to
concurrently propose, create, and characterize
new materials, with each component transmitt-
ing and receiving data simultaneously. This
process is called “closing the loop,” and inverse
design is a critical facet (12, 15).

Inverse design

Quantum chemical methods reveal properties
of a molecular system only after specifying the
essential parameters of the constituent atomic
nuclei and their three-dimensional (3D) coor-
dinate positions (16). Inverse design, as its name
suggests, inverts this paradigm by starting with
the desired functionality and searching for an
ideal molecular structure. Here the input is the
functionality and the output is the structure.
Functionality need not necessarily map to one
unique structure but to a distribution of prob-
able structures. Inverse design (Fig. 2) uses
optimization, sampling, and search methods
to navigate the manifold of functionality of
chemical space (17, 18).
One of the earliest efforts in inverse design

was the methodology of high-throughput virtual
screening (HTVS). HTVS has its roots in the
pharmaceutical industry for drug discovery, where
simulation is an exploratory tool for screening a
large number of molecules (19, 20). HTVS starts
with an initial library of molecules built on the
basis of researchers’ intuition, which narrows
down the pool of possible candidate molecules
to a tractable range of a thousand to a million.
Initial candidates are filtered on the basis of
focused targets such as ease of synthesis, sol-
ubility, toxicity, stability, activity, and selectivity.
Molecules are also filtered by expert opinion,
eventually considered as potential lead com-
pounds for organic synthesis. Successful motifs
and substructures are further incorporated in
future cycles to further optimize functionality.
Although HTVS might seem like an ensemble

version of the direct approach for material
design, it differs in its underlying philosophy
(4). HTVS is focused on data-driven discovery,
which incorporates automation, time-critical per-
formance, and computational funnels; promising
candidates are further processed by more ex-
pensive methodologies. A crucial component is
feedback between theory and experiment.
The HTVS methodology has been quite suc-

cessful at generating new and high-performing
materials in other domains. In organic photo-
voltaics, molecules have been screened on the
basis of frontier orbital energies and photovoltaic
conversion efficiency and orbital energies (21–24).
In organic redox flow batteries, redox potential,
solubility, and ease of synthesis (25, 26) are
prioritized. For organic light-emitting diodes,
molecules have been screened for their singlet-
triplet gap and photoluminescent emission (27).
Massive explorations of reactions for catalysis
(28) or redox potentials in biochemistry have
been undertaken (28). For inorganic materials,
the Materials Project (29) spawns many appli-
cations such as dielectric and optical materials
(30), photoanode materials for generation of

chemical fuels from sunlight (31), and battery
electrolytes (32).
Arguably, an optimization approach is pref-

erable to HTVS because it generally visits a
smaller number of configurations when ex-
ploring the manifold of functionality. An op-
timization incorporates and learns geometric
information of the functionality manifold, guided
by general trends, directions, and curvature (17).
Within discrete optimization methods, Evolu-

tion Strategies (ES) is a popular choice for global
optimization (33–35) and has been used to map
chemical space (36). ES involves a structured
search that incorporates heuristics and proce-
dures inspired by natural evolution (37). At each
iteration, parameter vectors (“genotypes”) in a
population are perturbed (“mutated”) and their
objective function value (“fitness”) evaluated.
ES has been likened to hill-climbing in high-
dimensional space, following the numerical
finite difference across parameters that aremore
successful at optimizing the fitness. With ap-
propriately designed genotypes and muta-
tion operations, ES can be quite successful at
hard optimization problems, even overcoming
state-of-the-artmachine learning approaches (38).
In other cases, inverse design is realized by

incorporating expert knowledge into the op-
timization procedure, via improved Bayesian
sampling with sequential Monte Carlo (39),
invertible system Hamiltonians (18), deriving
analytical gradients of properties with respect
to a molecular system (40), optimizing potential
energy surfaces of chemical systems (41), or dis-
covering design patterns via data-mining tech-
niques (42, 43).
Finally, another approach involves generative

models stemming from the field of machine
learning. Before delving into the details, it is
appropriate to highlight the differences between
generative and discriminative models. A dis-
criminativemodel tries to determine conditional

probabilities (p(y|x)): that is, the probability of
observing properties y (such as the bandgap
energy or solvation energy), given x (a mole-
cular representation). By contrast, a generative
model attempts to determine a joint probability
distribution p(x, y): the probability of observing
both the molecular representation and the phys-
ical property. By conditioning the probability
on a molecule (x) or a property (y), we retrieve
the notion of direct (p(y|x)) and inverse design
(p(x|y)).
As expected, deep generative models are more

challenging to create than directML approaches,
but DL algorithms and computational strategies
have advanced substantially in the last few years,
producing astonishing results for generating
natural-looking images (44), constructing high-
quality audiowaveforms containing speech (45),
generating coherent and structured text (46),
and most recently, designing molecules (47).
There are several ways of building generative
models, but for the purposes of this Review, we
will focus on threemain approaches: variational
autoencoders (VAEs) (48), reinforcement learn-
ing (RL) (49), and generative adversarial net-
works (GANs) (44).
Before describing how each approach differs,

we consider representations of molecules, which
in turn determine the types of tools available and
the types of information that can be exploited in
the models.

Representation of molecules

Tomodel molecular systems accurately, wemust
solve the Schrödinger equation (SE) for the
molecular electronic Hamiltonian, from which
we obtain properties relating to the energy, geom-
etry, and curvature of the potential energy
surface of our system. In the SE, the molecule
is represented as a set of nuclear charges and
the corresponding Cartesian coordinates of
the atomic positions in 3D space. Meanwhile,
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Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.
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time between steps. The ultimate aim is to
concurrently propose, create, and characterize
new materials, with each component transmitt-
ing and receiving data simultaneously. This
process is called “closing the loop,” and inverse
design is a critical facet (12, 15).

Inverse design

Quantum chemical methods reveal properties
of a molecular system only after specifying the
essential parameters of the constituent atomic
nuclei and their three-dimensional (3D) coor-
dinate positions (16). Inverse design, as its name
suggests, inverts this paradigm by starting with
the desired functionality and searching for an
ideal molecular structure. Here the input is the
functionality and the output is the structure.
Functionality need not necessarily map to one
unique structure but to a distribution of prob-
able structures. Inverse design (Fig. 2) uses
optimization, sampling, and search methods
to navigate the manifold of functionality of
chemical space (17, 18).
One of the earliest efforts in inverse design

was the methodology of high-throughput virtual
screening (HTVS). HTVS has its roots in the
pharmaceutical industry for drug discovery, where
simulation is an exploratory tool for screening a
large number of molecules (19, 20). HTVS starts
with an initial library of molecules built on the
basis of researchers’ intuition, which narrows
down the pool of possible candidate molecules
to a tractable range of a thousand to a million.
Initial candidates are filtered on the basis of
focused targets such as ease of synthesis, sol-
ubility, toxicity, stability, activity, and selectivity.
Molecules are also filtered by expert opinion,
eventually considered as potential lead com-
pounds for organic synthesis. Successful motifs
and substructures are further incorporated in
future cycles to further optimize functionality.
Although HTVS might seem like an ensemble

version of the direct approach for material
design, it differs in its underlying philosophy
(4). HTVS is focused on data-driven discovery,
which incorporates automation, time-critical per-
formance, and computational funnels; promising
candidates are further processed by more ex-
pensive methodologies. A crucial component is
feedback between theory and experiment.
The HTVS methodology has been quite suc-

cessful at generating new and high-performing
materials in other domains. In organic photo-
voltaics, molecules have been screened on the
basis of frontier orbital energies and photovoltaic
conversion efficiency and orbital energies (21–24).
In organic redox flow batteries, redox potential,
solubility, and ease of synthesis (25, 26) are
prioritized. For organic light-emitting diodes,
molecules have been screened for their singlet-
triplet gap and photoluminescent emission (27).
Massive explorations of reactions for catalysis
(28) or redox potentials in biochemistry have
been undertaken (28). For inorganic materials,
the Materials Project (29) spawns many appli-
cations such as dielectric and optical materials
(30), photoanode materials for generation of

chemical fuels from sunlight (31), and battery
electrolytes (32).
Arguably, an optimization approach is pref-

erable to HTVS because it generally visits a
smaller number of configurations when ex-
ploring the manifold of functionality. An op-
timization incorporates and learns geometric
information of the functionality manifold, guided
by general trends, directions, and curvature (17).
Within discrete optimization methods, Evolu-

tion Strategies (ES) is a popular choice for global
optimization (33–35) and has been used to map
chemical space (36). ES involves a structured
search that incorporates heuristics and proce-
dures inspired by natural evolution (37). At each
iteration, parameter vectors (“genotypes”) in a
population are perturbed (“mutated”) and their
objective function value (“fitness”) evaluated.
ES has been likened to hill-climbing in high-
dimensional space, following the numerical
finite difference across parameters that aremore
successful at optimizing the fitness. With ap-
propriately designed genotypes and muta-
tion operations, ES can be quite successful at
hard optimization problems, even overcoming
state-of-the-artmachine learning approaches (38).
In other cases, inverse design is realized by

incorporating expert knowledge into the op-
timization procedure, via improved Bayesian
sampling with sequential Monte Carlo (39),
invertible system Hamiltonians (18), deriving
analytical gradients of properties with respect
to a molecular system (40), optimizing potential
energy surfaces of chemical systems (41), or dis-
covering design patterns via data-mining tech-
niques (42, 43).
Finally, another approach involves generative

models stemming from the field of machine
learning. Before delving into the details, it is
appropriate to highlight the differences between
generative and discriminative models. A dis-
criminativemodel tries to determine conditional

probabilities (p(y|x)): that is, the probability of
observing properties y (such as the bandgap
energy or solvation energy), given x (a mole-
cular representation). By contrast, a generative
model attempts to determine a joint probability
distribution p(x, y): the probability of observing
both the molecular representation and the phys-
ical property. By conditioning the probability
on a molecule (x) or a property (y), we retrieve
the notion of direct (p(y|x)) and inverse design
(p(x|y)).
As expected, deep generative models are more

challenging to create than directML approaches,
but DL algorithms and computational strategies
have advanced substantially in the last few years,
producing astonishing results for generating
natural-looking images (44), constructing high-
quality audiowaveforms containing speech (45),
generating coherent and structured text (46),
and most recently, designing molecules (47).
There are several ways of building generative
models, but for the purposes of this Review, we
will focus on threemain approaches: variational
autoencoders (VAEs) (48), reinforcement learn-
ing (RL) (49), and generative adversarial net-
works (GANs) (44).
Before describing how each approach differs,

we consider representations of molecules, which
in turn determine the types of tools available and
the types of information that can be exploited in
the models.

Representation of molecules

Tomodel molecular systems accurately, wemust
solve the Schrödinger equation (SE) for the
molecular electronic Hamiltonian, from which
we obtain properties relating to the energy, geom-
etry, and curvature of the potential energy
surface of our system. In the SE, the molecule
is represented as a set of nuclear charges and
the corresponding Cartesian coordinates of
the atomic positions in 3D space. Meanwhile,
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Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.
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time between steps. The ultimate aim is to
concurrently propose, create, and characterize
new materials, with each component transmitt-
ing and receiving data simultaneously. This
process is called “closing the loop,” and inverse
design is a critical facet (12, 15).

