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= “Reverse engineering 
human visual intelligence”

A Quest to understand the 
neural mechanisms of human 
visual intelligence



Account for human 
visual intelligence …  

…using mechanisms 
of the brain…     
(networks of simulated neurons) 

…in the language 
of engineering

Specific artificial neural 
networks as implemented 

(and leading) scientific 
hypotheses

The neuroscientific goal of reverse engineering:

(predictive, built systems).

My talk today: Ongoing progress on a foundational piece of visual intelligence 3

(behavioral capabilities) 
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Human visual intelligence…

What is 
in this 
scene?

Where 
are the 
cars?

Where 
are the 
people?

What will 
happen 
next?

Where is 
it safe to 

walk?
….
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~10 deg at center of gaze, ~200 msec snapshotsGuidance from brain and cognitive sciences:
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Image adapted from MIT Street Scenes Database (Courtesy of Tommy Poggio)
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~10 deg at center of gaze, ~200 msec snapshotsGuidance from brain and cognitive sciences:
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Is a car 
here?

Is a person 
here? …What is the 

pose of the 
car?

…

Core object recognition  

Foundational component of 
visual intelligence:

~200 msec ~200 msec ~200 msec

Guidance from brain and cognitive sciences: ~10 deg at center of gaze, ~200 msec snapshots
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Example behavioral test trials

8 deg image at center of gaze, ~100 msec viewing time  
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When do primates outperform state-of-the-art deep CNNs?

8 deg image at center of gaze, ~100 msec viewing time  

Example behavioral test trials
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When do primates outperform state-of-the-art deep CNNs?

8 deg image at center of gaze, ~100 msec viewing time  

Example behavioral test trials
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primate,  
Homo sapien

Species A

Intelligence test domain: Core Visual Object Perception

<

Species B

Computer 
vision systems
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Intelligence test domain: Core Visual Object Perception
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Rajalingham, Schmidt, & DiCarlo, Vision Sciences Society (2014) 
Rajalingham, Schmidt, & DiCarlo, J. Neuroscience (2015) 
Rajalingham, Issa, Kar, Schmidt, & DiCarlo, CCN (2017)

Behavior test performance for 276 core object recognition tasks 

primate,  
Homo sapien

primate,  
rhesus monkey

(note: many images in each task)

14
Intelligence test domain: Core Visual Object Perception
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primate,  
Homo sapien

primate,  
rhesus monkey< =~[ ]Computer 

vision systems

Primates

Want-to-be 
primates

15
Intelligence test domain: Core Visual Object Perception
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Ventral visual stream IT = “Inferior 
temporal cortex” 

visual 
input

Lesions here result in 
deficits in object recognition. 
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Ventral visual stream

visual 
input

IT = “Inferior 
temporal cortex” 
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Ventral visual stream

~100ms

Constraint data from the non-human primate

visual 
input

IT = “Inferior 
temporal cortex” 
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Ventral visual stream

~100ms

Constraint data from the non-human primate

visual 
input

IT = “Inferior 
temporal cortex” 
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Ventral visual stream

~100ms

Constraint data from the non-human primate

visual 
input

21



Slide

Constraint data from the non-human primate

visual 
input

Neuronal 
population

word vs. pseudoword

letter A vs other

letter Z vs other

bigram NG vs other

bigram AB vs other

...

Linear
decoders

words (n=308)

pseudowords (n=308)

case/size variation

...

...

Base set
(n=616 images)

Variation set
(n=400 images)

Single-letter set
(n=104 images)

...

... Rhesus macaque physiology
(passive viewing)

V4

IT

Tim
e

(100ms o
n/off)

...

... ...

A

B

Orthographic stimuli
(printed text)

Large-scale
neural recordings

Tests of 
orthographic

processing

Ventral visual stream

Examples of IT neuronal spiking responses

Hung, Kreiman, Poggio, & 
DiCarlo  Science (2005)

Image 
duration

msec
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Ventral visual stream

~100ms

Constraint data from the non-human primateExamples of IT neuronal spiking responses

Hung, Kreiman, Poggio, & 
DiCarlo  Science (2005)

Image 
duration

msec

visual 
input

Neuronal 
population

word vs. pseudoword

letter A vs other
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(passive viewing)

