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Drug discovery Is a time-consuming process

Average time/cost for designing one drug = 1 O years 4 $26Bi
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Figure source: Pharmaceutical Research and Manufacturers of America



Obviously, we can’t wait for 10 years...

COVID-19

CORONAVIRUS DISEASE 2019

&) Worldwide

Total cases

108M

Recovered

Recovered

60.6M

Deaths

481K

+5,463

Deaths

2.38M



Drug discovery is a challenging search problem

I—IF _ﬁ A good drug (e.g., Kills virus)
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Data source: PhRMA.org
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Automate drug discovery with computation

encodes

~~ .

{
Efficient Drug?

Let Al find
good drugs!

Figure source: Andrii Buvailo



Computational drug discovery: three schemes

Functional space Simulation Virtual screening De novo drug design

Desired properties (redox

j timization,
Simufﬁﬁen”(”gqgﬁﬁgém or High-throughput virtual evolu(t)igr:?rglzitlrg?egies,
Chemical space equation) - screening (e.g., with 3 generative models (VAE,
, - J filtering stages) GAN, RL)

polymers, dyes)

Figure source: Sanchez-Lengeling et al., Science 361, 360-365 (2018)



Simulation is often too slow

Functional space Simulation Virtual screening De novo drug design

Desired properties (redox
potential, solubility, toxicity)

| | Optimization,
High-throughput virtual evolutionary strategies,

screening (e.g., with 3 generative models (VAE,

Chemical space Ttari
, | filtering stages) GAN, RL)

Takes
days for one

(Drug-ik ‘compound

polymers,

Figure source: Sanchez-Lengeling et al., Science 361, 360-365 (2018)



Virtual screening

* Virtual screening: assess whether a compound is a good drug using computation
models (Walters et al., 1998; McGregor et al., 2007; ...)

N
\ =
g\@£8>78>§N -
'\:\) d ) Prediction: good!

N
N i
Compound Virtual screening Experiments
model

* Virtual screening is much faster than experimental screening in web labs.

e It can test 10° compounds within a day, while experimental screening
takes years

* |t is also much cheaper than experimental screening



Virtual screening: inherent trade-off

e Virtual screening is restricted to =ase for
. . synthesis
commercially available compounds \
(e.g., ZINC library)
Virtual
« Advantage: no need to synthesize screening

any compounds (faster testing)

 Limitation 1: it loses coverage — at
best, we can screen 10° compounds

o Limitation 2: traditional technigues

are based on hand-crafted features

Coverage
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De novo drug design

* De novo drug design: directly generate a compound with desired properties
(Moon et al., 1991; Clark et al., 1995; Schneider & Fechner, 2005; ...)

N
— Ji \>73
Property criteria C?\ﬁ S ><w
(potency, safety, ...) 5 S

N
5y N
Drug design model A good drug Experiments
Functional space Chemical space
We need to solve Xx,«—f e E:E X
an inverse problem / o A
Desired properties (redox (Drug ike, photovoltaic

potential, solubility, toxicity) polymers, dyes)
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Virtual screening is restricted to

commercially available compounds
(e.g., ZINC library)

Advantage: can explore the entire
chemical space efficiently

Limitation 1: we need to synthesize
new compounds, which can be hard

Limitation 2: traditional techniques
explores the space based on hand-
designed rules (e.g., genetic algorithms)

Ease for
synthesis

Virtual
screening

De novo drug design: inherent trade-off

De novo
drug design

Coverage
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Deep learning: a promising direction
* Deep learning has achieved human-level accuracy in computer vision (He et al., 2016)

Feature learnin
% A ¥

; ] . — TRUCK
J ﬁE%\@ 28 S - The key to success:
’/ v % o L automatic feature learning
J INPUT (ONVOLUTION+RELU POOLING CONVOLUTION + RELU POOLING P (LATTEN COLUP:ELETED SOFTMAX y
Y Y
FEATURE LEARNING CLASSIFICATION

* Virtual screening: traditional methods are based on hand-crafted features

N
N (@)e)s .
§\<§> : N% Use deep learning to learn Prediction: good!
F

features automatically

He et al., “Deep residual learning for image recognition." CVPR 2016



Deep learning: a promising direction

 Deep generative models can generate realistic text and images with
desired properties