Inverse design

Quantum chemical methods reveal properties
of a molecular system only after specifying the
essential parameters of the constituent atomic
nuclei and their three-dimensional (3D) coor-
dinate positions (16). Inverse design, as its name
suggests, inverts this paradigm by starting with
the desired functionality and searching for an
ideal molecular structure. Here the input is the
functionality and the output is the structure.
Functionality need not necessarily map to one
unique structure but to a distribution of prob-
able structures. Inverse design (Fig. 2) uses
optimization, sampling, and search methods
to navigate the manifold of functionality of
chemical space (17, 18).
One of the earliest efforts in inverse design

was the methodology of high-throughput virtual
screening (HTVS). HTVS has its roots in the
pharmaceutical industry for drug discovery, where
simulation is an exploratory tool for screening a
large number of molecules (19, 20). HTVS starts
with an initial library of molecules built on the
basis of researchers’ intuition, which narrows
down the pool of possible candidate molecules
to a tractable range of a thousand to a million.
Initial candidates are filtered on the basis of
focused targets such as ease of synthesis, sol-
ubility, toxicity, stability, activity, and selectivity.
Molecules are also filtered by expert opinion,
eventually considered as potential lead com-
pounds for organic synthesis. Successful motifs
and substructures are further incorporated in
future cycles to further optimize functionality.
Although HTVS might seem like an ensemble

version of the direct approach for material
design, it differs in its underlying philosophy
(4). HTVS is focused on data-driven discovery,
which incorporates automation, time-critical per-
formance, and computational funnels; promising
candidates are further processed by more ex-
pensive methodologies. A crucial component is
feedback between theory and experiment.
The HTVS methodology has been quite suc-

cessful at generating new and high-performing
materials in other domains. In organic photo-
voltaics, molecules have been screened on the
basis of frontier orbital energies and photovoltaic
conversion efficiency and orbital energies (21–24).
In organic redox flow batteries, redox potential,
solubility, and ease of synthesis (25, 26) are
prioritized. For organic light-emitting diodes,
molecules have been screened for their singlet-
triplet gap and photoluminescent emission (27).
Massive explorations of reactions for catalysis
(28) or redox potentials in biochemistry have
been undertaken (28). For inorganic materials,
the Materials Project (29) spawns many appli-
cations such as dielectric and optical materials
(30), photoanode materials for generation of

chemical fuels from sunlight (31), and battery
electrolytes (32).
Arguably, an optimization approach is pref-

erable to HTVS because it generally visits a
smaller number of configurations when ex-
ploring the manifold of functionality. An op-
timization incorporates and learns geometric
information of the functionality manifold, guided
by general trends, directions, and curvature (17).
Within discrete optimization methods, Evolu-

tion Strategies (ES) is a popular choice for global
optimization (33–35) and has been used to map
chemical space (36). ES involves a structured
search that incorporates heuristics and proce-
dures inspired by natural evolution (37). At each
iteration, parameter vectors (“genotypes”) in a
population are perturbed (“mutated”) and their
objective function value (“fitness”) evaluated.
ES has been likened to hill-climbing in high-
dimensional space, following the numerical
finite difference across parameters that aremore
successful at optimizing the fitness. With ap-
propriately designed genotypes and muta-
tion operations, ES can be quite successful at
hard optimization problems, even overcoming
state-of-the-artmachine learning approaches (38).
In other cases, inverse design is realized by

incorporating expert knowledge into the op-
timization procedure, via improved Bayesian
sampling with sequential Monte Carlo (39),
invertible system Hamiltonians (18), deriving
analytical gradients of properties with respect
to a molecular system (40), optimizing potential
energy surfaces of chemical systems (41), or dis-
covering design patterns via data-mining tech-
niques (42, 43).
Finally, another approach involves generative

models stemming from the field of machine
learning. Before delving into the details, it is
appropriate to highlight the differences between
generative and discriminative models. A dis-
criminativemodel tries to determine conditional

probabilities (p(y|x)): that is, the probability of
observing properties y (such as the bandgap
energy or solvation energy), given x (a mole-
cular representation). By contrast, a generative
model attempts to determine a joint probability
distribution p(x, y): the probability of observing
both the molecular representation and the phys-
ical property. By conditioning the probability
on a molecule (x) or a property (y), we retrieve
the notion of direct (p(y|x)) and inverse design
(p(x|y)).
As expected, deep generative models are more

challenging to create than directML approaches,
but DL algorithms and computational strategies
have advanced substantially in the last few years,
producing astonishing results for generating
natural-looking images (44), constructing high-
quality audiowaveforms containing speech (45),
generating coherent and structured text (46),
and most recently, designing molecules (47).
There are several ways of building generative
models, but for the purposes of this Review, we
will focus on threemain approaches: variational
autoencoders (VAEs) (48), reinforcement learn-
ing (RL) (49), and generative adversarial net-
works (GANs) (44).
Before describing how each approach differs,

we consider representations of molecules, which
in turn determine the types of tools available and
the types of information that can be exploited in
the models.

Representation of molecules

Tomodel molecular systems accurately, wemust
solve the Schrödinger equation (SE) for the
molecular electronic Hamiltonian, from which
we obtain properties relating to the energy, geom-
etry, and curvature of the potential energy
surface of our system. In the SE, the molecule
is represented as a set of nuclear charges and
the corresponding Cartesian coordinates of
the atomic positions in 3D space. Meanwhile,
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Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.
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time between steps. The ultimate aim is to
concurrently propose, create, and characterize
new materials, with each component transmitt-
ing and receiving data simultaneously. This
process is called “closing the loop,” and inverse
design is a critical facet (12, 15).

Inverse design

Quantum chemical methods reveal properties
of a molecular system only after specifying the
essential parameters of the constituent atomic
nuclei and their three-dimensional (3D) coor-
dinate positions (16). Inverse design, as its name
suggests, inverts this paradigm by starting with
the desired functionality and searching for an
ideal molecular structure. Here the input is the
functionality and the output is the structure.
Functionality need not necessarily map to one
unique structure but to a distribution of prob-
able structures. Inverse design (Fig. 2) uses
optimization, sampling, and search methods
to navigate the manifold of functionality of
chemical space (17, 18).
One of the earliest efforts in inverse design

was the methodology of high-throughput virtual
screening (HTVS). HTVS has its roots in the
pharmaceutical industry for drug discovery, where
simulation is an exploratory tool for screening a
large number of molecules (19, 20). HTVS starts
with an initial library of molecules built on the
basis of researchers’ intuition, which narrows
down the pool of possible candidate molecules
to a tractable range of a thousand to a million.
Initial candidates are filtered on the basis of
focused targets such as ease of synthesis, sol-
ubility, toxicity, stability, activity, and selectivity.
Molecules are also filtered by expert opinion,
eventually considered as potential lead com-
pounds for organic synthesis. Successful motifs
and substructures are further incorporated in
future cycles to further optimize functionality.
Although HTVS might seem like an ensemble

version of the direct approach for material
design, it differs in its underlying philosophy
(4). HTVS is focused on data-driven discovery,
which incorporates automation, time-critical per-
formance, and computational funnels; promising
candidates are further processed by more ex-
pensive methodologies. A crucial component is
feedback between theory and experiment.
The HTVS methodology has been quite suc-

cessful at generating new and high-performing
materials in other domains. In organic photo-
voltaics, molecules have been screened on the
basis of frontier orbital energies and photovoltaic
conversion efficiency and orbital energies (21–24).
In organic redox flow batteries, redox potential,
solubility, and ease of synthesis (25, 26) are
prioritized. For organic light-emitting diodes,
molecules have been screened for their singlet-
triplet gap and photoluminescent emission (27).
Massive explorations of reactions for catalysis
(28) or redox potentials in biochemistry have
been undertaken (28). For inorganic materials,
the Materials Project (29) spawns many appli-
cations such as dielectric and optical materials
(30), photoanode materials for generation of

chemical fuels from sunlight (31), and battery
electrolytes (32).
Arguably, an optimization approach is pref-

erable to HTVS because it generally visits a
smaller number of configurations when ex-
ploring the manifold of functionality. An op-
timization incorporates and learns geometric
information of the functionality manifold, guided
by general trends, directions, and curvature (17).
Within discrete optimization methods, Evolu-

tion Strategies (ES) is a popular choice for global
optimization (33–35) and has been used to map
chemical space (36). ES involves a structured
search that incorporates heuristics and proce-
dures inspired by natural evolution (37). At each
iteration, parameter vectors (“genotypes”) in a
population are perturbed (“mutated”) and their
objective function value (“fitness”) evaluated.
ES has been likened to hill-climbing in high-
dimensional space, following the numerical
finite difference across parameters that aremore
successful at optimizing the fitness. With ap-
propriately designed genotypes and muta-
tion operations, ES can be quite successful at
hard optimization problems, even overcoming
state-of-the-artmachine learning approaches (38).
In other cases, inverse design is realized by

incorporating expert knowledge into the op-
timization procedure, via improved Bayesian
sampling with sequential Monte Carlo (39),
invertible system Hamiltonians (18), deriving
analytical gradients of properties with respect
to a molecular system (40), optimizing potential
energy surfaces of chemical systems (41), or dis-
covering design patterns via data-mining tech-
niques (42, 43).
Finally, another approach involves generative

models stemming from the field of machine
learning. Before delving into the details, it is
appropriate to highlight the differences between
generative and discriminative models. A dis-
criminativemodel tries to determine conditional

probabilities (p(y|x)): that is, the probability of
observing properties y (such as the bandgap
energy or solvation energy), given x (a mole-
cular representation). By contrast, a generative
model attempts to determine a joint probability
distribution p(x, y): the probability of observing
both the molecular representation and the phys-
ical property. By conditioning the probability
on a molecule (x) or a property (y), we retrieve
the notion of direct (p(y|x)) and inverse design
(p(x|y)).
As expected, deep generative models are more

challenging to create than directML approaches,
but DL algorithms and computational strategies
have advanced substantially in the last few years,
producing astonishing results for generating
natural-looking images (44), constructing high-
quality audiowaveforms containing speech (45),
generating coherent and structured text (46),
and most recently, designing molecules (47).
There are several ways of building generative
models, but for the purposes of this Review, we
will focus on threemain approaches: variational
autoencoders (VAEs) (48), reinforcement learn-
ing (RL) (49), and generative adversarial net-
works (GANs) (44).
Before describing how each approach differs,

we consider representations of molecules, which
in turn determine the types of tools available and
the types of information that can be exploited in
the models.

Representation of molecules

Tomodel molecular systems accurately, wemust
solve the Schrödinger equation (SE) for the
molecular electronic Hamiltonian, from which
we obtain properties relating to the energy, geom-
etry, and curvature of the potential energy
surface of our system. In the SE, the molecule
is represented as a set of nuclear charges and
the corresponding Cartesian coordinates of
the atomic positions in 3D space. Meanwhile,

Sanchez-Lengeling et al., Science 361, 360–365 (2018) 27 July 2018 2 of 6

Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.
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time between steps. The ultimate aim is to
concurrently propose, create, and characterize
new materials, with each component transmitt-
ing and receiving data simultaneously. This
process is called “closing the loop,” and inverse
design is a critical facet (12, 15).