V4

IT

Tim
e
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n/off)
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Large-scale
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Tests of 
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processing
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Ventral visual stream

Constraint data from the non-human primateExamples of IT neuronal spiking responses

Hung, Kreiman, Poggio, & 
DiCarlo  Science (2005)

Image 
duration

msec

r = 60
spikes / sec

r = 71 r = 25 r = 7
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Ventral visual stream

~100ms

Constraint data from the non-human primate

visual 
input

25
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Constraint data from the non-human primate

V1

V2

V4

PIT

CIT
AIT

10 mm
Array 1 
location Array 2 

location Array 3 
(in place)

2

3

1

Three, 96-electrode arrays

Adapted from Kelly et al. J. Neurosci (2007)

26



Slide

V1

V2

V4

PIT

CIT
AIT

10 mm
Array 1 
location Array 2 

location Array 3 
(in place)

2

3

1

Three, 96-electrode arrays

Adapted from Kelly et al. J. Neurosci (2007)

1

100-1000

IT
 n

eu
ro

n 
sa

m
pl

e 
nu

m
be

r 
1 r = 3 spikes/sec

r = 12 spikes/sec
r = 4 spikes/sec

…
 r = 35 spikes/sec

Image #1

100 ms

8Neural response

low high
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1 2000+

Image #

1

100-1000

Neural response

low high

IT
 n

eu
ro

n 
sa

m
pl

e 
nu

m
be

r 

28
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Brain

The IT neural population representation explains & 
predicts object recognition behavior ! 

Hung*, Kreiman*, Poggio and DiCarlo, Science (2005); 
Rust & DiCarlo, J Neuroscience (2010); 
Majaj et al. J Neuroscience (2015)

Behavioral performance 
and pattern

Linear decoders

The parameters of this model of object 
perception tell us how we should 
manipulate IT neural responses to 

predictably modify object percepts. 
(Afraz et al. PNAS 2015 ; Rajalingham, Neuron 2018)

Towards brain machine interfaces …
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Brain

AI relevance:  Primates are behaviorally 
higher performing than computer vision 
systems because their brain can 
compute this IT neural representation !

The IT neural population representation explains & 
predicts object recognition behavior 

One key take-away: explaining the mean IT firing rates 
is ~sufficient to (computationally) explain behavior & 
perceptual report 
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Brain

Breakthrough ~2013 

But how is the IT code computed from the image?But how is the IT representation computed from each image?
That is, what are the intervening neural mechanisms?

AI relevance:  Primates are behaviorally 
higher performing than computer vision 
systems because their brain can 
compute this IT neural representation !

The IT neural population representation explains & 
predicts object recognition behavior  



Brain-inspired image processing algorithms~
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Brain

GUIDANCE FROM 
NEUROSCIENCE (many labs):

Background



Each “area” of processing: 
• Spatially local, ~linear filters 
• Different types of such filters 
• Each repeated spatially over the input 
(~convolution)

Brain-inspired image processing algorithms~
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GUIDANCE FROM 
NEUROSCIENCE (many labs):

Brain

Background



Brain-inspired image processing algorithms~

34Slide

Brain

+ - - + 

Retinal 
 image 

+ – – 

+ – 

Linear 
operator 

Gain 
control 

Output 
nonlinearity 

Linear 
operator 

Gain 
control 

Output 
nonlinearity 

Moving
 image

V1 MT 

ωt

ωx

ωy

Carandini & Heeger, 1994

Each “area” of processing: 
• Spatially local, ~linear filters 
• Different types of such filters 
• Each repeated spatially over the input 
(~convolution) 
• Rectifying non-linearity 
• Normalization

GUIDANCE FROM 
NEUROSCIENCE (many labs):

Background



Brain-inspired image processing algorithms~
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Brain

• “Deep” series of areas 
•  Similar “style” operations at 
each successive area

Each “area” of processing: 
• Spatially local, ~linear filters 
• Different types of such filters 
• Each repeated spatially over the input 
(~convolution) 
• Rectifying non-linearity 
• Normalization

GUIDANCE FROM 
NEUROSCIENCE (many labs):

• Fast ~feedforward does a lot! 
• Distributed rate codes

Background



Brain-inspired image processing algorithms~
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Brain

