Image-based cell phenotyping
with deep learning

Juan C. Caicedo PhD
Schmidt Fellow

E=BROAD

A INSTITUTE



Images can be quantified for all kinds of phenotypes

Muscle structure Patient biopsy tissue Image Mass Spec

David Thomas Margaret Shipp/Scott Rodig Michael Angelo

Muscle structure 3D

Control human iPS Isogenic Duchenne-like iPS Allen Institute for Cell Science
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Screen for specific phenotypes using images
Treatment for AMKL (leukemia)

DMSO
0.75- W= SUBE56

6 & 10 12
log.(Per—cell DNA content)

DNA stain with outlines identifying the nuclei

Clinical trials underway for Alisertib in adults with AMKL.
Wen Q, et al. (2012). Cell 150(3):575-89
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What is image-based profiling?
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Caicedo J.C,, Singh S., Carpenter A. "Applications of Image-Based Profiling of
Perturbations". Current Opinion in Biotechnology - 2016.



ML for image-based profiling - Overview

1. Cell segmentation

2. Single-cell representation learning



1. Cell segmentation




Diversity of cell segmentation problems




Cell segmentation as face detectors




Dataset and challenge

Featured Prediction Competition

2018 Data Science Bowl

$100,000

: - : . . : Prize Mone
Find the nuclei in divergent images to advance medical discovery .

B0z Booz Allen Hamilton - 739 teams - 8 months ago

3 3,634 65,333

months teams experiments
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Data Science Bowl — Organization

Create annotated dataset Split training and test Define metric of success
0.9% 2.4%
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Training models for segmentation

Training Labeled objects Applying Labeled objects

Manual annotation

>

New image

Example
Image

Train Run
Model Model




Diversity of models for image segmentation

4 folds, 8 TTAs (flips/rotations)
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A single model improves accuracy and reduces time
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Existing tools for generic cell segmentation

W
. cellpose

a generalist algorithm A A
for cellular segmentation ’ \\.
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Stringer et al. 2020, Nat Meth Hollandi et al. 2020, Cell Systems
U-Nets Mask RCNN

Greenwald et al. 2021, BioRxiv
Feature Pyramid Nets



Open challenges

e Collecting larger publicly available datasets

e Learning from few examples with active learning



2. Single cell representation learning




Representation learning for image-based profiling

1. Raw images 4. Population profiles of treatments
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3. Single-cell feature matrices E....

5. Downstream statistical analysis

Are treatments
significantly different /
effective?

Caicedo, et al. 2017 Nature Methods



Classical approach to measuring cell morphology

Engineer measurements
Define and compute useful properties
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Perturbation experiments

Prediction task:

Learn discover phenotype from
the morphological signature
caused by the

Batch effects are expressed in
morphology in the form of
technical artifacts (slide 42)

Batch effects may encode the
organization of in
plates (slide 57)
Confounder:
Learn assay activations from
batch effects affecting
morphology and



Weakly supervised learning of single-cell feature embeddings

Auxiliary task: Main goal:
Single-cell treatment classification Treatment-level profiling
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Caicedo, et al. 2018 CVPR



Evaluating Image-Based Profiling

13 data points




Folds of enrichment (%)

Learned representations improve profiling performance

Number of folds of enrichment for top connections to have the same MOA/pathway vs. rest of the connections
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Determining variant impact

Control
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Determining variant impact

EGFR_p.S645C

Variant impact: 66.9%
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Correcting for batch effects

Colored by '1 e . Colored by
platemaps ) ¥ platemaps




Correcting for batch effects — Gradient Reversal Layer
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Minimizing batch effect confounders

ResNet18GRL - training
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Open challenges

e Domain adaptation and batch effect correction

e Explainable models and interpretation capabilities



Image-based Profiling

Extracting information from biomedical images

1. Raw images 2. Single cells 3. Feature extraction 4. Aggregated profiles
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1. Raw diamonds 2. Pieces of diamond 3. Diamond polishing 4. Jewelry



Thank you!



