# Image-based cell phenotyping with deep learning

Juan C. Caicedo PhD Schmidt Fellow



# Images can be quantified for all kinds of phenotypes

#### **Muscle structure**



**David Thomas** 

#### Patient biopsy tissue



Margaret Shipp/Scott Rodig

Image Mass Spec



Michael Angelo

3D

#### Muscle structure

Control human iPS

Isogenic Duchenne-like iPS



**Olivier Pourquie** 

Allen Institute for Cell Science



# Screen for specific phenotypes using images

### **Treatment for AMKL (leukemia)**



DNA stain with outlines identifying the nuclei

Clinical trials underway for Alisertib in adults with AMKL. Wen Q, et al. (2012). Cell 150(3):575-89





# What is image-based profiling?



Caicedo J.C., Singh S., Carpenter A. "Applications of Image-Based Profiling of Perturbations". Current Opinion in Biotechnology - 2016.

### **ML for image-based profiling - Overview**

- 1. Cell segmentation
- 2. Single-cell representation learning

# 1. Cell segmentation

## **Diversity of cell segmentation problems**





### **Cell segmentation as face detectors**



# **Dataset and challenge**



# **Data Science Bowl — Organization**

**Create annotated dataset** 







# **Training models for segmentation**



## **Diversity of models for image segmentation**



**U-Nets** 

**Feature Pyramid Nets** 

Mask RCNN

### A single model improves accuracy and reduces time





Caicedo, et al. 2019 Nature Methods

### **Existing tools for generic cell segmentation**



Stringer et al. 2020, Nat Meth

**U-Nets** 



Hollandi et al. 2020, Cell Systems

Mask RCNN



Greenwald et al. 2021, BioRxiv

**Feature Pyramid Nets** 

### **Open challenges**

- Collecting larger publicly available datasets
- Learning from few examples with active learning

# 2. Single cell representation learning

## **Representation learning for image-based profiling**

#### 1. Raw images



2. Segmented images



3. Single-cell feature matrices



4. Population profiles of treatments



**5.** Downstream statistical analysis



# **Classical approach to measuring cell morphology**

## **Engineer measurements** Define and compute useful properties



# **Perturbation experiments**



### Weakly supervised learning of single-cell feature embeddings



Main goal: Treatment-level profiling



# **Evaluating Image-Based Profiling**



### 13 data points

# 78 pairwise connections

### Learned representations improve profiling performance

Number of folds of enrichment for top connections to have the same MOA/pathway vs. rest of the connections



% top connections

**Deep learning** 

**Classical features** 





# **Determining variant impact**







**EGFR Wild Type** 









#### **EGFR Mutant**



# **Determining variant impact**



# **Correcting for batch effects**



### **Correcting for batch effects — Gradient Reversal Layer**



### **Minimizing batch effect confounders**

0 CTRL • 1 DS1 . 0 DGK 1 DS2 10 10 0 FIG4 1 DS3 0\_GDAP1 1\_DS4 0 GUK1 1 DS5 8 8 0 KIF1A 1 DS6 0 MFN2 1 DS7 6 6 0 RRM1 1\_DS8 0 VCP 1 DS9 4 4 2 2 0 0 -2 -2 -4 0.0 2.5 5.0 7.5 10.0 12.5 15.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 ResNet18GRL - validation 0 CTRL •

0 DGK 10 0 FIG4 0 GDAP1 0 GUK1 8 0 KIF1A 0 MFN2 6 0 RRM1 0 VCP 4 2 0 -2 -4 0.0 2.5 5.0 7.5 10.0 12.5 15.0



ResNet18GRL - training

## **Open challenges**

- Domain adaptation and batch effect correction
- Explainable models and interpretation capabilities

# Image-based Profiling

### Extracting information from biomedical images

1. Raw images



1. Raw diamonds

2. Single cells



- 2. Pieces of diamond

3. Feature extraction



3. Diamond polishing

4. Aggregated profiles





4. Jewelry

# Thank you!