• “Deep” series of areas 
•  Similar “style” operations at 
each successive area

Each “area” of processing: 
• Spatially local, ~linear filters 
• Different types of such filters 
• Each repeated spatially over the input 
(~convolution) 
• Rectifying non-linearity 
• Normalization

GUIDANCE FROM 
NEUROSCIENCE (many labs):

• Fast ~feedforward does a lot! 
• Distributed rate codes

• Fukushima  1980
1999-2007L1 L2 L3input

Read-out

n. of filters

kernel 
size

kernel 
size

num
ber of filters

num
ber of filters

Learning

kernel 
size

norm
alization

neighborhood

norm
alization

neighborhood

norm
alization

neighborhood

norm
 strength

thresh/sat

norm
 strength

thresh/sat

norm
 strength

thresh/sat

Rate
Trace
“Tem

p. Adv.”
“Auto-reset”

...

Learning

Rate
Trace
“Tem

p. Adv.”
“Auto-reset”

...

Learning

Rate
Trace
“Tem

p. Adv.”
“Auto-reset”

...

Pinto and Cox 2008-2010

Tomaso Poggio 
BCS/MIT

Nicolas PintoDavid Cox

Resulted in proposed 
feedforward artificial neural 
networks (ANNs):

The building of such models is 
critically important to basic 
science research:  Each is a 
testable mechanistic hypothesis!

Background
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Brain

GUIDANCE FROM 
NEUROSCIENCE:

Unfortunately, all of these specific 
mechanistic hypotheses were inadequate.

L1 L2 L3input

Read-out

n. of filters

kernel 
size

kernel 
size

num
ber of filters

num
ber of filters

Learning

kernel 
size

norm
alization

neighborhood

norm
alization

neighborhood

norm
alization

neighborhood

norm
 strength

thresh/sat

norm
 strength

thresh/sat

norm
 strength

thresh/sat

Rate
Trace
“Tem

p. Adv.”
“Auto-reset”

...

Learning

Rate
Trace
“Tem

p. Adv.”
“Auto-reset”

...

Learning

Rate
Trace
“Tem

p. Adv.”
“Auto-reset”

...

PLoS09 modelsHMAX models

“V1-like” models
“V2-like” models

E.g. they each failed to accurately 
predict the internal neural responses 
to new sets of test images.

~1980-2010

Hypotheses (specific ANN models):

…
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Failure!
GUIDANCE FROM 
NEUROSCIENCE:

Brain

~1980-2010

Animals Boats Cars Chairs Faces Fruits Planes Tables

V4 neural site (typical example)

The underlying problem:  most of the parameters of these hypotheses 
(models) are not determined by existing brain science results !

Hypotheses (specific ANN models):
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Dan Yamins Ha Hong

~2013: Collaborative breakthrough

Yamins, Hong, 
Solomon, Seibert and 
DiCarlo NIPS (2013), 
PNAS (2014) 

The underlying problem:  most of the parameters of these hypotheses 
(models) are not determined by existing brain science results !
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layer 2

layer 3

layer 4

. . .

Step 1:  Optimize for Task

layer 1

100ms
Visual

Presentation

. . .

LN

LN

...

LN

LN

...

LN

LN

LN

...

LN

LN

...

Spatial Convolution
over Image Input

LN

Step 2:  Compare to Neural Data

 

V1

ITV2

V4

Visual Recognition Task

“V1” “V2” “V4” “IT”

Core object recognition

Neuroscience guided the 
parameters of system macro- 
and meso- architecture

Artificial neural network (ANN)

Cognitive science guided the task

Dan Yamins Ha Hong

Yamins, Hong, 
Solomon, Seibert and 
DiCarlo NIPS (2013), 
PNAS (2014) 

Example test image
(one of many)

The underlying problem:  most of the parameters of these hypotheses 
(models) are not determined by existing brain science results !

~2013: Collaborative breakthrough
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layer 2

layer 3

layer 4

. . .

Step 1:  Optimize for Task

layer 1

100ms
Visual

Presentation

. . .

LN

LN

...

LN

LN

...

LN

LN

LN

...

LN

LN

...

Spatial Convolution
over Image Input

LN

Step 2:  Compare to Neural Data

 

V1

ITV2

V4

Visual Recognition Task

“V1” “V2” “V4” “IT”

Engineering tools 
to tune the 
microarchitecture 
parameters to 
perform well on 
this task !