Inverse design

Quantum chemical methods reveal properties
of a molecular system only after specifying the
essential parameters of the constituent atomic
nuclei and their three-dimensional (3D) coor-
dinate positions (16). Inverse design, as its name
suggests, inverts this paradigm by starting with
the desired functionality and searching for an
ideal molecular structure. Here the input is the
functionality and the output is the structure.
Functionality need not necessarily map to one
unique structure but to a distribution of prob-
able structures. Inverse design (Fig. 2) uses
optimization, sampling, and search methods
to navigate the manifold of functionality of
chemical space (17, 18).
One of the earliest efforts in inverse design

was the methodology of high-throughput virtual
screening (HTVS). HTVS has its roots in the
pharmaceutical industry for drug discovery, where
simulation is an exploratory tool for screening a
large number of molecules (19, 20). HTVS starts
with an initial library of molecules built on the
basis of researchers’ intuition, which narrows
down the pool of possible candidate molecules
to a tractable range of a thousand to a million.
Initial candidates are filtered on the basis of
focused targets such as ease of synthesis, sol-
ubility, toxicity, stability, activity, and selectivity.
Molecules are also filtered by expert opinion,
eventually considered as potential lead com-
pounds for organic synthesis. Successful motifs
and substructures are further incorporated in
future cycles to further optimize functionality.
Although HTVS might seem like an ensemble

version of the direct approach for material
design, it differs in its underlying philosophy
(4). HTVS is focused on data-driven discovery,
which incorporates automation, time-critical per-
formance, and computational funnels; promising
candidates are further processed by more ex-
pensive methodologies. A crucial component is
feedback between theory and experiment.
The HTVS methodology has been quite suc-

cessful at generating new and high-performing
materials in other domains. In organic photo-
voltaics, molecules have been screened on the
basis of frontier orbital energies and photovoltaic
conversion efficiency and orbital energies (21–24).
In organic redox flow batteries, redox potential,
solubility, and ease of synthesis (25, 26) are
prioritized. For organic light-emitting diodes,
molecules have been screened for their singlet-
triplet gap and photoluminescent emission (27).
Massive explorations of reactions for catalysis
(28) or redox potentials in biochemistry have
been undertaken (28). For inorganic materials,
the Materials Project (29) spawns many appli-
cations such as dielectric and optical materials
(30), photoanode materials for generation of

chemical fuels from sunlight (31), and battery
electrolytes (32).
Arguably, an optimization approach is pref-

erable to HTVS because it generally visits a
smaller number of configurations when ex-
ploring the manifold of functionality. An op-
timization incorporates and learns geometric
information of the functionality manifold, guided
by general trends, directions, and curvature (17).
Within discrete optimization methods, Evolu-

tion Strategies (ES) is a popular choice for global
optimization (33–35) and has been used to map
chemical space (36). ES involves a structured
search that incorporates heuristics and proce-
dures inspired by natural evolution (37). At each
iteration, parameter vectors (“genotypes”) in a
population are perturbed (“mutated”) and their
objective function value (“fitness”) evaluated.
ES has been likened to hill-climbing in high-
dimensional space, following the numerical
finite difference across parameters that aremore
successful at optimizing the fitness. With ap-
propriately designed genotypes and muta-
tion operations, ES can be quite successful at
hard optimization problems, even overcoming
state-of-the-artmachine learning approaches (38).
In other cases, inverse design is realized by

incorporating expert knowledge into the op-
timization procedure, via improved Bayesian
sampling with sequential Monte Carlo (39),
invertible system Hamiltonians (18), deriving
analytical gradients of properties with respect
to a molecular system (40), optimizing potential
energy surfaces of chemical systems (41), or dis-
covering design patterns via data-mining tech-
niques (42, 43).
Finally, another approach involves generative

models stemming from the field of machine
learning. Before delving into the details, it is
appropriate to highlight the differences between
generative and discriminative models. A dis-
criminativemodel tries to determine conditional

probabilities (p(y|x)): that is, the probability of
observing properties y (such as the bandgap
energy or solvation energy), given x (a mole-
cular representation). By contrast, a generative
model attempts to determine a joint probability
distribution p(x, y): the probability of observing
both the molecular representation and the phys-
ical property. By conditioning the probability
on a molecule (x) or a property (y), we retrieve
the notion of direct (p(y|x)) and inverse design
(p(x|y)).
As expected, deep generative models are more

challenging to create than directML approaches,
but DL algorithms and computational strategies
have advanced substantially in the last few years,
producing astonishing results for generating
natural-looking images (44), constructing high-
quality audiowaveforms containing speech (45),
generating coherent and structured text (46),
and most recently, designing molecules (47).
There are several ways of building generative
models, but for the purposes of this Review, we
will focus on threemain approaches: variational
autoencoders (VAEs) (48), reinforcement learn-
ing (RL) (49), and generative adversarial net-
works (GANs) (44).
Before describing how each approach differs,

we consider representations of molecules, which
in turn determine the types of tools available and
the types of information that can be exploited in
the models.

Representation of molecules

Tomodel molecular systems accurately, wemust
solve the Schrödinger equation (SE) for the
molecular electronic Hamiltonian, from which
we obtain properties relating to the energy, geom-
etry, and curvature of the potential energy
surface of our system. In the SE, the molecule
is represented as a set of nuclear charges and
the corresponding Cartesian coordinates of
the atomic positions in 3D space. Meanwhile,
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Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.
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Simulation is often too slow

8

Virtual screeningSimulation De novo drug design

Takes 
days for one 
compound

Figure source: Sanchez-Lengeling et al., Science 361, 360–365 (2018) 



Virtual screening

9

• Virtual screening: assess whether a compound is a good drug using computation 
models (Walters et al., 1998; McGregor et al., 2007; …)

ExperimentsCompound Virtual screening 
model

Prediction: good!

thosewith low predicted toxicity. The compound that satisfied all
of these criteria was the c-Jun N-terminal kinase inhibitor
SU3327 (De et al., 2009; Jang et al., 2015) (renamed halicin), a
preclinical nitrothiazole under investigation as a treatment for
diabetes. Excitingly, halicin, which is structurally most similar
to a family of nitro-containing antiparasitic compounds (Tani-
moto similarity !0.37; Figures 2G and 2H; Table S2H) (Rogers

and Hahn, 2010) and the antibiotic metronidazole (Tanimoto
similarity !0.21), displayed excellent growth inhibitory activity
against E. coli, achieving a minimum inhibitory concentration
(MIC) of 2 mg/mL (Figure 2I).
Importantly, we observed that the prediction rank of halicin

in our model (position 89) was greater than that in four of the
other five models tested (positions ranging from 273 to 1987;

A

�00 1000 1�00 2000 2�00 �0000
3late inde[

0�2

0

0�4

0��

0�8

1

1�2

1�4
R

el
at

iv
e 

gr
ow

th
B C

20 40 �0 80 1000

0�2

0

0�4

0��

0�8

1

1�2

O
D

 (�
00

nm
)

3redicted molecules
20 40 �0 80 1000

3redicted molecules (highest to lowest predictions)

0�01

0�1

1

10

gr
ow

th
 � 

pr
ed

ic
tio

n 
sc

or
e

F
�� predictions

��2� )NR

100
3redicted molecules

0�2

0

0�4

0��

0�8

1

1�2

O
D

 (�
00

nm
)

1000 2000 �000 4000 �0000
Ranked molecules

3r
ed

ic
tio

n 
sc

or
e

D E

G H

0

0�1

0�2

0��

O
D

 (�
00

nm
)

0�4

0��

0��

0��

10-� 10-4 10-� 10-2 10-1 100 101 102 10�

[halicin] �g�ml

B:2�11�

S

N
S

S N

NN

O

O

H2N

I

�1��� T3R

�00 1000 1�00 2000 2�000
Ranked training set molecules

0

0�2

0�4

0��

Ta
ni

m
ot

o 
si

m
ila

rit
y 0�8

1

training set
Broad library
halicin

0�2

0

0�4

0��

0�8

1

0�2 0�4 0�� 0�8 10
)alse positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0�2

0

0�4

0��

0�8

1

A8C   0�8�� � 0�002

�� predictions

20 �0 40 �0 �0 �0

Figure 2. Initial Model Training and the Identification of Halicin
(A) Primary screening data for growth inhibition of E. coli by 2,560molecules within the FDA-approved drug library supplementedwith a natural product collection.

Shown is the mean of two biological replicates. Red are growth inhibitory molecules; blue are non-growth inhibitory molecules.

(B) ROC-AUC plot evaluating model performance after training. Dark blue is the mean of six individual trials (cyan).

(C) Rank-ordered prediction scores of Drug Repurposing Hub molecules that were not present in the training dataset.

(D) The top 99 predictions from the data shown in (C) were curated for empirical testing for growth inhibition of E. coli. Fifty-one of 99molecules were validated as

true positives based on a cut-off of OD600 <0.2. Shown is the mean of two biological replicates. Red are growth inhibitory molecules; blue are non-growth

inhibitory molecules.

(E) For all molecules shown in (D), ratios of OD600 to prediction score were calculated and these values were plotted based on prediction score for each cor-

responding molecule. These results show that a higher prediction score correlates with a greater probability of growth inhibition.

(F) The bottom 63 predictions from the data shown in (C) were curated for empirical testing for growth inhibition of E. coli. Shown is the mean of two biological

replicates. Red are growth inhibitory molecules; blue are non-growth inhibitory molecules.

(G) t-Distributed stochastic neighbor embedding (t-SNE) of all molecules from the training dataset (blue) and the Drug Repurposing Hub (red), revealing chemical

relationships between these libraries. Halicin is shown as a black and yellow circle.

(H) Tanimoto similarity between halicin (structure inset) and each molecule in the de-duplicated training dataset. The Tanimoto nearest neighbor is the anti-

protozoal drug nithiamide (score !0.37), with metronidazole being the nearest antibiotic (score !0.21).

(I) Growth inhibition of E. coli by halicin. Shown is the mean of two biological replicates. Bars denote absolute error.

See also Figure S1 and Tables S1 and S2.
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• Virtual screening is much faster than experimental screening in web labs. 


• It can test  compounds within a day, while experimental screening 
takes years


• It is also much cheaper than experimental screening

108



Virtual screening: inherent trade-off

10

• Virtual screening is restricted to 
commercially available compounds 
(e.g., ZINC library)


• Advantage: no need to synthesize 
any compounds (faster testing)


• Limitation 1: it loses coverage — at 
best, we can screen  compounds


• Limitation 2: traditional techniques 
are based on hand-crafted features

109
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De novo drug design
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• De novo drug design: directly generate a compound with desired properties 
(Moon et al., 1991; Clark et al., 1995; Schneider & Fechner, 2005; …)

Property criteria

(potency, safety, …)

Drug design model A good drug Experiments

thosewith low predicted toxicity. The compound that satisfied all
of these criteria was the c-Jun N-terminal kinase inhibitor
SU3327 (De et al., 2009; Jang et al., 2015) (renamed halicin), a
preclinical nitrothiazole under investigation as a treatment for
diabetes. Excitingly, halicin, which is structurally most similar
to a family of nitro-containing antiparasitic compounds (Tani-
moto similarity !0.37; Figures 2G and 2H; Table S2H) (Rogers

and Hahn, 2010) and the antibiotic metronidazole (Tanimoto
similarity !0.21), displayed excellent growth inhibitory activity
against E. coli, achieving a minimum inhibitory concentration
(MIC) of 2 mg/mL (Figure 2I).
Importantly, we observed that the prediction rank of halicin

in our model (position 89) was greater than that in four of the
other five models tested (positions ranging from 273 to 1987;
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Figure 2. Initial Model Training and the Identification of Halicin
(A) Primary screening data for growth inhibition of E. coli by 2,560molecules within the FDA-approved drug library supplementedwith a natural product collection.

Shown is the mean of two biological replicates. Red are growth inhibitory molecules; blue are non-growth inhibitory molecules.

(B) ROC-AUC plot evaluating model performance after training. Dark blue is the mean of six individual trials (cyan).

(C) Rank-ordered prediction scores of Drug Repurposing Hub molecules that were not present in the training dataset.

(D) The top 99 predictions from the data shown in (C) were curated for empirical testing for growth inhibition of E. coli. Fifty-one of 99molecules were validated as

true positives based on a cut-off of OD600 <0.2. Shown is the mean of two biological replicates. Red are growth inhibitory molecules; blue are non-growth

inhibitory molecules.

(E) For all molecules shown in (D), ratios of OD600 to prediction score were calculated and these values were plotted based on prediction score for each cor-

responding molecule. These results show that a higher prediction score correlates with a greater probability of growth inhibition.

(F) The bottom 63 predictions from the data shown in (C) were curated for empirical testing for growth inhibition of E. coli. Shown is the mean of two biological

replicates. Red are growth inhibitory molecules; blue are non-growth inhibitory molecules.

(G) t-Distributed stochastic neighbor embedding (t-SNE) of all molecules from the training dataset (blue) and the Drug Repurposing Hub (red), revealing chemical

relationships between these libraries. Halicin is shown as a black and yellow circle.

(H) Tanimoto similarity between halicin (structure inset) and each molecule in the de-duplicated training dataset. The Tanimoto nearest neighbor is the anti-

protozoal drug nithiamide (score !0.37), with metronidazole being the nearest antibiotic (score !0.21).

(I) Growth inhibition of E. coli by halicin. Shown is the mean of two biological replicates. Bars denote absolute error.

See also Figure S1 and Tables S1 and S2.
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time between steps. The ultimate aim is to
concurrently propose, create, and characterize
new materials, with each component transmitt-
ing and receiving data simultaneously. This
process is called “closing the loop,” and inverse
design is a critical facet (12, 15).