Deep Generate an image

generative of an armchair in the
models shape of avocado

Ramesh et al., 2020

 De novo drug design: generate a compound with desired properties

N
Use deep © o LS\%S
9 _

Property criteria . >\h\1 A good
(potency, safety, ...) Q?T?s(rf;g/e 5 SYN drug
SAN

Silver et al., “Mastering the game of Go with deep neural networks and tree search”, Nature (2016).
Ramesh et al., “DALL-E: creating images from text ”, OpenAl blog
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Main technique: graph neural networks

Virtual screening / molecular property prediction
(Duvenaud et al. 2015; Kearnes et al. 2016; Jin et al., 2C Graph ot al., 2017; ...)
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Stokes, Yang, Swanson, Jin et al, Cell 2020

Example: discovery of new antibiotics

Powerful antibiotics discovered
using Al

Machine learning spots molecules that work even against

nature

‘untreatable’ strains of bacteria.

Powerful antibiotic discovered using

machine learning for first time The

Guardian

Team at MIT says halicin kills some of the world’s most dangerous
strains

Scientists discover powerful B|B

antibiotic using Al
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Outline of today’s lecture

e Part 1: graph neural networks for antibiotic discovery
[ICML’17, NeurlPS’17, JCIM’19, Cell’20]

e Part 2: Incorporate biological knowledge into graph neural networks:

application to COVID-19 drug combination discovery
IPNAS (In submission)]

o Part 3: Generative models for de novo drug design
[ICML'18, ICLR’19, ICML’20a,b,C]
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Part 1: antibiotic discovery

1953: Glycopeptides, Nitroimidazoles, Streptogramins 4 } 1955: Cycloserine, Novobiocin

1952: Macrolides € P 1957: Rifamycins
1950: Pleuromutilins < P 1961: Trimethoprim

1948: Cephalosporins € P 1962: Quinolones, Lincosamides, Fusidic acid

1947: Polymyxins, Phenicols < i P 1949: Fosfomycin

1946: Nitrofurans €~ | s P 1971: Mupirocin
1945: Tetracyclines < | | | | P 19746: Carbapenems

1943: Aminoglycosides, Bacitracin (topical) < . - . | P 1978: Oxazolidinones
1932: Sulfonamides « P 1979: Monobactams
1928: Penicilins < R I e P 1987: Lipopeptides

(1990

980

1970

History of antibiotic discovery

1940 SRl 1 o5 B 1 o,

930

2000 M 2010

e

\_

1920 >
A \
o After 1990s, we struggle to discover novel antibiotic classes (Silver et al., 2011;
Brown et al., 2014; Shore & Coukell, 2016)
e \WWe need novel antibiotic classes due to antibiotic resistance

Figure source: ReAct group FDA = U.S. Food and Drug Administration
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Virtual screening for antibiotic discovery

* Through collaboration with the Broad Institute, we collected 2560
molecules with measured growth inhibition against E. coli (BW25113)

Drug Antibacterial
Nitrocefin Yes
"""" Reserpine  No
""""" Penicilin ~ Yes
"""""""" Q1s  No

Training
data

Why graph neural
networks?

.
" Predict
.\\“\‘,, g\“,‘;//. reaic
» Y ,W MR

0
g ‘1:;\ ;;:; g;:@,;;,," e antibacterial
properties

/X
0.'»4\‘\\'/«'0\\\--'; w‘*om

,‘\vo/ '/ 'n‘\\\' e It\\
X \V//'-v'

Graph neural network
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Traditional approach: hand-crafted features

Traditional methods are based on fixed, hand-
engineered molecular features.

Molecular weight, number of heavy atoms

More sophisticated features: Morgan
fingerprint (Rogers & Hahn 2010)

Exhaustive enumeration of all possible
substructures, up to radius 3

Result: high dimensional features (2048),
different substructures merged by hash

20



Problem of traditional features

* Traditional methods are based on fixed, hand-engineered molecular features.
 Molecular weight, number of heavy atoms, etc.

* Problem: we don’t know all the antibacterial patterns
 So these hand-engineered features can miss some of the unknown patterns

 Graph neural networks automatically learn a feature representation from data

N

AN
g\@£8>7 S>\N
) ;

HoN

®

\\\' \\\VAV//:
e e 7aNY /aN\N eV 'e

Prediction: good!

