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=PFL_ On the importance of getting to know your neighbors

and [13] for many additi examples of lications of deep learning). Today, deep learning
has matured into a technology that is widely used in commercial applications, including Siri speech reeog
nition in Apple iPhone, Google text translation, and Mobileye vision-based technology for autonomously
driving cars.
Michael M. Bronstein, Joan Bruna, Yann LeCun, Ore of the Key reasons for the success of deep neural networks i their ablity to leverage sta
tistical properties of the data, such as stati and ity through local statistics,
Arthur Szlam, and M which are present in natural images, video, and speedii4], [15]. These statistical properties
have been related to physic§16] and formalized in specific classes of convolutional neural
networks (CNNs) [17]-[19]. In image analysis applications, one can consider images as
functions on the Euclidean space (plane), sampled on a grid. In this setting, stationarity
is owed to shift invariance, locality is due to the local connectivity, and compositional
ity stems from the multiresolution structure of the grid. These properties are exploited
Y by convolutional architectureg20], which are built of alternating convolutional and
e downsampling (pooling) layers. The use of convolutions has a twofold effect. First, it
allows extracting local features that are shared across the image domain and great
ly reduces the number of parameters in the network with respect to generic deep
architectures (and thus also the risk of overfitting), without sacrificing the expres
sive capacity of the network. Second, the convolutional architecture itself imposes
some priors about the data, which appear very suitable especially for naturalimages
071-09), 211
While deep-learning models have been particularly successful when dealing
with speech, image, and video signals, in which there are an underlying Euclide
an structure, recently there has been a growing interest in trying to apply learning
on non-Euclidean geometric data. Such kinds of data arise in numerous applica
tions. For instance, in social networks, the characteristics of users can be modeled
as signals on the vertices of the social grapti22]. Sensor networks are graph models
of distributed interconnected sensors, whose readings are modeled as time-depen
dent signals on the vertices. In genetics, gene expression data are modeled as signals
defined on the regulatory network23]. In neuroscience, graph models are used to rep
resent anatomical and functional structures of the brain. In computer graphics and vision,
three-dimensional (3-D) objects are modeled as Riemannian manifolds (surfaces) endowed
with properties such as color texture.

any scientific fields study data with an underlying
structure that is non-Euclidean. Some examples
include social networks in computational social sei
ences, sensor networks in communications, furc @
tional networks in brain imaging, regulatory networks in
genetics, and meshed surfaces in computer graphics. In
many applications, such geometric data are large and com
plex (in the case of social networks, on the scale of billions)
and are natural targets for machine-learning techniques.
In particular, we would like to use deep neural networks,
which have recently proven to be powerful tools for a broad
range of problems from computer vision, natural-language
processing, and audio analysis. However, these tools have
been most successful on data with an underlying Euclidean or
grid-like structure and in cases where the invariances of these
structures are built into networks used to model them.
Geomemc deep learnings an umbre]la term foremerging
tured) deep neural mod
els to non-Euclidean domains, such as graphs and manifolds. The
purpose of this article is to overview different examples of geometric o
deep-learning problems and present available solutions, key difficul
ties, applications, and future research directions in this nascent field.

tec

/ [ \ [ The non-Euclidean nature of such data implies that there are no such familiar properties as

/ ) { A ® global parameterization, common system of coordinates, vector space structure, or shift
Overview of deep learning ® O o ° ° ° invariance. C basic ions like ¢ ion that are taken for granted in
Deep learning refers to learning complicated concepts by building them from ° ? p the Euclidean case are even not well defined on non-Euclidean domains. The purpose
simpler ones in a hierarchical or multilayer manner. Artificial neural networks are 0 o o' o ? .

popular realizations of such deep multilayer hierarchies. In the past few years, the growing *
computational power of modern graphics processing unit (GPU)-based computers and the avail

ability of large training data sets have allowed successfully training neural networks with many layers

and degrees of freedom (DoF)[1]. This has led to qualitative breakthroughs on a wide variety of tasks, from
speech recognitiori2], [3] and machine translatiori4] to image analysis and computer visioris]-[11] (see [12]

o of this article is to show different methods of translating the key ingredients of suc
cessful deep-learning methods, such as CNNs, to non-Euclidean data.