Inverse design

Quantum chemical methods reveal properties
of a molecular system only after specifying the
essential parameters of the constituent atomic
nuclei and their three-dimensional (3D) coor-
dinate positions (16). Inverse design, as its name
suggests, inverts this paradigm by starting with
the desired functionality and searching for an
ideal molecular structure. Here the input is the
functionality and the output is the structure.
Functionality need not necessarily map to one
unique structure but to a distribution of prob-
able structures. Inverse design (Fig. 2) uses
optimization, sampling, and search methods
to navigate the manifold of functionality of
chemical space (17, 18).
One of the earliest efforts in inverse design

was the methodology of high-throughput virtual
screening (HTVS). HTVS has its roots in the
pharmaceutical industry for drug discovery, where
simulation is an exploratory tool for screening a
large number of molecules (19, 20). HTVS starts
with an initial library of molecules built on the
basis of researchers’ intuition, which narrows
down the pool of possible candidate molecules
to a tractable range of a thousand to a million.
Initial candidates are filtered on the basis of
focused targets such as ease of synthesis, sol-
ubility, toxicity, stability, activity, and selectivity.
Molecules are also filtered by expert opinion,
eventually considered as potential lead com-
pounds for organic synthesis. Successful motifs
and substructures are further incorporated in
future cycles to further optimize functionality.
Although HTVS might seem like an ensemble

version of the direct approach for material
design, it differs in its underlying philosophy
(4). HTVS is focused on data-driven discovery,
which incorporates automation, time-critical per-
formance, and computational funnels; promising
candidates are further processed by more ex-
pensive methodologies. A crucial component is
feedback between theory and experiment.
The HTVS methodology has been quite suc-

cessful at generating new and high-performing
materials in other domains. In organic photo-
voltaics, molecules have been screened on the
basis of frontier orbital energies and photovoltaic
conversion efficiency and orbital energies (21–24).
In organic redox flow batteries, redox potential,
solubility, and ease of synthesis (25, 26) are
prioritized. For organic light-emitting diodes,
molecules have been screened for their singlet-
triplet gap and photoluminescent emission (27).
Massive explorations of reactions for catalysis
(28) or redox potentials in biochemistry have
been undertaken (28). For inorganic materials,
the Materials Project (29) spawns many appli-
cations such as dielectric and optical materials
(30), photoanode materials for generation of

chemical fuels from sunlight (31), and battery
electrolytes (32).
Arguably, an optimization approach is pref-

erable to HTVS because it generally visits a
smaller number of configurations when ex-
ploring the manifold of functionality. An op-
timization incorporates and learns geometric
information of the functionality manifold, guided
by general trends, directions, and curvature (17).
Within discrete optimization methods, Evolu-

tion Strategies (ES) is a popular choice for global
optimization (33–35) and has been used to map
chemical space (36). ES involves a structured
search that incorporates heuristics and proce-
dures inspired by natural evolution (37). At each
iteration, parameter vectors (“genotypes”) in a
population are perturbed (“mutated”) and their
objective function value (“fitness”) evaluated.
ES has been likened to hill-climbing in high-
dimensional space, following the numerical
finite difference across parameters that aremore
successful at optimizing the fitness. With ap-
propriately designed genotypes and muta-
tion operations, ES can be quite successful at
hard optimization problems, even overcoming
state-of-the-artmachine learning approaches (38).
In other cases, inverse design is realized by

incorporating expert knowledge into the op-
timization procedure, via improved Bayesian
sampling with sequential Monte Carlo (39),
invertible system Hamiltonians (18), deriving
analytical gradients of properties with respect
to a molecular system (40), optimizing potential
energy surfaces of chemical systems (41), or dis-
covering design patterns via data-mining tech-
niques (42, 43).
Finally, another approach involves generative

models stemming from the field of machine
learning. Before delving into the details, it is
appropriate to highlight the differences between
generative and discriminative models. A dis-
criminativemodel tries to determine conditional

probabilities (p(y|x)): that is, the probability of
observing properties y (such as the bandgap
energy or solvation energy), given x (a mole-
cular representation). By contrast, a generative
model attempts to determine a joint probability
distribution p(x, y): the probability of observing
both the molecular representation and the phys-
ical property. By conditioning the probability
on a molecule (x) or a property (y), we retrieve
the notion of direct (p(y|x)) and inverse design
(p(x|y)).
As expected, deep generative models are more

challenging to create than directML approaches,
but DL algorithms and computational strategies
have advanced substantially in the last few years,
producing astonishing results for generating
natural-looking images (44), constructing high-
quality audiowaveforms containing speech (45),
generating coherent and structured text (46),
and most recently, designing molecules (47).
There are several ways of building generative
models, but for the purposes of this Review, we
will focus on threemain approaches: variational
autoencoders (VAEs) (48), reinforcement learn-
ing (RL) (49), and generative adversarial net-
works (GANs) (44).
Before describing how each approach differs,

we consider representations of molecules, which
in turn determine the types of tools available and
the types of information that can be exploited in
the models.

Representation of molecules

Tomodel molecular systems accurately, wemust
solve the Schrödinger equation (SE) for the
molecular electronic Hamiltonian, from which
we obtain properties relating to the energy, geom-
etry, and curvature of the potential energy
surface of our system. In the SE, the molecule
is represented as a set of nuclear charges and
the corresponding Cartesian coordinates of
the atomic positions in 3D space. Meanwhile,
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Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.
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time between steps. The ultimate aim is to
concurrently propose, create, and characterize
new materials, with each component transmitt-
ing and receiving data simultaneously. This
process is called “closing the loop,” and inverse
design is a critical facet (12, 15).

Inverse design

Quantum chemical methods reveal properties
of a molecular system only after specifying the
essential parameters of the constituent atomic
nuclei and their three-dimensional (3D) coor-
dinate positions (16). Inverse design, as its name
suggests, inverts this paradigm by starting with
the desired functionality and searching for an
ideal molecular structure. Here the input is the
functionality and the output is the structure.
Functionality need not necessarily map to one
unique structure but to a distribution of prob-
able structures. Inverse design (Fig. 2) uses
optimization, sampling, and search methods
to navigate the manifold of functionality of
chemical space (17, 18).
One of the earliest efforts in inverse design

was the methodology of high-throughput virtual
screening (HTVS). HTVS has its roots in the
pharmaceutical industry for drug discovery, where
simulation is an exploratory tool for screening a
large number of molecules (19, 20). HTVS starts
with an initial library of molecules built on the
basis of researchers’ intuition, which narrows
down the pool of possible candidate molecules
to a tractable range of a thousand to a million.
Initial candidates are filtered on the basis of
focused targets such as ease of synthesis, sol-
ubility, toxicity, stability, activity, and selectivity.
Molecules are also filtered by expert opinion,
eventually considered as potential lead com-
pounds for organic synthesis. Successful motifs
and substructures are further incorporated in
future cycles to further optimize functionality.
Although HTVS might seem like an ensemble

version of the direct approach for material
design, it differs in its underlying philosophy
(4). HTVS is focused on data-driven discovery,
which incorporates automation, time-critical per-
formance, and computational funnels; promising
candidates are further processed by more ex-
pensive methodologies. A crucial component is
feedback between theory and experiment.
The HTVS methodology has been quite suc-

cessful at generating new and high-performing
materials in other domains. In organic photo-
voltaics, molecules have been screened on the
basis of frontier orbital energies and photovoltaic
conversion efficiency and orbital energies (21–24).
In organic redox flow batteries, redox potential,
solubility, and ease of synthesis (25, 26) are
prioritized. For organic light-emitting diodes,
molecules have been screened for their singlet-
triplet gap and photoluminescent emission (27).
Massive explorations of reactions for catalysis
(28) or redox potentials in biochemistry have
been undertaken (28). For inorganic materials,
the Materials Project (29) spawns many appli-
cations such as dielectric and optical materials
(30), photoanode materials for generation of

chemical fuels from sunlight (31), and battery
electrolytes (32).
Arguably, an optimization approach is pref-

erable to HTVS because it generally visits a
smaller number of configurations when ex-
ploring the manifold of functionality. An op-
timization incorporates and learns geometric
information of the functionality manifold, guided
by general trends, directions, and curvature (17).
Within discrete optimization methods, Evolu-

tion Strategies (ES) is a popular choice for global
optimization (33–35) and has been used to map
chemical space (36). ES involves a structured
search that incorporates heuristics and proce-
dures inspired by natural evolution (37). At each
iteration, parameter vectors (“genotypes”) in a
population are perturbed (“mutated”) and their
objective function value (“fitness”) evaluated.
ES has been likened to hill-climbing in high-
dimensional space, following the numerical
finite difference across parameters that aremore
successful at optimizing the fitness. With ap-
propriately designed genotypes and muta-
tion operations, ES can be quite successful at
hard optimization problems, even overcoming
state-of-the-artmachine learning approaches (38).
In other cases, inverse design is realized by

incorporating expert knowledge into the op-
timization procedure, via improved Bayesian
sampling with sequential Monte Carlo (39),
invertible system Hamiltonians (18), deriving
analytical gradients of properties with respect
to a molecular system (40), optimizing potential
energy surfaces of chemical systems (41), or dis-
covering design patterns via data-mining tech-
niques (42, 43).
Finally, another approach involves generative

models stemming from the field of machine
learning. Before delving into the details, it is
appropriate to highlight the differences between
generative and discriminative models. A dis-
criminativemodel tries to determine conditional

probabilities (p(y|x)): that is, the probability of
observing properties y (such as the bandgap
energy or solvation energy), given x (a mole-
cular representation). By contrast, a generative
model attempts to determine a joint probability
distribution p(x, y): the probability of observing
both the molecular representation and the phys-
ical property. By conditioning the probability
on a molecule (x) or a property (y), we retrieve
the notion of direct (p(y|x)) and inverse design
(p(x|y)).
As expected, deep generative models are more

challenging to create than directML approaches,
but DL algorithms and computational strategies
have advanced substantially in the last few years,
producing astonishing results for generating
natural-looking images (44), constructing high-
quality audiowaveforms containing speech (45),
generating coherent and structured text (46),
and most recently, designing molecules (47).
There are several ways of building generative
models, but for the purposes of this Review, we
will focus on threemain approaches: variational
autoencoders (VAEs) (48), reinforcement learn-
ing (RL) (49), and generative adversarial net-
works (GANs) (44).
Before describing how each approach differs,

we consider representations of molecules, which
in turn determine the types of tools available and
the types of information that can be exploited in
the models.

Representation of molecules

Tomodel molecular systems accurately, wemust
solve the Schrödinger equation (SE) for the
molecular electronic Hamiltonian, from which
we obtain properties relating to the energy, geom-
etry, and curvature of the potential energy
surface of our system. In the SE, the molecule
is represented as a set of nuclear charges and
the corresponding Cartesian coordinates of
the atomic positions in 3D space. Meanwhile,

Sanchez-Lengeling et al., Science 361, 360–365 (2018) 27 July 2018 2 of 6

Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.
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an inverse problem



De novo drug design: inherent trade-off

12

• Virtual screening is restricted to 
commercially available compounds 
(e.g., ZINC library)


• Advantage: can explore the entire 
chemical space efficiently


• Limitation 1: we need to synthesize 
new compounds, which can be hard


• Limitation 2: traditional techniques 
explores the space based on hand-
designed rules (e.g., genetic algorithms)

Coverage

Ease for 
synthesis

Virtual 
screening

De novo 
drug design



Deep learning: a promising direction

13He et al., “Deep residual learning for image recognition." CVPR 2016

• Deep learning has achieved human-level accuracy in computer vision (He et al., 2016)

The key to success:

automatic feature learning

Feature learning

• Virtual screening: traditional methods are based on hand-crafted features

Features designed 
by experts

N

N

H
N

F

N

N
NH2

Model

Prediction: good!Use deep learning to learn 
features automatically



Deep learning: a promising direction

14Silver et al., “Mastering the game of Go with deep neural networks and tree search”, Nature (2016).