Compound
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Graph neural network (GNN)

* Rich history of GNNs (Gori et al., 2005, Scarselli et al., 2009, Duvenaud et
al. 2015, Kearnes et al. 2016, Jin et al., 2017, Gilmer et al., 2017, Zitnik et
al., 2018, etc.)

* A molecule is represented as a graph

H Each bond is an edge in the graph

N
<©>/ “cl Each atom is a node in the graph

22



Graph neural network (GNN)

Graph
convolution

It

larg

Pooling

i

dachshdeature
sepipsgitation
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Graph neural network (GNN)
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\_/
Feature Feed-forward
representation network

(®e® © 000 )
Hand-crafted features

<e '
<,
/760,
Deep learned features

00 © 000 O ¢

Antibacterial
—_—
property

Antibacterial
property
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Use GNN for virtual screening

 We virtually screened 10* compounds in Broad drug repurposing hub

 We experimentally tested the top 99 compounds in the Broad Institute

e 51 of them are indeed antibacterial — hit rate = 51.5%

N
| s
Cc)a\ﬁLs >\ Compound SU3327

tructural =N
51 drugs Snr:\(/:eltfc;/a 5 SY\N (renamed as Halicin)
HoN
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Halicin Is a novel and potent antibiotic

* Halicin shows potent growth inhibition against E. coli in vitro

* |t is also structurally different from known antibiotics

0.7 1
0.6 N
> 08 [ D—s
05 £ S o <
E o 2 05 ®F )=
S 41 Inhibition g 4 Y
A c v
° 02 = H,N
' ©
= 02 C _ ey
0.1 v | Low similarity to existing antibiotics
0
10° 10 102 102 107" 10° 10" 10% 10° 0 500 1000 1500 2000 2500

[halicin] pg/ml Ranked training set molecules



Halicin is potent to resistant bacteria in mice

@

Strong in vivo inhibition against
resistant C. difficile

Strong in vivo inhibition of
pan-resistant A. baumannii

10° 10°
8
108 TWY. 0
® 7
® 0
107 6 o
. . D - . . .
S 108 Infection is gone > 05 Bacteria still alive
LL . _ y . .
o with halicin O 10 ® with metronidazole
10 O 104 vehicle L4 2 o
) metronidazole (50 mg/kg) —_  ®
10 10°< halicin (15 mg/kg) ®
° Infection is gone
(0.5% DMSO) (0.5% w/v) Time after infection (hours)
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Large-scale virtual screening

. Applied the same model to screen 10° compounds in the ZINC library

* \We identified 8 more compounds with inhibition against E. coli (EC), S.

aureus (SA), K. pneumoniae (KP), A. baumannii (AB), or P. aeruginosa (PA)
In vitro

EC SA KP AB PA EC SA KP AB PA
gt SO, o 001025 4 025 0.06
SO s T QNQQW T
Minimum inhibitory O o Minimum inhibitory

concentration (¢M) concentration (1M)
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Compare GNN with other models

 Only GNN ranks Halicin among the top 100 compounds.

* Given our budget, Halicin would not be discovered by other models

Rank of
Feature ..
Halicin
Graph neural network Learned 61
Feed-forward neural network  RDKIit features (fixed) 273 Learned features are better than

hand-designhed features
Feed-forward neural network  Morgan fingerprint (fixed) 1217

Random forest Morgan fingerprint (fixed) 2640

Support vector machine Morgan fingerprint (fixed) 771
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Part 2: infuse biological knowledge in GNNs

e Part 1: graph neural networks for antibiotic discovery
[ICML’17, NeurlPS’17, JCIM’19, Cell’20]

e Part 2: Incorporate biological knowledge into graph neural networks:

application to COVID-19 drug combination discovery
IPNAS (In submission)]

o Part 3: Generative models for de novo drug design
[ICML'18, ICLR’19, ICML’20a,b,C]
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Motivation for biology-aware models

Representation

____ DBiology- | Property
aware

Biology-
aware

|
!
(00000)

02

* EXisting property prediction models only
look at the chemical structure

 But properties may depend on additional
biological information
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Case study: COVID-19 drug combinations

Mortality rate in a recent clinical trial
(Beigel et al., 2020)

Still pretty high!

Remdesivir

Placebo

0 0.04 0.08 0.12 0.16

 Most HIV treatments are drug combinations
» effect(@, @) >> effect(@)) + effect(@D)

» Can we find drug combinations for COVID?