Softmax layer

Core object recognition

Cognitive science guided the task

Artificial neural network (ANN)
Dan Yamins Ha Hong

Optimize to perform this task!
Yamins, Hong, 
Solomon, Seibert and 
DiCarlo NIPS (2013), 
PNAS (2014) 

Example test image
(one of many)

Discovery:  the individual “neurons” inside 
some of these models behave very much like 
the individual neurons that we and others 
were recording in the monkey brain !

• Each choice of all system 
parameters is an entire new 
artificial ventral stream!

~2013: Collaborative breakthrough

Neuroscience guided the 
parameters of system macro- 
and meso- architecture
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layer 2
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. . .

Step 1:  Optimize for Task

layer 1

100ms
Visual

Presentation

. . .

LN
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LN

LN

...

LN

LN

LN

...

LN

LN

...

Spatial Convolution
over Image Input

LN

Step 2:  Compare to Neural Data

 

V1

ITV2

V4

Visual Recognition Task

“V1” “V2” “V4” “IT”

Brain

Compare Compare Compare Compare Compare

… Behavior

… Behavior

A specific deep ANN (a neurally-mechanistic scientific hypothesis!)
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Response* of 
IT neural site 

One example 
IT neural site

IT
 n

eu
ra

l s
ite

s
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layer 2
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Step 1:  Optimize for Task

layer 1

100ms
Visual

Presentation

. . .

LN
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LN
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...

LN

LN

LN

...

LN

LN

...

Spatial Convolution
over Image Input

LN

Step 2:  Compare to Neural Data

 

V1

ITV2

V4

Visual Recognition Task

“V1” “V2” “V4” “IT” … Behavior

Response* of 
IT neural site 
(example) 

Yamins, Hong, … DiCarlo NeurIPS (2013), PNAS (2014)  

A specific deep ANN (a neurally-mechanistic scientific hypothesis!)

Prediction 
of ANN 
model 
(“IT” layer)
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layer 2

layer 3
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Step 1:  Optimize for Task

layer 1

100ms
Visual

Presentation

. . .

LN

LN

...

LN

LN

...

LN

LN

LN

...

LN

LN

...

Spatial Convolution
over Image Input

LN

Step 2:  Compare to Neural Data

 

V1

ITV2

V4

Visual Recognition Task

“V1” “V2” “V4” “IT”

Brain

Compare Compare Compare Compare Compare

… Behavior

… Behavior

A specific deep ANN (a neurally-mechanistic scientific hypothesis!)

Summary:  individual in silico ventral stream “neurons” turned out 
to be very functionally similar to biological ventral stream neurons  
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50%

We optimized this way …

A normative “principle”

(%
 v

ar
ia

nc
e 

ex
pl

ai
ne

d)

(2012)

(Evolution / development)

Adapted from Yamins, Hong, Solomon, 
Seibert and DiCarlo PNAS (2014)  

A neuroscience 
goal

Accuracy on core object 
recognition tasks An engineering / AI goal

A virtuous cycle!
Match score 
of the in silico 
“IT” neurons 
with primate 
IT neurons

Each dot is a proposed 
ventral stream network 
(here sampled from deep CNN family)

Yamins et al. HMO ANN (2012)
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We optimized this way …

A normative “principle”
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(2012)

(Evolution / development)

Adapted from Yamins, Hong, Solomon, 
Seibert and DiCarlo PNAS (2014)  

A neuroscience 
goal

Accuracy on core object 
recognition tasks An engineering / AI goal

A virtuous cycle!
Match score 
of the in silico 
“IT” neurons 
with primate 
IT neurons

Each dot is a proposed 
ventral stream network 
(here sampled from deep CNN family)

Yamins et al. HMO ANN (2012)

Can brain 
science just 

wait for 
engineers to 
build even 

more 
accurate 
models?



An implicit collaboration!

For early review, see: 
Yamins & DiCarlo 
Nature Neuro 2016 

Hypotheses!