Ramesh et al., “DALL-E: creating images from text ”, OpenAI blog

• Deep generative models can generate realistic text and images with 
desired properties

Ramesh et al., 2020

Deep 
generative 

models

Generate an image 
of an armchair in the 

shape of avocado

• De novo drug design: generate a compound with desired properties

Property criteria

(potency, safety, …)

A good 
drug

Use deep 
generative 

models

thosewith low predicted toxicity. The compound that satisfied all
of these criteria was the c-Jun N-terminal kinase inhibitor
SU3327 (De et al., 2009; Jang et al., 2015) (renamed halicin), a
preclinical nitrothiazole under investigation as a treatment for
diabetes. Excitingly, halicin, which is structurally most similar
to a family of nitro-containing antiparasitic compounds (Tani-
moto similarity !0.37; Figures 2G and 2H; Table S2H) (Rogers

and Hahn, 2010) and the antibiotic metronidazole (Tanimoto
similarity !0.21), displayed excellent growth inhibitory activity
against E. coli, achieving a minimum inhibitory concentration
(MIC) of 2 mg/mL (Figure 2I).
Importantly, we observed that the prediction rank of halicin

in our model (position 89) was greater than that in four of the
other five models tested (positions ranging from 273 to 1987;
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Figure 2. Initial Model Training and the Identification of Halicin
(A) Primary screening data for growth inhibition of E. coli by 2,560molecules within the FDA-approved drug library supplementedwith a natural product collection.

Shown is the mean of two biological replicates. Red are growth inhibitory molecules; blue are non-growth inhibitory molecules.

(B) ROC-AUC plot evaluating model performance after training. Dark blue is the mean of six individual trials (cyan).

(C) Rank-ordered prediction scores of Drug Repurposing Hub molecules that were not present in the training dataset.

(D) The top 99 predictions from the data shown in (C) were curated for empirical testing for growth inhibition of E. coli. Fifty-one of 99molecules were validated as

true positives based on a cut-off of OD600 <0.2. Shown is the mean of two biological replicates. Red are growth inhibitory molecules; blue are non-growth

inhibitory molecules.

(E) For all molecules shown in (D), ratios of OD600 to prediction score were calculated and these values were plotted based on prediction score for each cor-

responding molecule. These results show that a higher prediction score correlates with a greater probability of growth inhibition.

(F) The bottom 63 predictions from the data shown in (C) were curated for empirical testing for growth inhibition of E. coli. Shown is the mean of two biological

replicates. Red are growth inhibitory molecules; blue are non-growth inhibitory molecules.

(G) t-Distributed stochastic neighbor embedding (t-SNE) of all molecules from the training dataset (blue) and the Drug Repurposing Hub (red), revealing chemical

relationships between these libraries. Halicin is shown as a black and yellow circle.

(H) Tanimoto similarity between halicin (structure inset) and each molecule in the de-duplicated training dataset. The Tanimoto nearest neighbor is the anti-

protozoal drug nithiamide (score !0.37), with metronidazole being the nearest antibiotic (score !0.21).

(I) Growth inhibition of E. coli by halicin. Shown is the mean of two biological replicates. Bars denote absolute error.

See also Figure S1 and Tables S1 and S2.
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Main technique: graph neural networks

15

Property 

(numerical attributes)

Graphs Graph 
generation

thosewith low predicted toxicity. The compound that satisfied all
of these criteria was the c-Jun N-terminal kinase inhibitor
SU3327 (De et al., 2009; Jang et al., 2015) (renamed halicin), a
preclinical nitrothiazole under investigation as a treatment for
diabetes. Excitingly, halicin, which is structurally most similar
to a family of nitro-containing antiparasitic compounds (Tani-
moto similarity !0.37; Figures 2G and 2H; Table S2H) (Rogers

and Hahn, 2010) and the antibiotic metronidazole (Tanimoto
similarity !0.21), displayed excellent growth inhibitory activity
against E. coli, achieving a minimum inhibitory concentration
(MIC) of 2 mg/mL (Figure 2I).
Importantly, we observed that the prediction rank of halicin

in our model (position 89) was greater than that in four of the
other five models tested (positions ranging from 273 to 1987;
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Figure 2. Initial Model Training and the Identification of Halicin
(A) Primary screening data for growth inhibition of E. coli by 2,560molecules within the FDA-approved drug library supplementedwith a natural product collection.

Shown is the mean of two biological replicates. Red are growth inhibitory molecules; blue are non-growth inhibitory molecules.

(B) ROC-AUC plot evaluating model performance after training. Dark blue is the mean of six individual trials (cyan).

(C) Rank-ordered prediction scores of Drug Repurposing Hub molecules that were not present in the training dataset.

(D) The top 99 predictions from the data shown in (C) were curated for empirical testing for growth inhibition of E. coli. Fifty-one of 99molecules were validated as

true positives based on a cut-off of OD600 <0.2. Shown is the mean of two biological replicates. Red are growth inhibitory molecules; blue are non-growth

inhibitory molecules.

(E) For all molecules shown in (D), ratios of OD600 to prediction score were calculated and these values were plotted based on prediction score for each cor-

responding molecule. These results show that a higher prediction score correlates with a greater probability of growth inhibition.

(F) The bottom 63 predictions from the data shown in (C) were curated for empirical testing for growth inhibition of E. coli. Shown is the mean of two biological

replicates. Red are growth inhibitory molecules; blue are non-growth inhibitory molecules.

(G) t-Distributed stochastic neighbor embedding (t-SNE) of all molecules from the training dataset (blue) and the Drug Repurposing Hub (red), revealing chemical

relationships between these libraries. Halicin is shown as a black and yellow circle.

(H) Tanimoto similarity between halicin (structure inset) and each molecule in the de-duplicated training dataset. The Tanimoto nearest neighbor is the anti-

protozoal drug nithiamide (score !0.37), with metronidazole being the nearest antibiotic (score !0.21).

(I) Growth inhibition of E. coli by halicin. Shown is the mean of two biological replicates. Bars denote absolute error.

See also Figure S1 and Tables S1 and S2.

Cell 180, 688–702, February 20, 2020 691

Virtual screening / molecular property prediction 
     (Duvenaud et al. 2015; Kearnes et al. 2016; Jin et al., 2017; Gilmer et al., 2017; …)

De novo drug design 
    (Olivecrona et al., 2018; Gomez-bombarelli et al., 2018; Jin et al., 2018; Popova et al., 2018; …)

Graph 
encoding



Example: discovery of new antibiotics

16Stokes, Yang, Swanson, Jin et al, Cell 2020



17

Outline of today’s lecture
• Part 1: graph neural networks for antibiotic discovery  
    [ICML’17, NeurIPS’17, JCIM’19, Cell’20]


• Part 2: Incorporate biological knowledge into graph neural networks: 
application to COVID-19 drug combination discovery 

     [PNAS (In submission)]


• Part 3: Generative models for de novo drug design 
     [ICML’18, ICLR’19, ICML’20a,b,c]



Part 1: antibiotic discovery

18

• After 1990s, we struggle to discover novel antibiotic classes (Silver et al., 2011; 
Brown et al., 2014; Shore & Coukell, 2016)


• We need novel antibiotic classes due to antibiotic resistance

History of antibiotic discovery

Figure source: ReAct group FDA = U.S. Food and Drug Administration



Virtual screening for antibiotic discovery

19

Drug Antibacterial

Nitrocefin Yes

Reserpine No

Penicillin Yes

IQ-1S No

…… ……

• Through collaboration with the Broad Institute, we collected 2560 
molecules with measured growth inhibition against E. coli (BW25113)

Training 
data

Graph neural network

Predict 
antibacterial 
properties

Why graph neural 
networks?



Traditional approach: hand-crafted features

20

• Traditional methods are based on fixed, hand-
engineered molecular features.


• Molecular weight, number of heavy atoms


• More sophisticated features: Morgan 
fingerprint (Rogers & Hahn 2010)


• Exhaustive enumeration of all possible 
substructures, up to radius 3


• Result: high dimensional features (2048), 
different substructures merged by hash



Problem of traditional features

21

Compound
Features designed 

by experts Model

Prediction: good!

thosewith low predicted toxicity. The compound that satisfied all
of these criteria was the c-Jun N-terminal kinase inhibitor
SU3327 (De et al., 2009; Jang et al., 2015) (renamed halicin), a
preclinical nitrothiazole under investigation as a treatment for
diabetes. Excitingly, halicin, which is structurally most similar
to a family of nitro-containing antiparasitic compounds (Tani-
moto similarity !0.37; Figures 2G and 2H; Table S2H) (Rogers

and Hahn, 2010) and the antibiotic metronidazole (Tanimoto
similarity !0.21), displayed excellent growth inhibitory activity
against E. coli, achieving a minimum inhibitory concentration
(MIC) of 2 mg/mL (Figure 2I).
Importantly, we observed that the prediction rank of halicin

in our model (position 89) was greater than that in four of the
other five models tested (positions ranging from 273 to 1987;
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Figure 2. Initial Model Training and the Identification of Halicin
(A) Primary screening data for growth inhibition of E. coli by 2,560molecules within the FDA-approved drug library supplementedwith a natural product collection.

Shown is the mean of two biological replicates. Red are growth inhibitory molecules; blue are non-growth inhibitory molecules.

(B) ROC-AUC plot evaluating model performance after training. Dark blue is the mean of six individual trials (cyan).

(C) Rank-ordered prediction scores of Drug Repurposing Hub molecules that were not present in the training dataset.

(D) The top 99 predictions from the data shown in (C) were curated for empirical testing for growth inhibition of E. coli. Fifty-one of 99molecules were validated as

true positives based on a cut-off of OD600 <0.2. Shown is the mean of two biological replicates. Red are growth inhibitory molecules; blue are non-growth

inhibitory molecules.

(E) For all molecules shown in (D), ratios of OD600 to prediction score were calculated and these values were plotted based on prediction score for each cor-

responding molecule. These results show that a higher prediction score correlates with a greater probability of growth inhibition.

(F) The bottom 63 predictions from the data shown in (C) were curated for empirical testing for growth inhibition of E. coli. Shown is the mean of two biological

replicates. Red are growth inhibitory molecules; blue are non-growth inhibitory molecules.

(G) t-Distributed stochastic neighbor embedding (t-SNE) of all molecules from the training dataset (blue) and the Drug Repurposing Hub (red), revealing chemical

relationships between these libraries. Halicin is shown as a black and yellow circle.

(H) Tanimoto similarity between halicin (structure inset) and each molecule in the de-duplicated training dataset. The Tanimoto nearest neighbor is the anti-

protozoal drug nithiamide (score !0.37), with metronidazole being the nearest antibiotic (score !0.21).

(I) Growth inhibition of E. coli by halicin. Shown is the mean of two biological replicates. Bars denote absolute error.

See also Figure S1 and Tables S1 and S2.
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Features are learned 
automatically

• Traditional methods are based on fixed, hand-engineered molecular features.

• Molecular weight, number of heavy atoms, etc.


• Problem: we don’t know all the antibacterial patterns 

• So these hand-engineered features can miss some of the unknown patterns


• Graph neural networks automatically learn a feature representation from data



Graph neural network (GNN)

22

Each atom is a node in the graph

Each bond is an edge in the graph

• Rich history of GNNs (Gori et al., 2005, Scarselli et al., 2009, Duvenaud et 
al. 2015, Kearnes et al. 2016, Jin et al., 2017, Gilmer et al., 2017, Zitnik et 
al., 2018, etc.)