32



Case study: COVID-19 drug combinations

» Two drugs are synergistic if effect(@_, @) >> effect(@) + effect(@)
 Goal: Train a model to predict whether a drug combination is synergistic

 Challenge: training data is limited (less than 200 drug combinations), but
deep neural networks are very data hungry

O—_o—19 - N 0—_qo —9

Big data Neural network Data Knowledge Neural network

33



Biological knowledge of viral replication

@ SARS-CoV-2 binding to ACE2 receptor and viral entry

How can a drug block
COVID-19 infection?

‘ Virus release

TMPRSS2

1. Block viral entry by
inhibiting ACE2 or
TMPRSS2

Ribosome o

KT

AR ‘/ @ Translation
1a and Y :

pppp1ab T— ,.-:. \ &) Viral assembly

@ Proteolysis

2. Inhibit viral proteases: -9
3CLpro, PLpro, RARp e

complx j@ RNA replication RNA genome

. . | @ ';R,r:faciré;;?‘zrr\n aend replication
3. Inhibit host targets that ﬁﬁm&gﬁm ,
interact with viral proteins :

(" I N ucleocapsid (N) (7) Viralprotein gy O
Spike (S) 1 translation
I \cmbrane (M) > \

Gordon et al., 2020 ‘Giffmfa:n;;
" subgenome RNA

B A\ ccessory
(+ sense) - '

ER-Golgi intermediate
complex

S

Endoplasmic
reticulum (ER)

Figure source: Cevik et al., BMJ 2020



ComboNet incorporates biology & chemistry

 Synergy comes from inhibition of certain biological targets (e.g., proteins)

 Model biological interaction = additional data = better generalization

Representation A Biolog(;icil errese(r;)tation
to be learne

2
_g kx — : EE:E:_, Antiviral
OO \ \\ \ E : :5:_—\-—0 activity

\_ ® Chemical representation

(to be learned)
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ComboNet learns drug-target interaction

1. Predict drug-target interaction — whether drug A inhibits target B

Graph
convolution

b

Compound

Drug-target interaction data
(ChEMBL and NCATS)

NEANANR

\(g...,,}...}})

Compounds

3CLpro
ACE?2

Representation

Instead, predi
<

Iglalle)

\m@m\w
use

_ Learned repr

TargeteGAVOICEY IR BHAI PO infection

1

g

ealures

whether a drug

8

tgré%t

entation of

0.1
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0.6
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0

0.7
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0.3

0

0.9

1

0.8

0.4

0.1
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0.1
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0.5

0.1
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0.9

0.4

1

0.3

0.3
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0.1
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0.1
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ComboNet learns antiviral activity

2. Single-agent antiviral activity prediction

Compound Graph

convolution

Single-drug antiviral
activity data (NCATS)

A

}m

& |

Representation Feed-forward
network

T 3CLpro

A | ACE2

...... :>.\. o

A | HDAC2 " Antiviral

® o=— o —® activity p,

O o

\J

Drug Reserpine | Remdesivir| Penicillin Halicin
Antiviral? Yes Yes No No
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ComboNet learns antiviral synergy

3. Predict synergy for drug combinations

Compound A

Compound B

Y-

b o7
i 74
Pi ald)

-

Di\] C“‘>>>)

C...}}}) b@l

3CLpro
ACE?2

Combination

synergy data
Single-drug (NCATS)
antiviral activity
:>o\.
S e—0—o
S o=——®
o
4
%BSCL Combination Synergy
pro Y .
Alnce  rg—e SRR
3 I ° _ o
—> : HDAC2 —ézé‘—%:aﬂen]@ﬁﬁ)_, g —_— SAB
O o ° B — <A <
& A
S e—0—oe p
o=——®
o
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ROC-AUC

0.8

0.7

0.6

0.5

0.4

* Training set (88 drug combinations);

ComboNet performance

( i )
- | \J

—

(
¢
1 ¢
\_ _J
¢
SVM RF DNN GCN ComboNet ComboNet ComboNet ComboNet

(no HIV) (no DTI) (no chem)

Test set (71 drug combinations)

ComboNet AUC is
0.8 on average

Remove chemical
or biological
iInformation hurts

Standard models
cannot generalize
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Discover new drug combinations

* Collaboration with National Center for Advancing Translational Science (NCATS)

* We experimentally tested top drug combinations in NCATS Vero E6 cell assays

* Further studying these combinations in human cell lines

Remdesivir + reserpine

9.8 7.8 9.1 11.6 56.2 42.5

52 32 11.6 81.8 97.2 96.5 XEEkE

0 97.3 100 100 95.9 99.1 EYAEY;
85.3 99.7 99.1 98.3 100 100 EpE@H

77.3 95.9 99.3 98.8 99.5 96.1 H¥

10000.03333.331111.11370.37 123.46 0.0

Remdesivir (nM)

Drug éVirus alive (%)

Remdesivir 77.3%

...................................................................................................