Geometric learning problems
Broadly speaking, we can distinguish between two classes of geometric
learning problems. In the first class of problems, the goal is to characterize

r> o the structure of the data. The second class of problems deals with analyz
. -9 < ing functions defined on a given non-Euclidean domain. These two class
es are related, because understanding the properties of functions defined
. ° . ¥ S . . .
- on a domain conveys certain information about the domain, and vice
versa, the structure of the domain imposes certain properties on the func
Geometric Deep Learnlng y

Structure of the domain
As an example of the first class of problems, assume to be given a set of

Going beyond Euclidean data

data points with some i i structure intoa
P é ®. o |1® . ] high-dimensional Euclidean space. Recovenng that low-dimensional structure
v G is often referred to asmanifold learningor nonlinear dimensionality reduction
4 ° S s . . PP
Dol Object s 101 10SMSP20T7 2695415 - oz LN apd isan |ns(ancg of unsupervised learning (note th;.at the notion ofrr}amfold in this
Date of publication: 11 July 2017 é . setting can be considerably more general than a classical smooth manifold; see, e.g.,
° o



=PFL Qutline

I) Brief intro to protein structure and function
Il) Deciphering surface fingerprints for protein functional assignment

lll) Fingerprint-driven design of de novo protein-protein interactions



=PFL  Proteins are a fundamental molecular unit of life

Amino acids Molecular function(s)

- Binding/recognition
- Catalysis
- Mechanical functions

Biological function(s)
- Proliferation

GenetiC F0|ded protein - Metabolic processes
. . - Host defense
information structure
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Maltose substrate

Transport (calcium pump)

Intracellular
Cytosol S~ insulin effects

Communication (insulin)

= Catalysis (enzyme) Structure (collagen)



=PFL Pre-emptively addressing a common point !!!

AlphaFold2 from Google DeepMind did not solve all the scientific questions
in protein science.

Structure prediction Function prediction X
problem problem

Sequence ——> Structure

T1037 / 6vr4 T1049 / 6yaf
90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)
® Experimental result
® Computational prediction
- Protein-protein Protein-metabolite

interactions interactions



=PFL “If you want to understand function - study structure”(Crick)

Protein structures are studied at different levels

Secondary Graph Point cloud Molecular
structures (stick diagram) (atomic diagram) surface
(ribbon diagram)
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PFL Dissimilar sequence, dissimilar structural architecture,
but similar function

Yin et al. 2009

-Some similarities can be observed at the surface level.
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=P*LThe many (sur)faces of protein structures

Can we identify surface patterns that reveal functional features of proteins ?

Gainza,..., Correia P (
_ Nature Methods, 2020 ul ‘
Pablo Gainza & Freyr Sverrisson



" Which data science framework to use ?

DeepjLearning




7 Prototypical objects

Surfaces
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" MoNet architecture

 Vertex-wise d-dimensional features: n X d
matrix X

Monti et Bronstein 2017



" MoNet architecture

* Vertex-wise d-dimensional features: n X d
matrix X

* Local geodesic polar coordinates u;; around i

Monti et Bronstein 2017



" MoNet architecture

 Vertex-wise d-dimensional features: n X d
matrix X

* Local geodesic polar coordinates u;; around i

* Local weights w; (u), ..., w; (u) w.r.t.u, e.g.
Gaussians:

wpe(u) = exp (—(u — 1) 2 (u - lle))
‘soft pixels’

Monti et Bronstein 2017



" MoNet architecture

 Vertex-wise d-dimensional features: n X d
matrix X

* Local geodesic polar coordinates u;; around i

* Local weights w; (u), ..., w; (u) w.r.t.u, e.g.
Gaussians:

wpe(u) = exp (—(u — 1) 2 (u - lle))
‘soft pixels’

L HEEEEEEEEEEEEEEEEEEN
« Spatial convolution with filter g: T
,._25:1% 7]'1=1W{’(uij)xj

P =
25:1 ge Z?=1 Wy (uij) Monti et Bronstein 2017
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=P*LThe many (sur)faces of protein structures

Can we identify surface patterns that reveal functional features of proteins ?