• A molecule is represented as a graph



Graph neural network (GNN)

23

Graph 
convolution

This vector 
encodes a 

local subgraph

Pooling

Graph feature 
representation

It encodes a 
larger subgraphAtom type



Graph neural network (GNN)

24

Graph 
convolution

Feature 
representation

Feed-forward 
network

Antibacterial 
property

Fixed
Learned

Antibacterial 
property

Hand-crafted features

Learned LearnedDeep learned features



Use GNN for virtual screening

25

• We virtually screened  compounds in Broad drug repurposing hub


• We experimentally tested the top 99 compounds in the Broad Institute


• 51 of them are indeed antibacterial — hit rate = 51.5%

104

Low

toxicity

Structural 
novelty51 drugs

thosewith low predicted toxicity. The compound that satisfied all
of these criteria was the c-Jun N-terminal kinase inhibitor
SU3327 (De et al., 2009; Jang et al., 2015) (renamed halicin), a
preclinical nitrothiazole under investigation as a treatment for
diabetes. Excitingly, halicin, which is structurally most similar
to a family of nitro-containing antiparasitic compounds (Tani-
moto similarity !0.37; Figures 2G and 2H; Table S2H) (Rogers

and Hahn, 2010) and the antibiotic metronidazole (Tanimoto
similarity !0.21), displayed excellent growth inhibitory activity
against E. coli, achieving a minimum inhibitory concentration
(MIC) of 2 mg/mL (Figure 2I).
Importantly, we observed that the prediction rank of halicin

in our model (position 89) was greater than that in four of the
other five models tested (positions ranging from 273 to 1987;
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Figure 2. Initial Model Training and the Identification of Halicin
(A) Primary screening data for growth inhibition of E. coli by 2,560molecules within the FDA-approved drug library supplementedwith a natural product collection.

Shown is the mean of two biological replicates. Red are growth inhibitory molecules; blue are non-growth inhibitory molecules.

(B) ROC-AUC plot evaluating model performance after training. Dark blue is the mean of six individual trials (cyan).

(C) Rank-ordered prediction scores of Drug Repurposing Hub molecules that were not present in the training dataset.

(D) The top 99 predictions from the data shown in (C) were curated for empirical testing for growth inhibition of E. coli. Fifty-one of 99molecules were validated as

true positives based on a cut-off of OD600 <0.2. Shown is the mean of two biological replicates. Red are growth inhibitory molecules; blue are non-growth

inhibitory molecules.

(E) For all molecules shown in (D), ratios of OD600 to prediction score were calculated and these values were plotted based on prediction score for each cor-

responding molecule. These results show that a higher prediction score correlates with a greater probability of growth inhibition.

(F) The bottom 63 predictions from the data shown in (C) were curated for empirical testing for growth inhibition of E. coli. Shown is the mean of two biological

replicates. Red are growth inhibitory molecules; blue are non-growth inhibitory molecules.

(G) t-Distributed stochastic neighbor embedding (t-SNE) of all molecules from the training dataset (blue) and the Drug Repurposing Hub (red), revealing chemical

relationships between these libraries. Halicin is shown as a black and yellow circle.

(H) Tanimoto similarity between halicin (structure inset) and each molecule in the de-duplicated training dataset. The Tanimoto nearest neighbor is the anti-

protozoal drug nithiamide (score !0.37), with metronidazole being the nearest antibiotic (score !0.21).

(I) Growth inhibition of E. coli by halicin. Shown is the mean of two biological replicates. Bars denote absolute error.

See also Figure S1 and Tables S1 and S2.
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Compound SU3327 

(renamed as Halicin)



Halicin is a novel and potent antibiotic

26

• Halicin shows potent growth inhibition against E. coli in vitro


• It is also structurally different from known antibiotics

thosewith low predicted toxicity. The compound that satisfied all
of these criteria was the c-Jun N-terminal kinase inhibitor
SU3327 (De et al., 2009; Jang et al., 2015) (renamed halicin), a
preclinical nitrothiazole under investigation as a treatment for
diabetes. Excitingly, halicin, which is structurally most similar
to a family of nitro-containing antiparasitic compounds (Tani-
moto similarity !0.37; Figures 2G and 2H; Table S2H) (Rogers

and Hahn, 2010) and the antibiotic metronidazole (Tanimoto
similarity !0.21), displayed excellent growth inhibitory activity
against E. coli, achieving a minimum inhibitory concentration
(MIC) of 2 mg/mL (Figure 2I).
Importantly, we observed that the prediction rank of halicin

in our model (position 89) was greater than that in four of the
other five models tested (positions ranging from 273 to 1987;
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Figure 2. Initial Model Training and the Identification of Halicin
(A) Primary screening data for growth inhibition of E. coli by 2,560molecules within the FDA-approved drug library supplementedwith a natural product collection.

Shown is the mean of two biological replicates. Red are growth inhibitory molecules; blue are non-growth inhibitory molecules.

(B) ROC-AUC plot evaluating model performance after training. Dark blue is the mean of six individual trials (cyan).

(C) Rank-ordered prediction scores of Drug Repurposing Hub molecules that were not present in the training dataset.

(D) The top 99 predictions from the data shown in (C) were curated for empirical testing for growth inhibition of E. coli. Fifty-one of 99molecules were validated as

true positives based on a cut-off of OD600 <0.2. Shown is the mean of two biological replicates. Red are growth inhibitory molecules; blue are non-growth

inhibitory molecules.

(E) For all molecules shown in (D), ratios of OD600 to prediction score were calculated and these values were plotted based on prediction score for each cor-

responding molecule. These results show that a higher prediction score correlates with a greater probability of growth inhibition.

(F) The bottom 63 predictions from the data shown in (C) were curated for empirical testing for growth inhibition of E. coli. Shown is the mean of two biological

replicates. Red are growth inhibitory molecules; blue are non-growth inhibitory molecules.

(G) t-Distributed stochastic neighbor embedding (t-SNE) of all molecules from the training dataset (blue) and the Drug Repurposing Hub (red), revealing chemical

relationships between these libraries. Halicin is shown as a black and yellow circle.

(H) Tanimoto similarity between halicin (structure inset) and each molecule in the de-duplicated training dataset. The Tanimoto nearest neighbor is the anti-

protozoal drug nithiamide (score !0.37), with metronidazole being the nearest antibiotic (score !0.21).

(I) Growth inhibition of E. coli by halicin. Shown is the mean of two biological replicates. Bars denote absolute error.

See also Figure S1 and Tables S1 and S2.
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Low similarity to existing antibiotics

thosewith low predicted toxicity. The compound that satisfied all
of these criteria was the c-Jun N-terminal kinase inhibitor
SU3327 (De et al., 2009; Jang et al., 2015) (renamed halicin), a
preclinical nitrothiazole under investigation as a treatment for
diabetes. Excitingly, halicin, which is structurally most similar
to a family of nitro-containing antiparasitic compounds (Tani-
moto similarity !0.37; Figures 2G and 2H; Table S2H) (Rogers

and Hahn, 2010) and the antibiotic metronidazole (Tanimoto
similarity !0.21), displayed excellent growth inhibitory activity
against E. coli, achieving a minimum inhibitory concentration
(MIC) of 2 mg/mL (Figure 2I).
Importantly, we observed that the prediction rank of halicin

in our model (position 89) was greater than that in four of the
other five models tested (positions ranging from 273 to 1987;
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Figure 2. Initial Model Training and the Identification of Halicin
(A) Primary screening data for growth inhibition of E. coli by 2,560molecules within the FDA-approved drug library supplementedwith a natural product collection.

Shown is the mean of two biological replicates. Red are growth inhibitory molecules; blue are non-growth inhibitory molecules.

(B) ROC-AUC plot evaluating model performance after training. Dark blue is the mean of six individual trials (cyan).

(C) Rank-ordered prediction scores of Drug Repurposing Hub molecules that were not present in the training dataset.

(D) The top 99 predictions from the data shown in (C) were curated for empirical testing for growth inhibition of E. coli. Fifty-one of 99molecules were validated as

true positives based on a cut-off of OD600 <0.2. Shown is the mean of two biological replicates. Red are growth inhibitory molecules; blue are non-growth

inhibitory molecules.

(E) For all molecules shown in (D), ratios of OD600 to prediction score were calculated and these values were plotted based on prediction score for each cor-

responding molecule. These results show that a higher prediction score correlates with a greater probability of growth inhibition.

(F) The bottom 63 predictions from the data shown in (C) were curated for empirical testing for growth inhibition of E. coli. Shown is the mean of two biological

replicates. Red are growth inhibitory molecules; blue are non-growth inhibitory molecules.

(G) t-Distributed stochastic neighbor embedding (t-SNE) of all molecules from the training dataset (blue) and the Drug Repurposing Hub (red), revealing chemical

relationships between these libraries. Halicin is shown as a black and yellow circle.

(H) Tanimoto similarity between halicin (structure inset) and each molecule in the de-duplicated training dataset. The Tanimoto nearest neighbor is the anti-

protozoal drug nithiamide (score !0.37), with metronidazole being the nearest antibiotic (score !0.21).

(I) Growth inhibition of E. coli by halicin. Shown is the mean of two biological replicates. Bars denote absolute error.

See also Figure S1 and Tables S1 and S2.
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Inhibition



Halicin is potent to resistant bacteria in mice

27

Strong in vivo inhibition of 
pan-resistant A. baumannii

force. Similar DiSC3(5) fluorescence changes were observed in
S. aureus treated with halicin (Figures S3F and S3G). Moreover,
halicin displayed antibiotic antagonism and synergy profiles
consistent with DpH dissipation. Of note, halicin antagonized
the activity of tetracycline in E. coli, and synergized with
kanamycin (Figure 4E), consistent with previous work showing
that the uptake of tetracyclines is dependent upon DpH (Yama-
guchi et al., 1991), whereas aminoglycoside uptake is driven
largely by Dc (Taber et al., 1987).
Interestingly, our observations that halicin induced the expres-

sion of iron acquisition genes at sub-lethal concentrations
(Tables S4A–S4C) suggested that this compound complexes
with iron in solution, thereby dissipating transmembrane DpH
potential similarly to other antibacterial ionophores, such as
daptomycin (Farha et al., 2013). We note here that daptomycin
resistance via deletion of dsp1 in S. aureus did not confer
cross-resistance to halicin (Figure S3H). We observed enhanced
potency of halicin against E. coli with increasing concentrations
of environmental Fe3+ (Figure 4E). This is consistent with a
mechanism of action wherein halicin may bind iron prior to
membrane association and DpH dissipation.

Halicin Displays Efficacy in Murine Models of Infection
Given that halicin displays broad-spectrum bactericidal activity
and is not highly susceptible to plasmid-borne antibiotic-resis-
tance elements or de novo resistance mutations at high fre-
quency, we next asked whether this compound might have
utility as an antibiotic in vivo. We therefore tested the efficacy
of halicin in a murine wound model of A. baumannii infection.
On the dorsal surface of neutropenic BALB/c mice, we estab-
lished a 2 cm2 wound and infected with !2.5 3 105 CFU of
A. baumannii strain 288 acquired from the Centers for
Disease Control and Prevention (CDC). This strain is not suscep-
tible to clinical antibiotics generally used for treatment of
A. baumannii, and therefore represents a pan-resistant
isolate. Importantly, halicin displayed potent growth inhibition
against this strain in vitro (MIC = 1 mg/mL; Figure 5A) and
was able to sterilize A. baumannii 288 cells residing in metabol-
ically repressed conditions (Figures 5B, S4A, and S4B). After 1 h
of infection establishment, mice were treated with Glaxal
Base Moisturizing Cream supplemented with vehicle (0.5%
DMSO) or halicin (0.5% w/v). Mice were then treated after 4 h,
8 h, 12 h, 20 h, and 24 h of infection, and sacrificed at 25 h
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Figure 5. Halicin Displays Efficacy in Murine Models of Infection
(A) Growth inhibition of pan-resistant A. baumannii CDC 288 by halicin. Shown is the mean of two biological replicates. Bars denote absolute error.

(B) Killing of A. baumannii CDC 288 in PBS in the presence of varying concentrations of halicin after 2 h (blue), 4 h (cyan), 6 h (green), and 8 h (red). The initial cell

density is !108 CFU/mL. Shown is the mean of two biological replicates. Bars denote absolute error.

(C) In a wound infection model, mice were infected with A. baumannii CDC 288 for 1 h and treated with either vehicle (green; 0.5% DMSO; n = 6) or halicin (blue;

0.5% w/v; n = 6) over 24 h. Bacterial load from wound tissue after treatment was determined by selective plating. Black lines represent geometric mean of the

bacterial load for each treatment group.

(D) Growth inhibition of C. difficile 630 by halicin. Shown is the mean of two biological replicates. Bars denote absolute error.

(E) Experimental design for C. difficile infection and treatment.

