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The neuroscientific goal of reverse engineering:

Account for human ...using mechanisms ...In the language
visual intelligence ...  of the brain... of engineering
(behavioral capabilities) (networks of simulated neurons)  (predictive, built systems).
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My talk today: Ongoing progress on a foundational piece of visual intelligence 3




Local reverse engineering team:
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Human visual intelligence...

What is Where ' | Where is
in this are the ‘ it safe to
scene? /AL~ cars?




Guidance from brain and cognitive sciences: ~10 deg at center of gaze, ~200 msec snapshots




Guidance from brain and cognitive sciences: ~10 deg at center of gaze, ~200 msec snapshots
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Image adapted from MIT Street Scenes Database (Courtesy of Tommy Poggio)



Guidance from brain and cognitive sciences: ~10 deg at center of gaze, ~200 msec snapshots

Foundational component of
visual intelligence: Is a car

] . here?
Core object recognition |

What is the
pose of the
car?

Is a person
here?
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~200 msec ~206 msec
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Example behavioral test trials

8 deg image at center of gaze, ~100 msec viewing time Slide 9



Example behavioral test trials

8 deg image at center of gaze, ~100 msec viewing time Slide 10



Example behavioral test trials

8 deg image at center of gaze, ~100 msec viewing time Slide 11



Species A
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_ Computer < primate,
vision systems Homo sapien

Species B
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Intelligence test domain: Core Visual Object Perception
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Intelligence test domain: Core Visual Object Perception
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Behavior test performance for 276 core object recognition tasks
(note: many images in each task)

primate, primate,
Homo sapien rhesus monkey
Camel

o e
Rhino l H B
Elephant

Wrench 4 '
Knife
Hanger . .

Fork
Guitar
Pen
Tank
Truck
Bird
Hammer
Gun
Table
Calculator
Spider
Leg
Zebra
House
Bear
Shorts
Watch

Rajalingham, Schmidt, & DiCarlo, Vision Sciences Society (2014)
Rajalingham, Schmidt, & DiCarlo, J. Neuroscience (2015)
Rajalingham, Issa, Kar, Schmidt, & DiCarlo, CCN (2017)

Intelligence test domain: Core Visual Object Perception
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Primates

Want-to-be
primates

Computer vision

Computer < primate, primate,
vision systems Homo sapien === rhesus monkey

Intelligence test domain: Core Visual Object Perception

Slide 15
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visual
input

pixel

RGC

LGN

Ventral visual strea
N 4

Lesions here result in
deficits in object recognition.

IT = “Inferior
temporal cortex”
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IT = “Inferior
~ v temporal cortex”

visual
input

pixel RGC LGN
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visual
input

pixel

RGC

LGN

V1

V4

IT

IT = “Inferior
temporal cortex”

Slide 19



visual
input

pixel
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LGN
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IT

IT = “Inferior
temporal cortex”
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visual
input

pixel RGC LGN
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Examples of IT neuronal spiking responses

Site 1

|mage I

duration 0O 100

msecC Hung, Kreiman, Poggio, &
DiCarlo Science (2005)




Examples of IT neuronal spiking responses

Site 1

Image

duration 0 100

msecC Hung, Kreiman, Poggio, &
DiCarlo Science (2005)




Examples of IT neuronal spiking responses

Site 1

r=60 r=171
spikes / sec

|mage I

duration 0O 100

mseC Hung, Kreiman, Poggio, &
DiCarlo Science (2005)
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visual
input

pixel RGC LGN
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Array 1
location
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low high

3 spikeg/sec
12 spik@gs/sec
4 spikeg/sec

r 935 spikgs/sec

100-1000
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Neural response Image #

low high

1
100-1 OOOIIIIIII

2000+

—

IT neuron sample number
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Hung*, Kreiman*, Poggio and DiCarlo, Science (2005)

Rust & DiCarlo, J Neuroscience (2010)
Majaj et al. J Neuroscience (2015)

The IT neural population representation explains &
predicts object recognition behavior !

