

Overview

- Introduction
 - ML in healthcare from data to insights
- Disease progression
 - Motivation
 - Problem statement
 - Deep Markov Models
 - Neural Intervention Effect Functions
 - Neural Pharmacodynamic State Space Models
 - Results
 - Future work
- Conclusion
 - Opportunities in research

Digitization of electronic healthcare data

[Henry et al., ONC Data Brief, May 2016]

Clinical data

Understand disease biology Triple-positive breast cancer

Build clinical tools

Disease progression

Neural Pharmacodynamic State Space Models, **Hussain & Krishnan**, Sontag, ICML 2021

Modeling disease progression

- What can we learn about diseases using data of patients who suffer from it?
- Goal: Unsupervised learning of clinical biomarkers: maximize $\sum_{i=1}^N \log p(\mathbf{X}^i | \mathbf{U}^i, B^i)$

MULTIPLE MYELOMA

Research Foundation

Technical challenges in healthcare data

- High-dimensional longitudinal data X has nonlinear variation
- Missingness in X
- Left and right censorship
- Complex variation in X due to treatment protocols U
- Rare diseases: Small number of samples to learn from

Deep Markov Models [D.M.M]

$$p(\mathbf{X}|\mathbf{U},B) = \int_{Z} \prod_{t=1}^{T} p_{\theta}(Z_{t}|Z_{t-1}, U_{t-1}, B) p_{\theta}(X_{t}|Z_{t}) dZ$$
$$Z_{t}| \cdot \sim \mathcal{N}(\mu_{\theta}(Z_{t-1}, U_{t-1}, B), \Sigma_{\theta}^{t}(Z_{t-1}, U_{t-1}, B)),$$
$$X_{t}| \cdot \sim \mathcal{N}(\kappa_{\theta}(Z_{t}), \Sigma_{\theta}^{e}(Z_{t}))$$

- Parameter estimation via maximum likelihood
- Use variational inference with an inference network for approximating the intractable posterior distribution

Structured inference networks for nonlinear state space models, Krishnan, Shalit & Sontag, AAAI 2017

How does the DMM work?

A middle ground for models of sequential data As

- RNNs/DMMs
 - Powerful black-box models
 for sequences
 - Susceptible to overfitting when data is scarce

- Latent variable model with history of use in disease progression
- Linearity can be a limitation

Domain knowledge for disease progression

- What is the right domain knowledge to use for cancer progression?
 - Lines of therapy
 - Mechanism of drug-effect
- How do we use this knowledge?
 - Design a new neural architecture for the transition function

$$Z_t | \cdot \sim \mathcal{N}(\mu_{\theta}(Z_{t-1}, U_{t-1}, B)), \Sigma_{\theta}^t(Z_{t-1}, U_{t-1}, B)),$$

$$X_t | \cdot \sim \mathcal{N}(\kappa_{\theta}(Z_t), \Sigma_{\theta}^e(Z_t))$$

From lines of therapy to local and global clocks

	Treatments Line 3+ Line 2 Line 1 Lenalidomide Bortezomib
Capture time from start of therapy	Global clock
Capture time relative to progression event	Local clock

Approximating the mechanistic effect of drugs

Pharmacokinetics and Pharmacodynamics

- Pharmacokinetics
 - How drugs move within the body.
- Pharmacodynamics
 - Study of how the body responds to the drugs being prescribed
- Traditional PK-PD models are designed to model dynamics of a single biomarker due to a single drug
- **Our work:** proposes new neural architectures to model the effect of multiple simultaneous interventions on latent representations

Neural intervention effect functions

Modeling baseline conditional variation

 $g_1(Z_{t-1}, U_{t-1}, B) = Z_{t-1} \cdot \tanh(b_{\ln} + W_{\ln}[U_{t-1}, B])$

- Modeling slow gradual relapse after treatment
 - Log-cell kill $g_2(Z_{t-1}, U_{t-1}, B) = Z_{t-1} \cdot (1 \rho \log(Z_{t-1}^2)) \beta \exp(-\delta \cdot \operatorname{lc}_{t-1})),$

• Captures rapid variation in representations due to treatment

$$g_{3}(Z_{t-1}, U_{t-1}, B) = \begin{cases} b_{0} + \alpha_{1,t-1} / [1 + \exp(-\alpha_{2,t-1}(\operatorname{lc}_{t-1} - \frac{\gamma_{l}}{2}))], \\ \text{if } 0 \leq \operatorname{lc}_{t-1} < \gamma_{l} \\ b_{l} + \alpha_{0,t-1} / [1 + \exp(\alpha_{3,t-1}(\operatorname{lc}_{t-1} - \frac{3\gamma_{l}}{2}))], \\ \text{if } \operatorname{lc}_{t-1} \geq \gamma_{l} \end{cases}$$

Neural architecture for the transition function

Transition

fxn.

