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Digitization of electronic healthcare
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Understand disease
biology
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Disease registries
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Disease progression

JVeural Pharmacodynamic State Space

JModels,
Hussain & Krishnan, Sontag, ICVUL 2021




Modeling disease progression

« What can we learn about diseases using data of patients who suffer from it?

» Goal: Unsupervised learning of clinical biomarkers: maximize Zi\il log p(Xi ’Ui,Bi)
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Technical

challenges in
healthcare dala

MM MULTIPLE MYELOMA
RF gResearch Foundation

« High-dimensional longitudinal data
X has nonlinear variation

« Missingness in X
« Left and right censorship

« Complex variation in X due to
treatment protocols U

 Rare diseases: Small number of
samples to learn from




Statistical models
of sequential dala
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Recurrent Neural Network (RNN) (Gaussian) state space models (SSM)

Ly T
p(X|U,B) = [, p(X¢|X<t, U<t, B)) p(X|U.B) = /Z 1 26(Zi| Zi—1, Uier, BYpo( X Z1)d2
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Deep Markov Models [ DMM /

@0 e@

p(X|U,B) Hpe Zt|Z—1,Ur—1, B)po(X¢| Zy)dZ
Z =1
Zi|- ~N (po(Zi—1,Us—1, B), $4(Zt—1,Us—1, B Transition
Xyl ~N (10(21),.25(2y)) 21 xn, h

Neural
networks

« Parameter estimation via maximum .
likelihood Emission
« Use variational inference with an fxn.

inference network for approximating
the intractable posterior distribution

Structured inference networks for nonlinear state space models, Krishnan, Shalit & Sontag, AAAI 2017



Hoew does the DVIM work?
p N

Latent state as a proxy for
patient state

4

Treatments

Clinical
Observations




A middle ground for models of

sequenthial dala
* RNNs/DMMs * SSMs
« Powerful black-box models » Latent variable model with
for sequences history of use In disease
« Susceptible to overfitting progression
when data is scarce  Linearity can be a limitation

Use domain
knowledge to design
deep generative
models for clinical



Domain knowledge for disease
Progression

« What is the right domain knowledge to use for cancer
progression?e
 Lines of therapy
 Mechanism of drug-effect

 How do we use this knowledge®?
 Design a new neural architecture for ’rhe[’rransi’rion func’rion}

Zy|- NN([MH(Zt—ly Ut—1, B)}, 34(Zi—1,Us—1, B)),
Xyl ~N(ko(Z1),25(21))




From lines of therapy to local and global

4 N
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Approvimating the mechanistic effect of
drugs
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Pharmacokinetics and
Pharmacodynamics

« Pharmacokinetics
« How drugs move within the bodly.

 Pharmacodynamics
« Study of how the body responds to the drugs being prescribed

 Traditional PK-PD models are designed to model dynamics
of a single biomarker due to a single drug

* Our work: proposes new neural architectures to model the
effect of multiple simultaneous interventions on latent
representations



JVeural intervention effect functions

* Modeling baseline conditional variation
91<Zt—1>Ut—1>B) = Z11 'tanh(blin + Wlin[Ut—laBD

 Modeling slow gradual relapse after treatment

. Log—cell kill 92(Zi-1,Up—1,B) = Zy—1 - (1 — plog(Zi_;)
— Bexp(—d - leg—1)),

/

.

Inspired by:

(West & Newton, [2017)
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« Captures rapid variation in representations due to freatment

93(Zi—1,Us—1,B)
4

bo + a1,4—1/[1 + exp(—az—1(lc;—1 — F))],
if 0 <lci—1 <y
by + ao—1/[1 + exp(as -1 (leg—1 — 221))],
if Ie;—1 > v
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Inspired by:
Xu et al. (2016)
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JNeural architecture for the e
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Cohort characteristics

* 1143 patients aligned by the start of freatment for multiple
myeloma

» Treated according to current standard of care

« Worked with an oncologist to select:
« X: 16 clinical biomarkers over time
« U: 9 indicators of freatments (such as drugs and line of therapy)

* B: 16 baseline features
« PCA projections of RNA SNP data
« Demographics



Baselines

SSM1inear parametrizes pug(Zi—1,Us—1,B) with a linear function (Perotte et al} 2015)

SSMNL: nonlinear SSM to capture variation in the clinical biomarkers [Krishnan ef al|(2017)