The parameters of this model of object
perception tell us how we should
manipulate IT neural responses to

predictably modify object percepts.
(Afraz et al. PNAS 2015 ; Rajalingham, Neuron 2018)

Behavioral performance
and pattern

E-

Towards brain machine interfaces ...
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The IT neural population representation explains &
predicts object recognition behavior

Al relevance: Primates are behaviorally
higher performing than computer vision
systems because their brain can
compute this IT neural representation !

One key take-away: explaining the mean IT firing rates

Is ~sufficient to (computationally) explain behavior &
perceptual report

Slide 30



The IT neural population representation explains &
predicts object recognition behavior

Al relevance: Primates are behaviorally
higher performing than computer vision
systems because their brain can
compute this IT neural representation !

But how is the IT representation computed from each image?
That is, what are the intervening/neural mecr\ianis{ns?

4 v
Breakthrough ~2013 /l e

Slide 31



Background  gyipance From

b

NEUROSCIENCE (many labs):

A

SCIENCE

Brain

pixel RGC LGN V1 V2 V4 IT Slide 32



Background

b

/ \

SCIENCE

Brain

GUIDANCE FROM
NEUROSCIENCE (many labs):

Each “area” of processing:
» Spatially local, ~linear filters
* Different types of such filters

* Each repeated spatially over the input
(~convolution)

pixel RGC

Slide 33



Background | gyuipancE FROM
NEUROSCIENCE (many labs):

g Each “area” of processing:

» Spatially local, ~linear filters
* Different types of such filters

AN * Each repeated spatially over the input
SCIENCE (~convolution)
* Rectifying non-linearity Vi
e Normalization IR ALEECIEECIECORS ‘.
: / '
h~O—az-

i Linear  Gain Output
» operator control nonlinearity :

Carandini & Heeger, 1994

Brain [tseed]

pixel RGC 'z} IT Slide 34



Background | gyuipancE FROM
NEUROSCIENCE (many labs):

g Each “area” of processing:

» Spatially local, ~linear filters
* Different types of such filters
A * Each repeated spatially over the input
SCIENCE (~convolution)
* Rectifying non-linearity
* Normalization

* “Deep” series of areas
» Similar “style” operations at
each successive area

* Fast ~feedforward does a lot!
e Distributed rate codes

Brain

pixel RGC LGN V1 V2 V4 IT Slide 35



Background

b

A

SCIENCE

Brain

GUIDANCE FROM

: Resulted in proposed
SO 2012 (e e feedforward artificial neural
Each “area” of processing: networks (ANNSs):
» Spatially local, ~linear filters Pinin ~nd Rav DANO 204N

* Different types of such filters The building of such models is
* Each repeated spatially over the i critically important to basic
(~convolution) . .

g science research: Each is a

* Rectifying non-linearity
* Normalization

* “Deep” series of areas

« Similar “style” operations at _ W AL o &
each successive area TO%%S(S) /A’;‘l’gg’o

* Fast ~feedforward does a lot!
e Distributed rate codes

7‘_’& ' ' 'i.:.‘

pixel RGC LGN V1 V2 V4 IT Slide 36



Hypotheses (specific ANN models):
= (1]
= i
“V1-like” models ~,
“V2-like” models HMAX models PL0S09 models

~1980-2010

Unfortunately, all of these specific
mechanistic hypotheses were inadequate.

GUIDANCE FROM

NEUROSCIENCE: )
E.qg. they each failed to accurately

predict the internal neural responses
@@ to new sets of test images.

SCIENCE

Brain 5y
I "&

pixel RGC LGN
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Hypotheses (specific ANN models):
NZEESESNN
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& rThe underlying problem most of the parameters of these hypotheses

v (models) are not determined by existing brain science results !

“V2:like™ models

~1980-2010 HMAX models
100% —J=====================i-
GUIDANCE FROM
NEUROSCIENCE: =3 5 | Cortical
25 2 area V4
g “explained” -: g— g
means =0 g
A predicted for S o S _
i 7
SCIENCE new images 2 < 2
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PLoS09 models

Animals Boats

Cars Chairs Faces Fruits Planes Tables
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Dan Yamins Ha Hong

~2013: Collaborative breakthrough

" The underlying problem: most of the parameters of these hypotheses
(models) are not determined by existing brain science results !