SSM-PKPD

 z_{2}

 x_2

 u_1

 z_1

 \mathcal{X}^{\cdot}

$$Z_t | \cdot \sim \mathcal{N}(\mu_{\theta}(Z_{t-1}, U_{t-1}, B)), \Sigma_{\theta}^t(Z_{t-1}, U_{t-1}, B)),$$

$$X_t | \cdot \sim \mathcal{N}(\kappa_{\theta}(Z_t), \Sigma_{\theta}^e(Z_t))$$

4

Cohort characteristics

- 1143 patients aligned by the start of treatment for multiple myeloma
- Treated according to current standard of care
- Worked with an oncologist to select:
 - X: 16 clinical biomarkers over time
 - U: 9 indicators of treatments (such as drugs and line of therapy)
 - **B**: 16 baseline features
 - PCA projections of RNA SNP data
 - Demographics

Baselines

SSM_{Linear} parametrizes $\mu_{\theta}(Z_{t-1}, U_{t-1}, B)$ with a linear function. (Perotte *et al.*, 2015)

SSM_{NL}: nonlinear SSM to capture variation in the clinical biomarkers Krishnan et al. (2017)

SSM_{MOE}: We use an SSM whose transition function is parameterized via a Mixture-of-Experts (Jacobs *et al.*, 1991; Jordan & Jacobs, 1994)

SSM_{Attn.Hist.}: We implement a variant of the SSM in Alaa & van der Schaar (2019)

Generalization against baselines

Semi- synthetic data	Training Set Size	SSM Linear	$\frac{\mathbf{SSM}}{\mathbf{NL}}$	SSM MOE	SSM Attn. Hist.	SSM PK-PD	SSM PK-PD (w/o TExp)
	100	58.57 + /06	69.04 + /11	60.98 + /04	76.94 + /02	55.34 + /03	58.39 +/05 \parallel
	1000	53.84 +/02	44.75 +/02	51.57 +/03	73.80 +/03	39.84 +/02	$\boxed{38.93 + / \textbf{-} .01} \ $

Multiple Myeloma data	Evaluation Metric	$egin{array}{ccc} {f SSM} & {f SSM} \ {f PK-PD} & {}^{ m VS.} & {f Linear} \end{array}$	SSM SSM PK-PD ^{VS.} NL	SSM VS. SSM PK-PD VS. MOE	SSM SSM PK-PD ^{VS.} Attn. Hist.
	Pairwise Comparison (\uparrow)Counts (\uparrow)NELBO (\downarrow)	0.796 (0.400) PK-PD: 158, LIN: 6 PK-PD: 61.54, LIN: 74.22	$egin{array}{c} 0.760 & (0.426) \ 130, 12 \ 61.54, 79.10 \end{array}$	$\begin{array}{c} 0.714 \ (0.450) \\ 94, \ 8 \\ 61.54, \ 73.44 \end{array}$	$\begin{array}{c} 0.934 \ (0.247) \\ 272, \ 0 \\ 61.54, \ 105.04 \end{array}$
	$\parallel \# \text{ of Model Parameters}$	PK-PD: 23K, LIN: 7K	$23\mathrm{K},51\mathrm{K}$	23K, 77K	23K, 17K

Where do the gains come from?

What utility do the clocks have?

Introspection into the learned latent space

Predicting clinical biomarkers into the *future (using baseline data)*

Predicting clinical biomarkers into the future (after observing the patient for 15 months)

Conclusion &

Opportunities in research

Conclusion - Idea in a slide

• Goal:

• Conditional density estimation of non-linear time-varying data

Challenge:

- Data is scarce and missing,
- Traditional methods overfit or are insufficiently expressive

• Approach:

- **Key idea:** Incorporate domain knowledge in how interventions affect latent representations to improve generalization
 - Pharmacodynamic modeling -> Neural Intervention Effect Functions
 - Treatment protocols -> local and global clocks
- **PKPD-SSM:** Neural pharmacodynamic state space model

Consequence:

• Improvements in model's ability to generalize and forecast clinical biomarkers

Conclusion – take aways

- When applying deep generative models to real data, think deeply about and incorporating domain knowledge
- Incorporating structure of the problem into the model can improve generalization (especially when data is scarce)

Future Work

- Validating results in a larger, independent cohort
 - Working with collaborators to study the model on data from Veteran's Affairs (VA)
- Developing clinical decision support tools
 - Understanding the needs of oncologists when treating patients and what forecasting tasks might be of interest
- From predictive to counterfactual models
 - Use as a starting point for model-based reinforcement learning

Opportunities in research Multi-modal decision making in oncology

- Forecasting patient data
- Predicting time to progression
- Likelihood of successful treatment
- Disease sub-typing

Questions?