Gainza,..., Correia P (
_ Nature Methods, 2020 ul ‘
Pablo Gainza & Freyr Sverrisson
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"L Molecular surface interaction fingerprints (MaSIF)

MaSIF — a framework to generate fingerprint descriptors (vectors) that encode surface

features
AN

Mg\

Chemical features EE—

extraction of patches .o A p - L "
N 5 ey M g

Approach: systematic - Geomeric features

Shape Distance-dependent| Hydropathy  Continuum  Free electrons

L index curvature L electrostatics protons
SR> A3 2 ¢
3 Polar ————  MaSIF- Geometric deep learnin
! (" coordinates P 9
Pt . v 4 N filters
S . e =4 e
« Patch center points BN a @ - Ty ;
. NELSRTHARA 5 = s S
-PatCh radluS Angular coordinates | _y < F ‘ 5 N O
\ ISP o ) - N
RS2 x > o 8 | .
Map features B _—
to learned . -'t Aoplicati
ft grid : ingerprin pplication-
Radial coordinates sortgr Convolutional layers descriptor ) specific Iayers/

In collaboration with Michael Bronstein — Imperial College



"' Molecular surface interaction fingerprints (MaSIF)

Applications

ADP

CoA

FAD 5

HEME | £, -

NAD"

NADP* NADP* Interface

SAM Non-interface

Pocket classification Interface site prediction
MaSIF-ligand MaSIF-site
Ultra-fast PPI search

MaSIF-search




" PocketClassificationwithMasIF 7/} -

ADP mrpox i\éji
= = % o5
Ty
HEME l - Lo
NAD* NADP NAD
NADP* f
SAM vb%»«@ J
CoA
Performance . . .
& Comparison with other predictors
feature contribution
1.0 1
08 .
0.73
§ 0.7 | 0.65 "g 0.8 4
5 06+ 0.55 0
§ 05 | 2
8 04 4 é 0.4 4
LC> 0.3 | () = MaSIF AUC=0.87
8 02 2 7 ——— ProBiS AUC=0.73
© = —— Kripo AUC=0.85
m o1 0.0 4
0.0 0.0 02 0.4 0.6 0.8 1.0
G+C  Geom Chem False positive rate

" MaSIF correctly classifies pockets of proteins independently of sequence identity.



=P*L  Protein-protein interaction site prediction {m ’

Performance
B true interface points
2 I non-interface points
— g ROC AUC: 0.85
g
g
w A
Interface I T
Nornerface OOl i
0.0 0.2 0.4 0.6 0.8 1.0

Predicted interface score

Ubiq. hydrolase
ROC AUC: 0.84

Comparison with other predictors
1.0

[ | :
0.0 0.5 1.0 ’
Interface score oo—m—  —

——ground truth

o
o)

o
'S

Median ROC AUC
(residue)
o
[e2)]

o
N

‘b@
N Q

= MaSIF-site predicts PPI sites in the absence of the information of the binding partner.
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Super-fast search of protein complexes (docking) 4&

Interacting patches Fingerprint Comparisons
I Non-Interacting patches

Interacting Binder

patches

ROC AUC: 0.99 "
on- Target
-~ interacting
patches Q
Random
0 1 2 3 4 5 6 7 8

Fingerprint Distance
MaSIF-search finds true interacting patches with high accuracy



=PrL

Super-fast search of protein complexes (docking)

VN

”?as

Interacting patches Fingerprint Comparisons

I Non-Interacting patches

Interacting Binder

patches

ROC AUC: 0.99

Non-
interacting
patches

Target

Random

0 1 2 3 4 5 6 7 8

Fingerprint Distance
MaSIF-search finds true interacting patches with high accuracy