Yamins, Hong,
Solomon, Seibert and
DiCarlo NIPS (2013),
PNAS (2014)

Slide 39



~2013: Collaborative breakthrough - _ _
— R Cognitive science guided the task '

-
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The underlying problem: most of the parameters of these hypotheses
(models) are not determined by existing brain science results !

Dan Yamins Ha Hong

Artificial neural network (ANN)

i

££V1 b2 . ££V2 b2

: “IT” / layer 4
| T"@’

V| layer 1 Wi layer 2

Neuroscience guided the

parameters of system macro-
and meso- architecture

Yamins, Hong,
Solomon, Seibert and //
DiCarlo NIPS (2013), e
PNAS (2014)

Spatial Convolution
over Image Input

Example test image
P g Slide 40

(one of many)
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Dan Yamins

~2013: Collaborative breakthrough

-

Cognitive science guided the task '

| R
& o
~
N’ .
0
. '

Ha Hong

Yamins, Hong,
Solomon, Seibert and
DiCarlo NIPS (2013),

PNAS (2014)

Artificial neural network (ANN)

i (( ﬁ@» m

££V1 b2 S ££V2 b2

V| layer 1 Wi layer 2

Neuroscience guided the

parameters of system macro-
and meso- architecture

Spatial Convolution
over Image Input

Core object recognition

Engineering tools
to tune the
microarchitecture
parameters to
perform well on
this task !

« Each choice of all system

parameters iS an entire new
artificial ventral stream!

Discovery: the individual “neurons” inside
some of these models behave very much like
the individual neurons that we and others

S ona of many) were recording in the monkey brain ! s



A specific deep ANN (a neurally-mechanistic scientific hypothesis!)

— .. Behavior

layer 4

Compare [Compare [Compare JCompare Compare

... Behavior

Slide 42



IT neural sites

One example
IT neural site

Response* of
IT neural site

Animals Boats Cars Chairs Faces Fruits Planes Tables Slide 43



A specific deep ANN (a neurally-mechanistic scientific hypothesis!)

— .. Behavior

layer 4

Y // Prediction
Response* of LT & ﬂ(;ﬁ,’gfv
IT neural site “T |
(example) (17" layer)
Animals Boats Cars Chairs Faces Fruits Planes Tables Slide 44

Yamins, Hong, ... DiCarlo NeurlPS (2013), PNAS (2014)



A specific deep ANN (a neurally-mechanistic scientific hypothesis!)

/__@_' (

1| Gt
/ v “wv2'| i |

H l layer 1 layer 2

W/l

!!!!!!!!!!!!!!!!!!!

— .. Behavior

layer 4

Fompare TCompare Compare JCompare Compare

Summary: individual in silico ventral stream “neurons” turned out
to be very functionally similar to biological ventral stream neurons

3 () o f .g 2@-’ ... Behavior
Lo | - - - -
]

V1 V2 V4 IT Slide 45



g Yamins et al. HMO ANN (2012)
50%

A o
SCIENCE
A neuroscience | _
goal D
.\:1
Match score ¢ = ey
of the in silico ¢ A ,:sﬁ;f?./PLOS%
“IT” neurons ¢ #{‘y
with primate % _ G LN
> iy o
IT neurons < R > =P =P =)
gt " P "= We optimized this way ..
0% | *;‘*:y'-‘-f’q;,‘*ﬁ_. * (Evolution / development)
et b 8 s ¢ 8 A
RS
Each dot is a proposed =14 "
xentrallsdtreacrjn ng,;tmor!() =t Lt ‘ ‘
ere sampled from deep amily =
Accuracy on core object _ ;
recognition tasks An engineering / Al goal |
Adapted from Yamins, Hong, Solomon, Slide 46

Seibert and DiCarlo PNAS (2014)



3

Yamins et al. HMO ANN (2012)

e 50% °
SCIENCE
Can brain
A neuroscience ~ science just
goal 3 wait for
engineers to
Match score ¢ . oui
- NG 74 uild even
of the in silico E’; e ,:é\;‘fg/PLosog more
“IT” neurons ¢ gRnTL ,‘33:‘3{ accurate
with primate 5 i AN models?
IT neurons PP R S L U i
J A % We optimized this way ..
0% | ¥ '-.?.'.f.;':."ﬁ-}n‘:'-’-'
RPN T P K (Evolutlon / development)
:s du-.-\.. '.-g. :'é"'-i;_o‘l.' "n‘

ventral stream network
(here sampled from deep CNN family)

- l‘
[y o
‘.