(F) Bacterial load of C. difficile 630 in feces of infected mice. Metronidazole (red; 50 mg/kg; n = 6) did not result in enhanced rates of clearance relative to vehicle

controls (green; 10% PEG 300; n = 7). Halicin-treated mice (blue; 15 mg/kg; n = 4) displayed sterilization beginning at 72 h after treatment, with 100% of mice

being free of infection at 96 h after treatment. Lines represent geometric mean of the bacterial load for each treatment group.

See also Figure S4.
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Bacteria still alive 
with metronidazole

force. Similar DiSC3(5) fluorescence changes were observed in
S. aureus treated with halicin (Figures S3F and S3G). Moreover,
halicin displayed antibiotic antagonism and synergy profiles
consistent with DpH dissipation. Of note, halicin antagonized
the activity of tetracycline in E. coli, and synergized with
kanamycin (Figure 4E), consistent with previous work showing
that the uptake of tetracyclines is dependent upon DpH (Yama-
guchi et al., 1991), whereas aminoglycoside uptake is driven
largely by Dc (Taber et al., 1987).
Interestingly, our observations that halicin induced the expres-

sion of iron acquisition genes at sub-lethal concentrations
(Tables S4A–S4C) suggested that this compound complexes
with iron in solution, thereby dissipating transmembrane DpH
potential similarly to other antibacterial ionophores, such as
daptomycin (Farha et al., 2013). We note here that daptomycin
resistance via deletion of dsp1 in S. aureus did not confer
cross-resistance to halicin (Figure S3H). We observed enhanced
potency of halicin against E. coli with increasing concentrations
of environmental Fe3+ (Figure 4E). This is consistent with a
mechanism of action wherein halicin may bind iron prior to
membrane association and DpH dissipation.

Halicin Displays Efficacy in Murine Models of Infection
Given that halicin displays broad-spectrum bactericidal activity
and is not highly susceptible to plasmid-borne antibiotic-resis-
tance elements or de novo resistance mutations at high fre-
quency, we next asked whether this compound might have
utility as an antibiotic in vivo. We therefore tested the efficacy
of halicin in a murine wound model of A. baumannii infection.
On the dorsal surface of neutropenic BALB/c mice, we estab-
lished a 2 cm2 wound and infected with !2.5 3 105 CFU of
A. baumannii strain 288 acquired from the Centers for
Disease Control and Prevention (CDC). This strain is not suscep-
tible to clinical antibiotics generally used for treatment of
A. baumannii, and therefore represents a pan-resistant
isolate. Importantly, halicin displayed potent growth inhibition
against this strain in vitro (MIC = 1 mg/mL; Figure 5A) and
was able to sterilize A. baumannii 288 cells residing in metabol-
ically repressed conditions (Figures 5B, S4A, and S4B). After 1 h
of infection establishment, mice were treated with Glaxal
Base Moisturizing Cream supplemented with vehicle (0.5%
DMSO) or halicin (0.5% w/v). Mice were then treated after 4 h,
8 h, 12 h, 20 h, and 24 h of infection, and sacrificed at 25 h
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Figure 5. Halicin Displays Efficacy in Murine Models of Infection
(A) Growth inhibition of pan-resistant A. baumannii CDC 288 by halicin. Shown is the mean of two biological replicates. Bars denote absolute error.

(B) Killing of A. baumannii CDC 288 in PBS in the presence of varying concentrations of halicin after 2 h (blue), 4 h (cyan), 6 h (green), and 8 h (red). The initial cell

density is !108 CFU/mL. Shown is the mean of two biological replicates. Bars denote absolute error.

(C) In a wound infection model, mice were infected with A. baumannii CDC 288 for 1 h and treated with either vehicle (green; 0.5% DMSO; n = 6) or halicin (blue;

0.5% w/v; n = 6) over 24 h. Bacterial load from wound tissue after treatment was determined by selective plating. Black lines represent geometric mean of the

bacterial load for each treatment group.

(D) Growth inhibition of C. difficile 630 by halicin. Shown is the mean of two biological replicates. Bars denote absolute error.

(E) Experimental design for C. difficile infection and treatment.

(F) Bacterial load of C. difficile 630 in feces of infected mice. Metronidazole (red; 50 mg/kg; n = 6) did not result in enhanced rates of clearance relative to vehicle

controls (green; 10% PEG 300; n = 7). Halicin-treated mice (blue; 15 mg/kg; n = 4) displayed sterilization beginning at 72 h after treatment, with 100% of mice

being free of infection at 96 h after treatment. Lines represent geometric mean of the bacterial load for each treatment group.

See also Figure S4.

Cell 180, 688–702, February 20, 2020 695

Strong in vivo inhibition against 
resistant C. difficile

Infection is gone 
with halicin

Infection is gone 
with halicin

force. Similar DiSC3(5) fluorescence changes were observed in
S. aureus treated with halicin (Figures S3F and S3G). Moreover,
halicin displayed antibiotic antagonism and synergy profiles
consistent with DpH dissipation. Of note, halicin antagonized
the activity of tetracycline in E. coli, and synergized with
kanamycin (Figure 4E), consistent with previous work showing
that the uptake of tetracyclines is dependent upon DpH (Yama-
guchi et al., 1991), whereas aminoglycoside uptake is driven
largely by Dc (Taber et al., 1987).
Interestingly, our observations that halicin induced the expres-

sion of iron acquisition genes at sub-lethal concentrations
(Tables S4A–S4C) suggested that this compound complexes
with iron in solution, thereby dissipating transmembrane DpH
potential similarly to other antibacterial ionophores, such as
daptomycin (Farha et al., 2013). We note here that daptomycin
resistance via deletion of dsp1 in S. aureus did not confer
cross-resistance to halicin (Figure S3H). We observed enhanced
potency of halicin against E. coli with increasing concentrations
of environmental Fe3+ (Figure 4E). This is consistent with a
mechanism of action wherein halicin may bind iron prior to
membrane association and DpH dissipation.

Halicin Displays Efficacy in Murine Models of Infection
Given that halicin displays broad-spectrum bactericidal activity
and is not highly susceptible to plasmid-borne antibiotic-resis-
tance elements or de novo resistance mutations at high fre-
quency, we next asked whether this compound might have
utility as an antibiotic in vivo. We therefore tested the efficacy
of halicin in a murine wound model of A. baumannii infection.
On the dorsal surface of neutropenic BALB/c mice, we estab-
lished a 2 cm2 wound and infected with !2.5 3 105 CFU of
A. baumannii strain 288 acquired from the Centers for
Disease Control and Prevention (CDC). This strain is not suscep-
tible to clinical antibiotics generally used for treatment of
A. baumannii, and therefore represents a pan-resistant
isolate. Importantly, halicin displayed potent growth inhibition
against this strain in vitro (MIC = 1 mg/mL; Figure 5A) and
was able to sterilize A. baumannii 288 cells residing in metabol-
ically repressed conditions (Figures 5B, S4A, and S4B). After 1 h
of infection establishment, mice were treated with Glaxal
Base Moisturizing Cream supplemented with vehicle (0.5%
DMSO) or halicin (0.5% w/v). Mice were then treated after 4 h,
8 h, 12 h, 20 h, and 24 h of infection, and sacrificed at 25 h
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Figure 5. Halicin Displays Efficacy in Murine Models of Infection
(A) Growth inhibition of pan-resistant A. baumannii CDC 288 by halicin. Shown is the mean of two biological replicates. Bars denote absolute error.

(B) Killing of A. baumannii CDC 288 in PBS in the presence of varying concentrations of halicin after 2 h (blue), 4 h (cyan), 6 h (green), and 8 h (red). The initial cell

density is !108 CFU/mL. Shown is the mean of two biological replicates. Bars denote absolute error.

(C) In a wound infection model, mice were infected with A. baumannii CDC 288 for 1 h and treated with either vehicle (green; 0.5% DMSO; n = 6) or halicin (blue;

0.5% w/v; n = 6) over 24 h. Bacterial load from wound tissue after treatment was determined by selective plating. Black lines represent geometric mean of the

bacterial load for each treatment group.

(D) Growth inhibition of C. difficile 630 by halicin. Shown is the mean of two biological replicates. Bars denote absolute error.

(E) Experimental design for C. difficile infection and treatment.

(F) Bacterial load of C. difficile 630 in feces of infected mice. Metronidazole (red; 50 mg/kg; n = 6) did not result in enhanced rates of clearance relative to vehicle

controls (green; 10% PEG 300; n = 7). Halicin-treated mice (blue; 15 mg/kg; n = 4) displayed sterilization beginning at 72 h after treatment, with 100% of mice

being free of infection at 96 h after treatment. Lines represent geometric mean of the bacterial load for each treatment group.

See also Figure S4.
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force. Similar DiSC3(5) fluorescence changes were observed in
S. aureus treated with halicin (Figures S3F and S3G). Moreover,
halicin displayed antibiotic antagonism and synergy profiles
consistent with DpH dissipation. Of note, halicin antagonized
the activity of tetracycline in E. coli, and synergized with
kanamycin (Figure 4E), consistent with previous work showing
that the uptake of tetracyclines is dependent upon DpH (Yama-
guchi et al., 1991), whereas aminoglycoside uptake is driven
largely by Dc (Taber et al., 1987).
Interestingly, our observations that halicin induced the expres-

sion of iron acquisition genes at sub-lethal concentrations
(Tables S4A–S4C) suggested that this compound complexes
with iron in solution, thereby dissipating transmembrane DpH
potential similarly to other antibacterial ionophores, such as
daptomycin (Farha et al., 2013). We note here that daptomycin
resistance via deletion of dsp1 in S. aureus did not confer
cross-resistance to halicin (Figure S3H). We observed enhanced
potency of halicin against E. coli with increasing concentrations
of environmental Fe3+ (Figure 4E). This is consistent with a
mechanism of action wherein halicin may bind iron prior to
membrane association and DpH dissipation.

Halicin Displays Efficacy in Murine Models of Infection
Given that halicin displays broad-spectrum bactericidal activity
and is not highly susceptible to plasmid-borne antibiotic-resis-
tance elements or de novo resistance mutations at high fre-
quency, we next asked whether this compound might have
utility as an antibiotic in vivo. We therefore tested the efficacy
of halicin in a murine wound model of A. baumannii infection.
On the dorsal surface of neutropenic BALB/c mice, we estab-
lished a 2 cm2 wound and infected with !2.5 3 105 CFU of
A. baumannii strain 288 acquired from the Centers for
Disease Control and Prevention (CDC). This strain is not suscep-
tible to clinical antibiotics generally used for treatment of
A. baumannii, and therefore represents a pan-resistant
isolate. Importantly, halicin displayed potent growth inhibition
against this strain in vitro (MIC = 1 mg/mL; Figure 5A) and
was able to sterilize A. baumannii 288 cells residing in metabol-
ically repressed conditions (Figures 5B, S4A, and S4B). After 1 h
of infection establishment, mice were treated with Glaxal
Base Moisturizing Cream supplemented with vehicle (0.5%
DMSO) or halicin (0.5% w/v). Mice were then treated after 4 h,
8 h, 12 h, 20 h, and 24 h of infection, and sacrificed at 25 h
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Figure 5. Halicin Displays Efficacy in Murine Models of Infection
(A) Growth inhibition of pan-resistant A. baumannii CDC 288 by halicin. Shown is the mean of two biological replicates. Bars denote absolute error.

(B) Killing of A. baumannii CDC 288 in PBS in the presence of varying concentrations of halicin after 2 h (blue), 4 h (cyan), 6 h (green), and 8 h (red). The initial cell

density is !108 CFU/mL. Shown is the mean of two biological replicates. Bars denote absolute error.

(C) In a wound infection model, mice were infected with A. baumannii CDC 288 for 1 h and treated with either vehicle (green; 0.5% DMSO; n = 6) or halicin (blue;

0.5% w/v; n = 6) over 24 h. Bacterial load from wound tissue after treatment was determined by selective plating. Black lines represent geometric mean of the

bacterial load for each treatment group.

(D) Growth inhibition of C. difficile 630 by halicin. Shown is the mean of two biological replicates. Bars denote absolute error.