MaSIF-search workflow

: . Alignment
Fingerprint|_,| Decoy | [AIGNY
scan Selection Reranking




=PrL

Super-fast search of protein complexes (docking) /ﬂ

Interacting patches Fingerprint Comparlsons

I Non-Interacting patches
Interacting Binder
patches -
ROC AUC: 0.99 "

on- Target

-~ interacting

patches
Random

0 1 2 3 4 5 6 7 8

, Fingerprint Distance
Large-scale docking experiment gerp

(100 targets all against all)
Bound Complexes

# solved complexes in Top Time
Method 100 10 1 (min)
PatchDock 40 29 21 2854

MaSIF-search

Decoys = 3000
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Super-fast search of protein complexes (docking) /ﬂ

Interacting patches Fingerprint Comparlsons
I Non-Interacting patches

Interacting Binder

patches

ROC AUC: 0.99 Non- Target
2 interacting

patches

Random

0 1 2 3 4 5 6 7 8
Fingerprint Distance

Large-scale docking experiment
(100 targets all against all)
Bound Complexes

# solved complexes in Top Time
100 10 1 (min})

Method

ZDOCK+ZRANKZ
OCK+ZRAN 75 63 | 48 | 136066

MaSIF-search performs super-fast docking with similar performances to other programs




zerLEnd-to-End MaSIF (dMaSIF) :

-MaSIF limitations:
Slow and high storage requirements

Pre-computation of handcrafted features

2. dMaSIF

b. features ¢. coordinates d. output
-====» pre-processing ——> on the fly

Freyr Sverrisson

Sverrisson, F., Feydy, J., Correia, B. E., & Bronstein, M. M. (2020). Fast end-to-end learning on protein surfaces. bioRxiv.



=PrL dMaSIF - Prediction of surface chemical features "

Electrostatic potentials of the protein surface

Ground truth dMaSIF prediciton Correlation

1.00
0.751
0.50
0.25

8 -
0.004.

Predicted

—-0.25"
—0.50 4

—0.75 $i

-1.00 T T T
-1.0 -0.5 0.0 0.5 1.0

Electrostatics

-1.0

Sverrisson, F., Feydy, J., Correia, B. E., & Bronstein, M. M. (2020). Fast end-to-end learning on protein surfaces. bioRXxiv.



=L dMaSIF - Performance )

-Currently the results are equivalent to the initial MaSIF architecture

1.0 A1
0.8 1
g
@
o 0.6
=
fi
3
o 0.4 1
2
= g o
= Qurs-site
i I
0.2 === Qurs-search i d MaS I F
— MaSIF-site
0.0 === MaSIF-search

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

-These technical improvements will be critical for problems related to protein
flexibility and design

.
Sverrisson, F., Feydy, J., Correia, B. E., & Bronstein, M. M. (2020). Fast end-to-end learning on protein surfaces. bioRxiv.
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=PFL  Future perspectives - Deciphering fingerprints on
interactomes Protein molecular surface Interaction fingerprint

w Homo sapiens
: 2 Proteins

e 3 4 Interactions 135,007

5 Avg. neighbors 6.31

Avg. path length 4.10

o

14,667

> Mus musculus
Proteins 6,108
Interactions 14,688

Avg. neighbors 4.87
"/ " Drosophila melanogaster Avg. path length 4.19 wef
77 Proteins 9,995 A PRAm R . . . .
nvoneignbors 717 | Saccharomyces corovsiae Protein-protein  Protein-metabolite
4.30 j§ Frowns ! . . . .
; ] S Interact 96,311
- ‘. interactions interactions

Avg. path length

Avg. neighbors 31.51
Avg. path length 2.37

Hypothesis: Proteins that perform similar interactions may display
similar ‘fingerprints’ reqardless of their evolutionary history




EPFL  De novo design of protein interactions - an unsolved problem

Designed proteins

Aim: One-sided design to bind to a specific site in a protein target
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=PrL