48

Specific assemblies of 
neural network mechanisms

Audition (McDermott & Yamins)

Decision making (Sussillo & Newsome, Freedman, …)
 Motor planning and control (Jazayeri, Batista, Churchland, …)
Navigation (Fiete, …)

Somatosensation (Hartmann & Yamins)

Vision (Kriegeskorte, Oliva, Konkle, Ganguli, Kanwisher, Tsao, …)This approach is 
leading to rapid 
progress in 
other areas of 
brain science: 



In silico neural networks

For review, see: 
Yamins & DiCarlo 
Nature Neuro 2016 

“AI”

An implicit collaboration!
To the benefit of both fields

49

Specific assemblies of 
neural network mechanisms



For early review, see: 
Yamins & DiCarlo 
Nature Neuro 2016 

An implicit collaboration!
To the benefit of both fields

Further science
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Specific assemblies of 
neural network mechanisms
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visual stream (single-neuron-level & behavioral-level)
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www.brain-score.orgSummary:  clear progress, but the current scientific hypotheses 
(models) are still incomplete (i.e. demonstrably inaccurate in important ways)
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www.brain-score.orgSummary:  clear progress, but the current scientific hypotheses 
(models) are still incomplete (i.e. demonstrably inaccurate in important ways)

What can brain scientists do 
with the current best 

mechanistic hypotheses?
How should we improve these 

mechanistic hypotheses?

Current leading mechanistic models of the ventral visual stream…
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What can brain scientists do 
with the current best 

mechanistic hypotheses?
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Neural population control via deep
image synthesis
Pouya Bashivan*, Kohitij Kar, James J. DiCarlo

INTRODUCTION: The pattern of light that
strikes the eyes is processed and re-represented
via patterns of neural activity in a “deep” series
of six interconnected cortical brain areas called
the ventral visual stream. Visual neuroscience
research has revealed that these patterns of
neural activity underlie our ability to recog-
nize objects and their relationships in the
world. Recent advances have enabled neuro-
scientists to build ever more precise models
of this complex visual processing. Currently,
the best such models are deep artificial neural
network (ANN) models in which each brain
area has a correspondingmodel layer and each
brain neuron has a corresponding model neu-
ron. Such models are quite good at predicting
the responses of brain neurons, but their con-
tribution to an understanding of primate visual
processing remains controversial.

RATIONALE: These ANNmodels have at least
two potential limitations. First, because they
aim to be high-fidelity computerized copies of
the brain, the total set of computations per-
formed by thesemodels is difficult for humans
to comprehend in detail. In that sense, each
model seems like a “black box,” and it is un-
clear what form of understanding has been
achieved. Second, the generalization ability
of these models has been questioned because
they have only been tested on visual stimuli
that are similar to those used to “teach” the
models. Our goal was to assess both of these
potential limitations through nonhuman pri-
mate neurophysiology experiments in a mid-
level visual brain area. We sought to answer
two questions: (i) Despite these ANN models’
opacity to simple “understanding,” is the knowl-
edge embedded in them already useful for a

potential application (i.e., neural activity con-
trol)? (ii) Do these models accurately predict
brain responses to novel images?

RESULTS: We conducted several closed-loop
neurophysiology experiments: After matching
model neurons to each of the recorded brain
neural sites, we used the model to synthesize
entirely novel “controller” images based on the

model’s implicit knowledge
of how the ventral visual
stream works. We then
presented those images to
the subject (one of three
macaquemonkeys) to test
the model’s ability to con-

trol the subject’s neurons. In one test, we asked
the model to try to control each brain neuron
so strongly as to activate it beyond its typically
observed maximal activation level. We found
that the model-generated synthetic stimuli suc-
cessfully drove 68% of neural sites beyond their
naturally observed activation levels (chance
level is 1%). In an evenmore stringent test, the
model revealed that it is capable of selectively
controlling an entire neural subpopulation, ac-
tivating a particular neuron while simultane-
ously inactivating the other recorded neurons
(76% success rate; chance is 1%).
Next, we used these non-natural synthetic

controller images to ask whether the model’s
ability to predict the brain responses would
hold up for these highly novel images. We
found that the model was indeed quite ac-
curate, predicting 54% of the image-evoked
patterns of brain response (chance level is
0%), but it is clearly not yet perfect (100%).