SSMyior: We use an SSM whose transition function is parameterized via a Mixture-of-Experts
(Jacobs et al.; 1991; Jordan & Jacobs| 1994)

SSM At Hist.: We implement a variant of the SSM in [Alaa & van der Schaar| (2019)



Generalization against baselines

4 . ) Trainine Sef Sire SSM SSM SSM SSM SSM SSM PK-PD
Semi- & “ Linear NL MOE Attn. Hist. PK-PD (w/o TExp)
syr(;Ttheflc 100 58.57 +/- .06 69.04 +/- .11 60.98 +/- .04 76.94 +/- .02 55.34 +/- .03 58.39 +/- .05
ata
N y 1000 53.84 +/- .02 44.75 +/- .02 51.57 +/- .03 73.80 +/- .03 39.84 +/- .02 38.93 +/- .01
4 I
Bvaluation Mefric SSM SSM SSM  SSM  SSM SSM  SSM SSM
_ vattation VI PK-PD ' Linear PK-PD "> NL PK-PD " MOE PK-PD ' Attn. Hist.
Multiple Pairwise Comparison (1) 0.796 (0.400) 0.760 (0.426)  0.714 (0.450) 0.934 (0.247)
Myeloma Counts (1) PK-PD: 158, LIN: 6 130, 12 94, 8 272, 0
data NELBO (/) PK-PD: 61.54, LIN: 74.22  61.54, 79.10 61.54, 73.44 61.54, 105.04
K Y # of Model Parameters PK-PD: 23K, LIN: 7K 23K, 51K 23K, TTK 23K, 17K




Where do the gains come from?
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What utility do the clocks have?
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Introspection into the learned lalent
space
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Predicting clinical biomarkers inio the
Juture
(using baseline data)

Line 1
Bor

Dex
Len

Linear
PK-PD
Data

serum iga

FYYVYYYVYYYYYY

0.0

-0.2+

-0.4-

-0.6

-0.81

-1.01

-1.21

serum igg
FYYVYYVYYYVYYVYYY
@
[
e 64
L
L
L

0 2 4 6 8 10

serum igm
-1.21
FYYVYYYYYVYYYTYY
-1.41
-1.6+
-187 @
-2.0+
o0
® L )
-221 @
®

0 2 4 6 8 10

Time (per 2 months)

0.751
0.50+
0.251
0.00+
-0.251
-0.50+
-0.751

-1.00

s£rum lambda

serum kappa

FYVYYYYYYYYY

2.0

1.5

1.0

0.51

0.01

FYYYVYVYVYVYYYYY




Fredicting clinical Deomarkers inio the

Juture
(afler observing the patient for 15
moniths)
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Conclusion &

Opportunities in research



Conclusion - Idea in a shide

« Goal:
« Conditional density estimation of non-linear fime-varying data

* Challenge:
« Datais scarce and missing,
« Traditional methods overfit or are insufficiently expressive

« Approach:

« Key idea: Incorporate domain knowledge in how interventions affect latent
representations fo improve generalization

 Pharmacodynamic modeling -> Neural Intervention Effect Functions
« Treatment protocols -> local and global clocks

« PKPD-SSM: Neural pharmacodynamic state space model

 Consequence:
« Improvements in model’s ability to generalize and forecast clinical biomarkers



Conclusion - lake aways

« When applying deep generative models to real datq,
think deeply about and incorporating domain knowledge

* Incorporating structure of the problem intfo the model can
Improve generalization (especially when data is scarce)



Futwre Work

« Validating results in a larger, independent cohort

« Working with collaborators o study the model on data from
Veteran's Affairs (VA)

* Developing clinical decision support tools

« Understanding the needs of oncologists when treating patients
and what forecasting tasks might be of interest

« From predictive to counterfactual models
« Use as a starting point for model-based reinforcement learning



Opportunities in research
Mulli-modal decision making in

oncology

-~

\
.. Patient found of floor at commencement of shift. Had climbed out
Cl NI CO' of bed and hit head. Assisted back to bed. Obs stable. Cut above
right eye — steri strips in place. Dr attended and sutured x3 to
nO'I'eS laceration on scalp. Very drowsy, unable to take meds due to
drowsiness. Very poor fluid intake. ?may require I'V therapy?

.
-

Imaging

.
-

Forecasting patient data
Predicting time to progression
Likelihood of successful freatment
Disease sub-typing



Questions?
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