voxelmorph.mit.edu

+ in future FreeSurfer release

Unsupervised Learning of Image Correspondences in Medical Imaging Analysis

Adrian V. Dalca HMS, MIT

Small vessel disease

Stroke

Dalca et al, MICCAI, 2014 Sridharan*, Dalca***** et al, MBIA 2013

Progression with age

31 years	42.5 years	54 years	65.5 years	77 years
average	average	average	average	average

Sridharan*, Dalca* et al, MBIA 2013

Scan at age 60

Dalca et al, MICCAI, 2015 Batmanghelich, Dalca et al, IPMI 2013, TMI 2016

Registration

fixed scan f

moving scan *m*

Registration is fundamental in MIA

- Register scans to a template for analysis
- Register subject scans to each other for direct comparison
- Clinical data alignment
 e.g. before and after surgery
- Segmentation propagate anatomical labels
- Related to alignment in other fields computer vision, 1D signals, <u>computational biology</u>

Pairwise optimization

Learning-based methods

- Supervised (have example triplets $\{m, f, \phi\}$)
- Unsupervised (only have images {*m*, *f*}) (voxelmorph)

Learning-based methods

- Supervised (have example triplets $\{m, f, \phi\}$)
- Unsupervised (only have images {*m*, *f*}) (voxelmorph)
 - limited use of classical modelling
 - **fast** for new image pair

Outline

Framework

VoxelMorph

deformation Moving image (**m**) • • • Fixed image (**f**) network $g_{ heta}$ parameters θ Unsupervised: $\mathcal{L} = \|m \circ \phi - f\| + \lambda \operatorname{Reg}(\phi)$

images match

smooth field

VoxelMorph Loss

$$\mathcal{L} = \sum_{i,j} \|m_i \circ \phi_{ij} - f_{ij}\| + \lambda \operatorname{Reg}(\phi_{ij})$$

VoxelMorph Loss

VoxelMorph Loss

Training

- SGD based techniques
- Each image pair contributes **slightly** to θ Classical optimization: slightly update ϕ for an image pair

Registration

Probabilistic model

$$m \circ \phi_{z} + \epsilon = f$$

 $\downarrow z \sim \mathcal{N}(z; 0, \Lambda^{-1})$
stationary velocity field \downarrow smoothness via Laplaciar

Goal: p(z|m, f) posterior probability of registration

Atlas-based registration

Data: 7000 training volumes, 250 validate, 250 test

Baseline: ANTs optimization method

Runtime for a new 3D image pair

Anatomical volume overlap

*algorithms only see images, no segmentation maps

Accuracy via volume overlap (Dice)

Outline

- Model
 - Variational Inference with neural networks
 - Optimization interpretation
 - Results (runtime and accuracy)

Amortized analysis: training with limited data

Segmentation Maps available at training

Test time performance

SynthMorph (do we need real data?)

Hoffmann et al in submission

Billot MIDL 2020 Billot MICCAI 2020

https://github.com/BBillot/lab2im

Hoffman et al, in revision

Pair 1 Pair 2 Pair 3 Pair 4

VoxelMorph - NMI

HyperMorph: Amortized parameter learning

Hoopes, Hoffmann, Fischl, Guttag, Dalca, IPMI 2021

Regularization Analysis (hyperparameters)

Hoopes et al, IPMI 2021

Learned template (**t**)

Baseline Comparison

Runtime (GPU-hours) VoxelMorph (~10 models): 765 HyperMorph: **147**

Optimal Hyperparameters vary by dataset

Optimal Hyperparameters vary by task

... even by anatomical region!

Template construction

Dalca, Rakic, Guttag, Sabuncu, NeurIPS 2019

Joshi et al, 2004

Template Construction

Conditional template construction

→ 90

15 🔶

age: 15.0

Dey et al, in submission

dHCP atlas

Acknowledgements

Guha Balakrishnan (MIT CSAIL DDIG) Benjamin Billot (UCL CMIC) Bruce Fischl (HMS/MGH LCN) John Guttag (MIT CSAIL DDIG) Malte Hoffmann (MGH LCN) Andrew Hoopes (MGH LCN) Eugenio Iglesias (MIT CSAIL, MGH HMS, UCL CMIC) Kathleen Lewis (MIT CSAIL DDIG) Marianne Rakic (MIT CSAIL DDIG, ETH) Mert Sabuncu (Cornell ECE, HMS/MGH LCN) Amy Zhao (MIT CSAIL DDIG)

vovelmorph

- Probabilistic generative model for diffeomorphisms
- Variational Inference
- Unsupervised Neural Network

- Very **fast** for new image pair
- State-of-the-art accuracy
- **Diffeomorphic** deformations
- Uncertainty estimation

voxelmorph.mit.edu

vo (elmorph

- Probabilistic generative model for diffeomorphisms
- Variational Inference
- Unsupervised Neural Network

- Very **fast** for new image pair
- State-of-the-art accuracy
- **Diffeomorphic** deformations
- Uncertainty estimation

voxelmorph.mit.edu

- Limited training data \rightarrow use VM as initialization
- Segmentation at training \rightarrow better test Dice performance
- No atlas \rightarrow construct atlas automatically
- Synthesis \rightarrow invariant representations
- Can apply to wider domains

vo (elmorph

- Probabilistic generative model for diffeomorphisms
- Variational Inference
- Unsupervised Neural Network

- Very **fast** for new image pair
- State-of-the-art accuracy
- **Diffeomorphic** deformations
- Uncertainty estimation

voxelmorph.mit.edu

- Limited training data \rightarrow use VM as initialization
- Segmentation at training \rightarrow better test Dice performance
- No atlas \rightarrow construct atlas automatically
- Synthesis \rightarrow invariant representations
- Can apply to wider domains