INTELLIGENCE ALGORITHMS

Adapted from Yamins, Hong, Solomon,
Seibert and DiCarlo PNAS (2014)

Accuracy on core object

recognition tasks An engineering / Al goal |

Slide 47




An implicit collaboration!
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Mind & Brain Hypotheses ' Software,

Measurements Specific assemblies of Hardware, Robotics
& Discoveries neural network mechanisms Synthesis & Creation

This approach is Vision (Kriegeskorte, Oliva, Konkle, Ganguli, Kanwisher, Tsao, ...)
leading to rapid Audition (McDermott & Yamins)

progress In Somatosensation (Hartmann & Yamins)

other areas of

_ : Decision making (Sussillo & Newsome, Freedman, ...)
brain science:

Motor planning and control (Jazayeri, Batista, Churchland, ...)
Navigation (Fiete, ...)




An |mpI|C|t collaboratlon'
aoth fields

é ‘:Hf“ :‘;"7“‘7\"

(11 7
Al Software,
es of Hardware, Robotics
1anisms Synthesis & Creation

Using an artificial intelligence technique inspired by theories about
how the brain recognizes patterns, technology companies are
reporting startling gains in fields as diverse as computer vision,
speech recognition and the identification of promising new molecules

for designing drugs.
49




An implicit collaboration!
To the be ej of both fields
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Mind & Brain Further science
Measurements Specific assemblies of
& Discoveries neural network mechanisms

1101010
1101001

Software,
Hardware, Robotics

Synthesis & Creation
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Current leading mechanistic models of the ventral visual stream...

< =5 But, no ANN

model aces all
/ of our brain and
{ behavioral tests.

Particular ANNs can now reasonably accurately
— explain / predict the workings of the ventral
visual stream (single-neuron-level & behavioral-level)
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Current leading mechanistic models of the ventral visual stream...

*: Brain-Score

Summary: clear progress, but the current scientific hypotheses
(models) are still incomplete (i.e. demonstrably inaccurate in important ways)
— o \o'? 3¢
model aces all |~ wosa (8 & EF I S
/ ofourbrainand |, o 430... o

@@%-@\4}

Kubilius et al., 2018 |

behavioral tests. resnet0_ v I8 . K

He et al., 2015

Particular ANNs can no\ ° o e 0 ot R [ -

densene t-169

_ explain / predict the W « i o v oo
VISU8| Stream (single-neuron + S::;;O;E‘;i_ 508 466 527 ..

resnet-152_v1
6 — _.507 459 528 E533

He et al., 2015

d t-201
- g ensene 507 454 533
Huang et al., 2016
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He et al., 2015 |
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Current leading mechanistic models of the ventral visual stream...

‘EEE Brain-Score |

Summary: clear progress, but the current scientific hypotheses
(models) are still incomplete (i.e. demonstrably inaccurate in important ways)

What can brain scientists do
with the current best
mechanistic hypotheses?

How should we improve these
mechanistic hypotheses?

Slide 53



RESEARCH ARTICLE SUMMARY SCIENCE

NEUROSCIENCE

s Neural population control via deep
V image synthesis

"4 A
Pouya Bashivan Kohitij Kar

Pouya Bashivan®, Kohitij Kar, James J. DiCarlo

What can brain scientists do
with the current best
mechanistic hypotheses?

Bashivan, Kar and DiCarlo CCN (2018), Science 364 (2019) Slide 54



A control goal: set a desired neural state
(of a target brain region)

FC6  FC7
LA @\ FC8
o) o\
ol \ o]\ :
XQ\% ° \\\\ ° ‘\\\ °
\& N o "\|jo| \\ °
(Es- \\\}: >\ . j * > Cal
7 e //// o :
AR
We used our in i / ;/ —
silico ventral
stream models
to design
precise patterns
of light energy
on the eyes to
tfg_;? 36‘:” We found that we could use these model-
intornal states designed images to successfully set neural
of the brain. activity states deep in the brain !