CONCLUSION: Even though the nonlinear
computations of deep ANN models of visual
processing are difficult to accurately summa-
rize in a fewwords, they nonetheless provide a
shareable way to embed collective knowledge
of visual processing, and they can be refined
by new knowledge. Our results demonstrate
that the currently embedded knowledge already
has potential application value (neural control)
and that these models can partially generalize
outside the world in which they “grew up.”
Our results also show that these models are
not yet perfect and that more accurate ANN
models would produce even more powerful
neural control. Such noninvasive neural con-
trol is not only a potentially powerful tool in the
hands of neuroscientists, but also could lead to
a new class of therapeutic applications.▪
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A control goal: set a desired neural state 
(of a target brain region)

Bashivan, Kar and DiCarlo CCN (2018), Science 364 (2019)  

We used our in 
silico ventral 

stream models 
to design 

precise patterns 
of light energy 
on the eyes to 

try to “set” 
different 

internal states 
of the brain.

We found that we could use these model-
designed images to successfully set neural 

activity states deep in the brain !
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Control goal 1:  “super-activate”
Drive any single neural site’s 
activity beyond the maximum 
response observed thus far.

Responses of an 
example V4 neural site:
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Yamins, Hong, Solomon, 
Seibert and DiCarlo NIPS 

(2013), PNAS (2014) 

?

Bashivan, Kar and DiCarlo CCN (2018), Science 364 (2019)  
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Bashivan, Kar and DiCarlo CCN (2018), Science 364 (2019)  

Success! 
(partly) (a mid-level visual area)


Responses of an 
example V4 neural site:
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All respond to stimuli in the 
same part of the visual field
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drive one target neural 
site to high activity, 
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neural sites low. 
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Bashivan, Kar and DiCarlo Science 364 (2019)  



A new application superpower for scientists?: 

So far, we have achieved descent 
neural control up to this brain level 

Bashivan, Kar and DiCarlo Science 364 (2019)  

The ability to control patterns of neural activity 
deep in the brain by precisely designing the 

visual input (images, movies) 

images V1 V2 V4 IT

by-pass connections

recurrent connectionsfeed-forward connections

Amygdala

Striatum

PFC

Prh

Images, movies, 
or video games

As we further improve our models, 
this superpower will further improve!
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www.brain-score.orgSummary:  clear progress, but the current scientific hypotheses 
(models) are still incomplete (i.e. demonstrably inaccurate in important ways)

What can brain scientists do 
with the current best 

mechanistic hypotheses?

Current leading mechanistic models of the ventral visual stream…

How should we improve these 
mechanistic hypotheses?
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How should we improve these 
mechanistic hypotheses?

Two major lines of ongoing 
experimentally-driven work:

1. Study & improve the early 
components of these ventral 
stream hypotheses 

2. Study & incorporate recurrent 
feedback processes into these 
ventral stream hypotheses

MEASURE BUILD

SCIENCE

Test/break 
current 

hypotheses

Use those 
breaks to 

build better 
hypotheses

Current best ventral 
stream models

61

White box 
adversarial 

attack
ANN: “Terrier” ANN: “Church”Perturbation+

Dapello*, Marques*, Schrimpf, Geiger, Cox & DiCarlo NeurIPS (2020)  



Summary take home messages

1. Background: The ventral visual stream produces an IT neural population 
representation that carries linearly decodable, image generalizable solutions 
for all (tested) core object recognition tasks.

2. Optimizing deep artificial neural network (ANN) architectures for core 
recognition tasks leads to internal neural representations in those ANNs that 
are remarkably similar to the internal neural representations of the ventral 
visual stream. (NIPS 2013, PNAS 2014)

• This result (above) includes IT “face neurons”.

• This result (above) is consistent with, but does not imply, that the brain 
learns by classical backpropagation. 

3. These same (optimized) ANN models can be used to guide the construction 
of novel synthetic images to super-activate ventral stream neurons and 
control sub-populations of neurons (CCN, 2018; Science, 2019) 62



Summary take home messages

4. Nevertheless, these same (optimized) ANNs are not yet functionally identical to 
the ventral visual stream. (e.g. J Neuroscience, 2018; “Brain-Score” bioRxiv 2018)

5. One difference is the lack of recurrent circuits, and recent IT neurophysiology 
suggests that fast-acting, automatically-evoked recurrent circuits enable the 
ventral stream’s superior performance on many images (Nature Neuro., 2019).

6. We and our collaborators are building a series of new models that incorporate 
more biological constraints — thus far, these model show computer vision 
gains in efficiency (depth) and gains in robustness to image perturbation.
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