(E) Experimental design for C. difficile infection and treatment.

(F) Bacterial load of C. difficile 630 in feces of infected mice. Metronidazole (red; 50 mg/kg; n = 6) did not result in enhanced rates of clearance relative to vehicle

controls (green; 10% PEG 300; n = 7). Halicin-treated mice (blue; 15 mg/kg; n = 4) displayed sterilization beginning at 72 h after treatment, with 100% of mice

being free of infection at 96 h after treatment. Lines represent geometric mean of the bacterial load for each treatment group.

See also Figure S4.
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Large-scale virtual screening 

28

• Applied the same model to screen  compounds in the ZINC library


• We identified 8 more compounds with inhibition against E. coli (EC), S. 
aureus (SA), K. pneumoniae (KP), A. baumannii (AB), or P. aeruginosa (PA) 
in vitro
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Figure 6. Predicting New Antibiotic Candidates from Unprecedented Chemical Libraries
(A) Tranches of the ZINC15 database colored based on the proportion of hits from the original training dataset of 2,335molecules within each tranche. Darker blue

tranches have a higher proportion of molecules that are growth inhibitory against E. coli. Yellow tranches are those selected for predictions.

(B) Histogram showing the number of ZINC15 molecules from selected tranches within a corresponding prediction score range.
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Compare GNN with other models

29

Model Feature Rank of 
Halicin

Graph neural network Learned 61

Feed-forward neural network RDKit features (fixed) 273

Feed-forward neural network Morgan fingerprint (fixed) 1217

Random forest Morgan fingerprint (fixed) 2640

Support vector machine Morgan fingerprint (fixed) 771

• Only GNN ranks Halicin among the top 100 compounds. 

• Given our budget, Halicin would not be discovered by other models

Learned features are better than 
hand-designed features



30

Part 2: infuse biological knowledge in GNNs
• Part 1: graph neural networks for antibiotic discovery  
    [ICML’17, NeurIPS’17, JCIM’19, Cell’20]


• Part 2: Incorporate biological knowledge into graph neural networks: 
application to COVID-19 drug combination discovery 

     [PNAS (In submission)]


• Part 3: Generative models for de novo drug design 
     [ICML’18, ICLR’19, ICML’20a,b,c]



Motivation for biology-aware models

31

Property

Representation

• Existing property prediction models only 
look at the chemical structure


• But properties may depend on additional 
biological information

Biology-
aware

Biology-
aware



Case study: COVID-19 drug combinations

32

Mortality rate in a recent clinical trial 
(Beigel et al., 2020)

Remdesivir

Placebo

0 0.04 0.08 0.12 0.16

15.2%

11.4% Still pretty high!

• Most HIV treatments are drug combinations


• effect( , ) >> effect( ) + effect( )


• Can we find drug combinations for COVID?
HIV



Case study: COVID-19 drug combinations

33

• Two drugs are synergistic if effect( , ) >> effect( ) + effect( )


• Goal: Train a model to predict whether a drug combination is synergistic 


• Challenge: training data is limited (less than 200 drug combinations), but 
deep neural networks are very data hungry

Neural networkBig data

+ + +

Data Neural networkKnowledge



Biological knowledge of viral replication

34

How can a drug block 
COVID-19 infection?


1. Block viral entry by 
inhibiting ACE2 or 
TMPRSS2


2. Inhibit viral proteases: 
3CLpro, PLpro, RdRp


3. Inhibit host targets that 
interact with viral proteins 
(Gordon et al., 2020)

Figure source: Cevik et al., BMJ 2020



Antiviral 
activity

Representation

ComboNet incorporates biology & chemistry

35

• Synergy comes from inhibition of certain biological targets (e.g., proteins)


• Model biological interaction  additional data  better generalization⇒ ⇒

…
…

Chemical representation 
(to be learned)

Biological representation 
(to be learned)



ComboNet learns drug-target interaction

36

1. Predict drug-target interaction — whether drug A inhibits target B

3CLpro
ACE2
……

Drug-target interaction data

(ChEMBL and NCATS)

⏞

Instead, predict whether a drug 
inhibits a biological target

⏞

Learned representation of 
the molecular structure

…
…

HDAC2

Compound Graph 
convolution

Representation

Targets involved in COVID-19 infection

1 0 0

0 1

0 1 1

0 0C
om

po
un

ds 0.3 0.1 1 0.3 0.4 0.6 0.1 0 0.7 0

0.9 0.2 0.3 0 0.9 1 0.8 0.4 0.1 0.7

0.1 0 0.5 0.1 1 0.1 0.9 0.4 1 0.3

0 0.3 0.2 0.7 0.1 0.2 0 0.8 0.1 0.5

Too sparse to 
use as features



ComboNet learns antiviral activity

37

2. Single-agent antiviral activity prediction

Antiviral 
activity pA

Feed-forward 
network

Single-drug antiviral 
activity data (NCATS)

Graph 
convolution

3CLpro
ACE2
……

…
…

HDAC2

RepresentationCompound

Drug Reserpine Remdesivir Penicillin Halicin

Antiviral? Yes Yes No No



Feature representation of 
drug combination (A, B)

zAB = zA + zB − zA ⋅ zB

ComboNet learns antiviral synergy

38

3. Predict synergy for drug combinations

zA

zB

bliss

Synergy

sAB

Compound A

Combination 
synergy data


(NCATS)

pA

Single-drug 
antiviral activity

pB

pAB

Combination 
antiviral activity

3CLpro
ACE2
………

…

HDAC2

3CLpro
ACE2
………

…

HDAC2

zAB
3CLpro
ACE2
………

…

HDAC2

Compound B



ComboNet performance

39

• Training set (88 drug combinations);      Test set (71 drug combinations)

ComboNet AUC is 
0.8 on average

RO
C

-A
U

C

Standard models 
cannot generalize

Remove chemical 
or biological 

information hurts



Discover new drug combinations

40

Drug Virus alive (%)

Remdesivir 77.3%

Reserpine 42.5%

Combination 3.2%

Drug Virus alive (%)

Remdesivir 81.7%

IQ-1S 65%

Combination 0%

Remdesivir + reserpine Remdesivir + IQ-1S

• Collaboration with National Center for Advancing Translational Science (NCATS)


• We experimentally tested top drug combinations in NCATS Vero E6 cell assays


• Further studying these combinations in human cell lines
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Part 3: de novo drug design
• Part 1: graph neural networks for antibiotic discovery  
    [ICML’17, NeurIPS’17, JCIM’19, Cell’20]


• Part 2: Incorporate biological knowledge into graph neural networks: 
application to COVID-19 drug combination discovery 

     [PNAS (In submission)]


• Part 3: Generative models for de novo drug design 
     [ICML’18, ICLR’19, ICML’20a,b,c]



Motivation for de novo drug design

42

• Deep learning can discover new antibiotics and COVID-19 drugs


• Simple approach: train a GNN to rank all the compounds in our library

• Reason: maximize the speed of experimental validation


• Problem: number of drug like molecules = . We can’t rank all of them.1060

Compound 
library 

( )104 − 108
Candidates



Graph generation for de novo drug design

43

• Learn a distribution whose mass is concentrated around “good” molecules


• Let’s train a generative model to directly generate “good” molecules


• It can efficiently explore the entire chemical space (  molecules)1060

How to generate 
molecular graphs?

Generate

A good moleculeGenerative model



Previous solution 1: sequence-based methods

44

Recurrent neural networks (RNNs)

• Prior work used recurrent neural networks to generate molecular graphs

     (Olivecrona et al., 2018; Gomez-bombarelli et al., 2018; Popova et al., 2018; …)


• Convert a molecule into a SMILES string (a domain specific language) 
(Weininger, 1988)

Cc1cn2c(CN(C)C(=O)c3ccc(F)cc3C)c(C)nc2s1

Convert it into a SMILES string

Weininger, D. SMILES, a chemical language and information system. Journal of chemical information and computer sciences, 28(1):31–36, 1988.



Problems of sequence-based approach
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• Prior work used sequence-based generative models for molecular graphs

     (Olivecrona et al., 2018; Gomez-bombarelli et al., 2018; Popova et al., 2018; …)


• But this string representation is quite brittle…

Two almost 
identical graphs

N
N

O

F N

S

F

O

N
N

SN

Cc1cn2c(CN(C)C(=O)c3ccc(F)cc3C)c(C)nc2s1
Cc1cc(F)ccc1C(=O)N(C)Cc1c(C)nc2scc(C)n12

N
N

O

F N

S

F

O

N
N

SN

Cc1cn2c(CN(C)C(=O)c3ccc(F)cc3C)c(C)nc2s1
Cc1cc(F)ccc1C(=O)N(C)Cc1c(C)nc2scc(C)n12

Quite different strings



Previous solution: node-by-node generation
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• A straightforward approach: generate a graph node-by-node (Liu et al., 2018)


• Molecules are typically sparse:  nodes,  edges 


• However, it needs to make  edge predictions in each step


• In total:  edge predictions

N O(N)

O(N)

O(N2)

Add nodes 
one by one

……



Failure of node-by-node generation
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• Node-by-node generation via a variational auto encoder (VAE) (Liu et al., 2018)


• Diagnostic test: can the decoder reconstruct an input molecule? 

Reconstruction accuracy
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48

64

80

Molecule size (number of atoms)

20 40 60 80 100

COVID-19 drug remdesivir
They should 
be the same

encode

decode



We need to leverage inductive bias
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Complexity

Sequence

(text)

Grid graph

(images)

Dense 
graphs

What’s up? All models leverage the inductive 
bias of the structure.

Molecular graphs

Inductive 
bias?

(low treewidth)



Junction tree variational autoencoder
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Junction 
tree

Molecular 
graph

Tree decomposition

Inspired by the junction tree algorithm in graphical models.

Motif

Motif vocabulary

Motifs are small due to low treewidth

250K graphs  638 motifs⇒
99.9% coverage (new graphs)



Details: hierarchical encoder & decoder
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Hierarchical Encoder Hierarchical Decoder

Molecular 
representation

encode decode



Hierarchical graph encoder
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Run graph convolution in the 
molecular graph

Run graph convolution in the 
junction tree

Propagate 
node vectors

Motif vector

Node vector



Step 2: predict how to attach 
this motif to the current graph

Hierarchical graph decoder
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Step 1: predict the next motif

Motif vocabulary



Hierarchical graph decoder
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Attach this motif 
to this graph

Motif-by-motif generation



Motif-by-motif versus node-by-node
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• Training objective: minimize reconstruction loss


• Motif-by-motif generation is able to reconstruct large molecules!

Reconstruction accuracy
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Results: molecular optimization
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• Task: learn to modify a non-drug-like molecule into a drug-like molecule


• Drug-likeness is measured by QED scores (Bickerton et al., 2012)

Drug-likeness optimization

Su
cc

es
s 

ra
te

50

60

70

80

Sequence node-by-node motif-by-motif

76.9
73.6

58.5

Low QED score High QED score

A local modification significantly 
improves drug-likeness



56

Part 3: de novo drug design
• Part 1: graph neural networks for antibiotic discovery  
    [ICML’17, NeurIPS’17, JCIM’19, Cell’20]


• Part 2: Incorporate biological knowledge into graph neural networks: 
application to COVID-19 drug combination discovery 

     [PNAS (In submission)]


• Part 3: Generative models for de novo drug design 
     [ICML’18, ICLR’19, ICML’20a,b,c]



Deep learning for molecular sciences

Deep learning

Drug discovery 
(e.g., de novo drug design)

• Dahl et al., 2015;

• Stokes et al., 2020; 

Chemistry 
(e.g., reaction prediction)

• Duvenaud et al., 2015;

• Coley et al., 2019; 

Biology 
(e.g., protein folding)

• Rao et al., 2019;

• Senior et al., 2020;

Material Science 
(e.g., polymer design)

• Gomez-bombarelli et al., 2018

• Xie et al., 2019
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• Jin et al., 2018; ……

• Jin et al., 2017; ……

• Jin et al., 2020; ……• Jin et al., 2020; ……
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