...................................................................................................

Remdesivir + 1Q-1S

0 3 61.8 70.9 65 MY
0 0 71.9 91.8 85.1 92.7 FEEEkE
0 71.8 94.9 94.7 89.2 97.2 NEERH
31.8 97.8 100 95.8 99.1 99.5 EFiEY.
71.5 96.1 98 99.5 98.7 100 EpE¥n

81.7 94.1 100 94.7 100 98.3

10000.03333.331111.11370.37 123.46 0.0

Remdesivir (nM)

1Q-1S (nM)

Drug éVirus alive (%)

Remdesivir  81.7%
IQ-1S 65%
Combination 0%
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Part 3: de novo drug design

e Part 1: graph neural networks for antibiotic discovery
[ICML’17, NeurlPS’17, JCIM’19, Cell’20]

e Part 2: Incorporate biological knowledge into graph neural networks:

application to COVID-19 drug combination discovery
IPNAS (In submission)]

o Part 3: Generative models for de novo drug design
[ICML'18, ICLR’19, ICML’20a,b,C]
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Motivation for de novo drug design

* Deep learning can discover new antibiotics and COVID-19 drugs

 Simple approach: train a GNN to rank all the compounds in our library

 Reason: maximize the speed of experimental validation

. Problem: number of drug like molecules = 10°°. We can’t rank all of them.

® [)
o 7 ANST AN o
. (// \\'Il[‘ . \\\\\ llll/ . ‘\\\‘(// \\‘
7 NSNS\
\NGZ2 ¢ \v ¢ 4//‘\\ X //‘\\ N 0 N4
NS\ L0/ PN SN 1/) i N s S
© SO0 @ W 0 NN
N0 @ T N 0 U

XA O Y }I"" ‘Q"A’;‘ AVLO
R RN S SRR RN

Compound
library

Candidates

ARIK XA ;;’;’ 'l),'(}(\‘. AN KR % \“;
PSORS o 2 X SIS 0 S
4 8 NG R o NS0 2y SIS
( ) - (‘\\ //« X NN 4‘)“\\\ //‘)‘"

% f,li'é \“:‘" n‘{;"z&& ‘:s‘ 'i,, & \}
VAV
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Graph generation for de novo drug design

 Learn a distribution whose mass is concentrated around “good” molecules

e Let’s train a generative model to directly generate “good”™ molecules

. It can efficiently explore the entire chemical space (10°° molecules)

\V(//A\m/i\\‘

“v"/‘\ w/‘\

\
\\\&lll
\.!",’fé 0 o 0 S

Generate

. \'/\'/ ,’: ] How to generate
e W/ \Y /i;““
\\\‘/‘\\V/&\W}",V' molecular graphs?

Generative model A good molecule



Previous solution 1: sequence-based methods

* Prior work used recurrent neural networks to generate molecular graphs
(Olivecrona et al., 2018; Gomez-bombarelli et al., 2018; Popova et al., 2018; ...)

 Convert a molecule into a SMILES string (a domain specific language)
(Weininger, 1988)

Convert it into a SMILES string Over | [the | (e ] [ 1 [<eow

a [ V-2 Cclen2c(CN(O)C(=0)c3eec(F)ee3C)e(Cne2s g 1 e o
e ’l\ | | AIHHj;»IIH%I'I %ﬂ{: ST~
.;. . e -EE;:I -0 OO -0

Recurrent neural networks (RNNSs)

Weininger, D. SMILES, a chemical language and information system. Journal of chemical information and computer sciences, 28(1):31-36, 1988.



Problems of sequence-based approach

* Prior work used sequence-based generative models for molecular graphs
(Olivecrona et al., 2018; Gomez-bombarelli et al., 2018; Popova et al., 2018; ...)

» But this string representation is quite brittle...