Bashivan, Kar and DiCarlo CCN (2018), Science 364 (2019) Slide 55



Control goal 1: “super-activate”

Drive any single neural site’s
activity beyond the maximum
response observed thus far.

(62}
|

Responses of an
example V4 neural site:
(a mid-level visual area)

Yamins, Hong, Solomon,
Seibert and DiCarlo NIPS
(2013), PNAS (2014)

Model V4 neuron predicted
firing rate (a.u.)

Measured neural firing rate (a.u.)

Bashivan, Kar and DiCarlo CCN (2018), Science 364 (2019)

Slide 56



Synthetic
controller images

Control goal 1: “super-activate”

Drive any single neural site’s
activity beyond the maximum
response observed thus far.

(62}
1

Responses of an
example V4 neural site:
(a mid-level visual area)

Model V4 neuron predicted

firing rate (a.u.)
Bashivan, Kar and DiCarlo CCN (2018), Science 364 (2019)

Measured neural firing rate (a.u.)



Application: control the neural population state deep in the brain

Old methods: undesired | 8
n=39 V2 ¢ “off-target” responses

All respond to: stimuli in the
same part of the visual field Target: New, model-
neural site 12y  enabled method:
Example goal: °]
drive one target neural
site to high activity,
while driving all other Hold all other sites at baseline firing
] 0 - Ll -
neural sites low. 05- synthetic
1 10 20 30 s | “controller
V4 recorded population (neuron number) image”’

Bashivan, Kar and DiCarlo Science 364 (2019)



A new application superpower for scientists?:

The ability to control patterns of neural activity
deep in the brain by precisely designing the
visual input (images, movies)

recurrent connections

feed-forward connections . PFC
. images ‘ /
Images, movies, i ; :

or video games

Prh

So far, we have achieved descent Amygdala

neural control up to this brain level |sreum
Bashivan, Kar and DiCarlo Science 364 (2019)

As we further improve our models,
this superpower will further improve!
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Current leading mechanistic models of the ventral visual stream...

‘EEE Brain-Score |

Summary: clear progress, but the current scientific hypotheses
(models) are still incomplete (i.e. demonstrably inaccurate in important ways)

What can brain scientists do
with the current best
mechanistic hypotheses?

How should we improve these
mechanistic hypotheses?

Slide 60
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SCIENCE

MEASURE
Test/break ﬂfg;ﬁg ?:
current build better
hypotheses hypotheses
oo
X0

Current best ventral
stream models

How shoul
medéhan

Two major lines of ongoing
experimentally-driven work:

1. Study & improve the early
components of these ventral
stream hypotheses

White box
adversarial
attack

— ANN: “Terrier” + Perturbation ——> ANN: “Church”

Amygdala| "
ues*, Schrimpf, Geiger, C ggié&nDiCar-o—N;urlPS (2020)

Slide 61



Summary take home messages

1.

Background: The ventral visual stream produces an IT neural population
representation that carries linearly decodable, image generalizable solutions
for all (tested) core object recognition tasks.

Optimizing deep artificial neural network (ANN) architectures for core
recognition tasks leads to internal neural representations in those ANNs that
are remarkably similar to the internal neural representations of the ventral
visual stream. (N/PS 2013, PNAS 2014)

- This result (above) includes IT “face neurons”.

- This result (above) is consistent with, but does not imply, that the brain
learns by classical backpropagation.

These same (optimized) ANN models can be used to guide the construction
of novel synthetic images to super-activate ventral stream neurons and
control sub-populations of neurons (CCN, 2018; Science, 2019) 62



Summary take home messages

4. Nevertheless, these same (optimized) ANNs are not yet functionally identical to
the ventral visual stream. (e.g. J Neuroscience, 2018; “Brain-Score” bioRxiv 2018)

5. One difference is the lack of recurrent circuits, and recent IT neurophysiology
suggests that fast-acting, automatically-evoked recurrent circuits enable the
ventral stream’s superior performance on many images (Nature Neuro., 2019).

6. We and our collaborators are building a series of new models that incorporate
more biological constraints — thus far, these model show computer vision
gains in efficiency (depth) and gains in robustness to image perturbation.
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