Challenges in designing computationally de
novo PPIs

|) Empirical scoring functions lack the
accuracy for proper discrimination

II) Solvent absent

[[I) Dynamics absent

. ,/2"//( “\ 4 1\‘\“

\



=P"LExample: Binder design for cancer inmunotherapy target

PD-L1 binds to PD-1 and Blocking PD-L1 or PD-1
inhibits T-cell killing of tumor allows T-cell killing of tumor
cell cell

Tumor cell I;g;gr cell

PD-L1

PD-1 PD-L1 Anti-PD-L1

2018 Nobel Prize
PD-proteins role in

immunotherapy
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MaSIF - De novo design of PPls

Protein DataBase

Target protein: é : Ei E %

(> 11000 monomeric proteins)
PD-L1

VeSiF BT EHET
—

Target surface fingerprint

. Match Transfer
s fragments fragment
 using to stable
fingerprints protein

P 17\\\
) =\
8 %)
o N\~ ESG

Rrnp e mponenm Bl FEM

- Fragment DB : > 100M fragments w/ E. Sverrisson
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Testing new molecules in the lab

Protein sequence

ATGATGLCGTAA =
TACTAGAGCATT % [

DNA strand ug@;f/




=PrL

Testing new molecules in the lab

¢ oo M1SX

Protein sequence

ATGATGLCGTAR
TACTAGAGCATT

DNA strand
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Testing new molecules in the lab

¢ oo M1SX

Protein sequence

ATGATGLCGTAR
TACTAGAGCATT

DNA strand

Cell lysis
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Testing new molecules in the lab Synthesized protein

Protein sequence

ATGATGLCGTAR
TACTAGAGCATT

DNA strand

Protein purification



"L pPD-L1Test Case

135

Rl
RN 4
-

f‘l*

39



"L pPD-L1Test Case

Grafted seeds

40



"L pPD-L1Test Case

K

~

Grafted seeds

N

g

50

Reepcres (RU)

Kp=40pM

-

Kp=322pM Kp=241M Kp =660 nM Kpy= 662 niM
40 0 ]
=) 5 =) = 130
. 2 2. 7. 2
g 2 2 2 100
10 g g2 g g
i e L L ¢ =
0 : : T o ; ‘ o : - o
k ] 200 400 600 400 600 A00 600 0 200 400 600 o 200 200 y
Time (sec) Time (sec) Tune (sec) Time {sec)

41



=PrL

Structural validation of computationally designed binder

Binder Xtal structure
Binder model

Whole complex alignment: 0.77 A

PD-L1

Computational model and experimental x-ray structure are in
= agreement at atomic level w/ S Wehrle, S Tan, G Gao



=PrL

MasSIF uncovers binding motifs distinct from native ligands

PD-L1

-Hot-spot residues do not resemble the interactions present in the native ligand



=F*L Distinctive points in our modeling framework -
State of the art MaSIF

Molecular
Representation

0.10 1
0.05 1

o
2

Scoring
Scheme

-0.05 1
-0.10 1

Energy (kcal/mol)

e —
1 2 3 4 5 6
Atom-pair distance (A)

= residue pairwise interactions = operates at the patch level
= pre-defined physical potentials = task-specific learned potentials



"= Conclusions and Future Work @ '

- Vector fingerprints reveal functional signatures from protein structures
(independent of sequence evolutionary data)

- ldentification of interaction fingerprints for small-molecules and proteins
(critical for function)

- Fingerprint-base comparisons enable ultra fast docking simulations
(unbound docking largely unsolved)

- Generation of protein binders straight of the computational stage (uM range)

- One of the designed binders is in close agreement with the xtal structure



=Pl Outlook
Methods

?(ote'm Unive,'SG

Surface features
¥

« Patch center points
=Patch radius

/'

Surface-centric design
Y&IE YOLE

Roéetta

__él’_—:—

epitope mimickry

Rosétta_surf

TopoBuilder

3D constraint generation

7

Z Searching for the functional sequences
in an immense space of possibilities

Y

b

46

Applications

Genome Engineering

De novo proteins

Respiratory.
syncytial
virus

AR-GEMS

Synthetic Cells
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