» Cclen2¢(CN(C)C(=0)c3cec(F)ee3C)c(C)nc2sl

Two almost

ite diff t stri
dentical graphs Quite different strings

> Cclce(F)ceelC(=O)N(C)Ccelce(C)nc2see(C)nl2
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Previous solution: node-by-node generation

* A straightforward approach: generate a graph node-by-node (Liu et al., 2018)

Add nodes
one by one

» Molecules are typically sparse: N nodes, O(/N) edges
» However, it needs to make O(/N) edge predictions in each step

. In total: O(N?) edge predictions
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Failure of node-by-node generation

 Node-by-node generation via a variational auto encoder (VAE) (Liu et al., 2018)

* Diagnostic test: can the decoder reconstruct an input molecule?

/// l encode

They should
be the same (00000)

\\\ l decode

Reconstruction accuracy

Qo
O

@))
~

/ COVID-19 drug remdesivir

N
@)

O8]
N

Accuracy

—
@))

-

20 40 60 80 100

Molecule size (number of atoms)




We need to leverage inductive bias

Inductive
. bias?
Seguence Grid graph Molecular graphs Dense

(text) (images) (low treewidth) graphs

@ @ & @ -
Complexity

® $
® 4
® 4
¢ ®

* — L L

¢ L 4 L 9
¢ L L L
¢ L 2 ¢ L J
*— & ®

What's up?)

All models leverage the inductive
bias of the structure.
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Junction tree variational autoencoder
I Motifs are small due tol%regvlldlh I
o O‘.

o=
Junction
‘ @ ,< tree j— Motif vocabulary ...
Tree de'composition S
| 250K graphs = 638 motifs
99.9% coverage (new graphs)
Molecular
graph

Inspired by the junction tree algorithm in graphical models.
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Detalls: hierarchical encoder & decoder

Hierarchical Encoder Hierarchical Decoder

I »l

encode

=

(00000)

Molecular
representation

!
&
!
!
8
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Hierarchical graph encoder

Motif ve@
O—=0 O=0 O=0
s ‘H ‘ Run graph convolution in the
# k junction tree

"
/7 / Propagate
7 node vectors

— Run graph convolution in the
molecular graph
H ﬁode ve@
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Hierarchical graph decoder

Step 1: predict the next motif

Step 2: predict how to attach
this motif to the current graph

52



53

10N

motif generat

Motif-by

| graph decoder

O

h

- Attach this motif
to this graph
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Motif-by-motif versus node-by-node

* Training objective: minimize reconstruction loss

» Motif-by-motif generation is able to reconstruct large molecules!

Reconstruction accuracy

¢ 90 Motif-by-motif
: O\o/o\o/o generation
72
l encode -
' 54
They should (00000 %
be the same 3 36
l decode "
- . Node-by-node
Vo 20 40 60 80 jop ~ generation

Molecule size (number of atoms)
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Results: molecular optimization

* Task: learn to modify a non-drug-like molecule into a drug-like molecule

* Drug-likeness is measured by QED scores (Bickerton et al., 2012)

Low QED score High QED score Drug-likeness optimization
80
)
’ © 70
)
)
D
O
S 60
\ / 7
A local modification significantly
improves drug-likeness 50

Sequence  node-by-node motif-by-motif
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Part 3: de novo drug design

e Part 1: graph neural networks for antibiotic discovery
[ICML’17, NeurlPS’17, JCIM’19, Cell’20]

e Part 2: Incorporate biological knowledge into graph neural networks:

application to COVID-19 drug combination discovery
IPNAS (In submission)]

o Part 3: Generative models for de novo drug design
[ICML'18, ICLR’19, ICML’20a,b,C]
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Deep learning for molecular sciences

Drug discovery
(e.g., de novo drug design)

* Dahl et al., 2015;
Stokes et al., 2020;
Jin et al., 2018; ......

Deep learning
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Chemistry

(e.g., reaction prediction)

e Duvenaud et al., 2015;
Coley et al., 2019;

Jinetal., 2017; ......

// ‘ “. l"A &'//l,‘f }X\\'/I ‘\\ .v"

\\\V""““\V//’

Biology
(e.g., protein folding)

Material Science
(e.g., polymer design)

e Raoetal., 2019;
Senior et al., 2020;

Jin et al., 2020; ......

Gomez-bombarelli et al., 2018
e Xieetal., 2019
Jin et al., 2020; ......
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